
A Network Interface for Enabling Visualization with FPGAs 
 

Craig D. Ulmer and David C. Thompson 
Sandia National Laboratories* 

7011 East Avenue 
Livermore, California USA 

{cdulmer, dcthomp}@sandia.gov 
 
 

ABSTRACT 
Visualization in scientific computing refers to the process of 
transforming data produced by a simulation into graphical 
representations that help scientific users interpret the results. 
While the back-end rendering phase of this work can be 
performed efficiently in graphics card hardware, the front-end 
“post processing” portion of visualization is currently performed 
entirely in software. Field-Programmable Gate Arrays (FPGAs) 
are an attractive option for accelerating post-processing operations 
because they enable users to offload computations into 
reconfigurable hardware. 

A key challenge in utilizing FPGAs for this work is developing an 
infrastructure that allows FPGAs to be integrated into a 
distributed visualization system. We propose a networked 
approach, where each post-processing FPGA is equipped with 
specialized network interface (NI) hardware that is capable of 
transporting graphics commands across the network to existing 
rendering resources. In this paper we discuss a NI for FPGAs that 
is comprised of a Chromium OpenGL interface, a TCP Offload 
Engine, and a Gigabit Ethernet module. A prototype system has 
been tested for a distributed isosurfacing application. 
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1. INTRODUCTION 
One of the challenges associated with scientific computing is 
interpreting the numerical results that are generated by a 
simulation. Simulation results can be exceptionally large data sets 
with subtleties that are both important to researchers and non-
trivial to observe. In order to better explore these data sets, 
researchers often utilize visualization tools that can highlight 

relevant features in the data and represent regions of interest in a 
more insightful, graphical form. The availability of cost-effective, 
high-performance hardware has shaped modern visualization into 
a process with three distinct operations. As illustrated by the data 
flow of Figure 1, these phases are post processing, data staging, 
and graphical rendering. 

1.1 Post Processing 
In post processing, scientific analysis is performed on a 
simulation’s results in order to extract information that is 
meaningful to the end user. Post processing can involve a variety 
of operations, including data transformations, statistical analysis, 
and integrity validation. In general, post-processing results are 
converted to graphical primitives that can then be rendered to a 
visual display. For an example of post processing, consider the 
case where a user wants to isolate a pressure wave as it moves in 
time through a three-dimensional space. Assuming that the 
simulation produces a three-dimensional block of integer pressure 
values for each time set, the user could apply an isosurfacing 
algorithm to locate the pressure values that exceed a particular 
threshold in each time step. This isosurfacing algorithm would 
then produce a collection of polygon primitives that approximate 
the surface of the threshold region. Therefore, in addition to 
extracting relevant features from the data set, the isosurfacing 
algorithm would produce data objects that could be rendered by 
graphics hardware. 

1.2 Data Staging 
Data staging in visualization refers to the process of transferring 
data between post processing and rendering unit(s). While trivial 
in a single-host system, data staging can be complex in systems 
such as tile display walls, where graphics objects are frequently 
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Figure 1: The process for visualizing scientific data involves post processing, data staging, and rendering. 
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transferred between distributed visualization resources. One 
popular software library for orchestrating data staging in a 
distributed environment is Chromium [1]. Chromium is an open-
source software package for sending rendering commands over a 
communication link to graphics hardware. Chromium provides an 
Open Graphics Language (OpenGL) [2] front end that intercepts 
an application’s graphics commands and encodes them as 
messages for network delivery. Chromium messages can be 
transferred to rendering nodes through a variety of network 
transports, including TCP/IP Ethernet, InfiniBand [5], and 
Myrinet [6]. At the rendering nodes, OpenGL commands are 
extracted from Chromium messages and issued to the local 
graphics card’s device driver for rendering. 

1.3 Rendering 
The final phase of the visualization process is rendering. 
Rendering refers to the task of converting a collection of graphical 
objects into a displayable image. Modern systems utilize high-
performance graphics cards that are capable of rapidly generating 
high-resolution images from data sets that contain millions of 
polygons. Internally these cards employ multiple graphic 
pipelines to convert three-dimensional polygons into two-
dimensional images. Rendering is controlled through specialized 
graphics languages such as OpenGL [2]. While video card 
vendors are always expanding the capabilities and speeds of their 
hardware, their work is motivated by a multi-billion dollar gaming 
and entertainment market. Unfortunately, the technical needs for 
this market are generally different than those found in scientific 
computing. Therefore it is unlikely that commercial graphics 
cards will directly support the post-processing operations required 
by the scientific computing community in the near future. 

1.4 Modern FPGAs 
Field-Programmable Gate Arrays (FPGAs) are reconfigurable 
hardware devices that can be programmed to emulate large, 
digital hardware circuits. Over the last decade researchers have 
used FPGAs as computational accelerators in a variety of 
applications. Recent advances in commercial FPGA architectures 
have renewed interest in this form of reconfigurable computing. 
Modern “platform” FPGAs feature large amounts of 
reconfigurable logic as well as special-purpose hardware units 
that can be leveraged by designers. For example, the Xilinx 
Virtex-II/Pro (V2P) FPGA architecture [3] includes 
reconfigurable logic, one or more PowerPC processors, internal 
memory, and flexible transceivers that can interact with high-
speed networks such as Gigabit Ethernet [4], InfiniBand [5], and 
Myrinet [6]. These components enable researchers to integrate 
networking capabilities into their FPGA work, and therefore allow 
FPGAs to be utilized in new manners.  

2. VISUALIZATION WITH FPGAS 
The scientific community’s continuous thirst for powerful 
visualization systems motivates us to consider architectures where 
post processing can be performed more efficiently. FPGAs are an 
attractive technology for this work because FPGAs enable users to 
cost-effectively implement key portions of an algorithm in fast, 
custom hardware. Adapting post-processing algorithms to 
function in hardware instead of software can result in significant 
performance improvements that increase the overall quality and 
usability of a visualization application. 

However, before FPGAs can be utilized in this regard, an 
important architectural question must be addressed: how should 
FPGAs be integrated into visualization systems that already 
employ powerful rendering resources? 

While there are multiple strategies for addressing this challenge, 
most have negative side effects. For example, the most 
straightforward approach would simply be to equip a workstation 
with an FPGA card for post processing and a video card for 
rendering, and then instruct the host processor to move data 
between resources as needed by the application. Unfortunately, 
this approach suffers from scalability issues because processing is 
limited to the resources that are available in the local host. At the 
other end of the spectrum, integration could be addressed by 
ignoring existing rendering resources and implementing both 
post-processing and rendering operations in the FPGA. In addition 
to duplicating industry efforts, this approach is unlike to provide 
competitive results compared to a system that uses commodity 
video card hardware for rendering. What is needed is an 
integration solution that can (1) leverage existing rendering 
hardware/software and (2) be scaled to an architecture that 
supports hundreds of post-processing and rendering resources. 

2.1 A Networked Approach 
In this paper we present an alternative strategy for incorporating 
post-processing FPGAs into the distributed visualization 
environment. We propose a networked approach, where each 
post-processing FPGA is loaded with a specialized network 
interface (NI) circuit that is capable of transmitting graphics 
commands over the network to a remote host for rendering.  

While a NI consumes FPGA resources and is nontrivial to 
implement, this approach is beneficial for multiple reasons. First, 
the networked approach decouples post processing hardware from 
rendering hardware. This trait enables us to focus on developing 
post-processing accelerators in FPGAs while leveraging existing 
graphics cards for rendering. Second, this approach is scalable 
because the communication network functions as the fabric for 
interconnecting our visualization resources. As such, the system 
can easily be expanded by (1) attaching additional FPGAs or 
rendering nodes to the network and (2) increasing the network’s 
routing resources to meet bandwidth requirements. Finally, if the 
NI is designed to work with existing standards for transporting 
graphics commands, post-processing FPGAs can be connected to 
current visualization system that are already in place. This feature 
therefore leverages existing hardware/software investments and 
does not require radical changes in current practices. 
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Figure 2: A Network Interface for FPGA-based Visualization 



In order to enable post-processing visualization research with 
FPGAs, we have implemented a NI that is capable of transporting 
graphics commands to a remote host for rendering. This NI is 
written in the Verilog hardware description language [7], and 
currently targets the Xilinx Virtex II/Pro (V2P) FPGA 
architecture. As depicted in Figure 2, this NI is comprised of three 
components: a Gigabit Ethernet (GigE) module for managing 
low-level network interactions, a TCP Offload Engine (TOE) for 
reliable communication, and a Chromium module for transporting 
OpenGL graphics commands.  

The remainder of this paper describes our experiences in 
designing and working with this NI. Sections 3 and 4 provide 
details about individual NI components and their performance. 
Section 5 presents an example of an FPGA-based, post-processing 
application. A functional prototype of the application with the NI 
is then presented in Section 6 to demonstrate a complete, working 
system. Finally, the paper is concluded with observations about 
this work and a discussion of opportunities for future research. 

2.2 Experiment Environment 
Due to the nature of this research effort, it was necessary to create 
an experiment environment that enables us to observe how our 
implementations behave when connected to commodity network 
hardware. For this work we utilize a commercial stand-alone 
FPGA card that is connected to a PC through a GigE link. The 
FPGA card is an Avnet Virtex-II/Pro Development Kit [8] from 
Avnet Design Services. This development board is equipped with 
a Xilinx V2P20 FPGA and two small-form pluggable (SFP) 
receptacles that are loaded with GigE optical transceivers. The 
host PC has dual 2.6 GHz Xeon processors, an NVIDIA Quadro4 
AGP video card, and an Intel 8245EM GigE controller. The PC is 
loaded with the Linux 2.4.20 operating system and the December 
2004 version of the Chromium software library. Additional FPGA 
network compatibility studies have been conducted using a Packet 
Engine G-NIC network interface card. Hardware designs are 
compiled using the Xilinx ISE 6.3 design tool chain, which 
performs synthesis through the Xilinx Synthesis Tool (XST). 

2.3 Related Work 
There have been a number of relevant FPGA-related research 
projects over the last decade that have influenced our work. In 
terms of visualization, several researchers have reported on the 
use of FPGAs in graphics application. A complete FPGA-based 
volumetric rendering system is presented in Vizard-II [9]. A real-
time ray tracing architecture for FPGAs was developed in the 
SaarCOR project [10]. In terms of traditional polygon rendering 
efforts, the Sepia [11] project used FPGAs to composite data 
extracted from multiple video cards in a distributed system to 
facilitate real-time rendering. This work used external ServerNet 
network hardware for communication between FPGAs. 

Researchers have also reported on their experiences with 
connecting FPGAs to communication networks. In various 
research efforts, FPGAs have been connected to ATM [12], 
Gigabit Ethernet [13], and Myrinet [14, 15]. However, all of these 
efforts utilized external network interface hardware to facilitate 
the communication. There have been relatively few academic 
papers that document experiences with the high-speed 
transceivers found in recent FPGAs, with the exception of 
network security applications [16]. Perhaps the greatest source of 
information for FPGA-based networking can be found in design 

documents from the FPGA vendors. For example, Xilinx provides 
a reference design that implements a Gigabit Ethernet NI  in 
FPGA logic, and connects it to an on-chip processor that runs 
TCP in software [17]. 

3. NI COMMUNICATION LAYER 
Our networked approach to integrating FPGAs into visualization 
systems is based on the design of a special-purpose NI for 
FPGAs. This NI provides two layers of functionality for 
supporting distributed visualization: reliable network 
communication and graphics primitive transport. In the layer that 
performs reliable network communication, NI hardware interacts 
with the network fabric and guarantees that data is properly 
transmitted between the post-processing application and the 
rendering node. For this task, we focus on an approach that 
utilizes FPGA hardware to implement TCP over a GigE network 
fabric. 

3.1 External vs. Internal NI Hardware 
Prior to the current generation of platform FPGAs, the only means 
by which an FPGA could be connected to a local area network 
was through the use of an external NI chip. As such, FPGA 
researchers with network applications have historically either built 
custom FPGA boards that employ external NI chips, or connected 
add-on network cards to an FPGA board through standard I/O 
interfaces such as the PCI Mezzanine Connector (PMC). In either 
case, designers were faced with board-level design issues as well 
as the task of incorporating circuitry in the FPGA to interact with 
the external NI. 

Platform FPGAs provide an attractive alternative for connecting 
FPGAs to the network because these FPGAs feature on-chip 
transceivers that can interact directly with a network at the 
physical layer. These transceivers therefore present an opportunity 
for implementing a complete NI inside the FPGA without external 
circuitry. For our research purposes, there are two distinct 
advantages for integrating the NI into the FPGA. First, integration 
reduces the need for external circuitry and therefore makes a 
design more portable. As evidence, we cite that our NI design 
work was easily ported from one commercial FPGA board to 
another, simply by updating the top-level pin outs for the design. 
Second, integration enables customization in the design because 
the NI is implemented in FPGA logic. This trait provides a great 
deal of freedom to tailor the NI to both the application and the 
network fabric.  

3.2 An On-Chip TCP/IP NI 
Developing a reliable, network communication engine for FPGAs 
is dependent on the network substrate selected for the 
visualization system. For our research environment we have 
selected a network fabric that utilizes Gigabit Ethernet (GigE) and 
the Transmission Control Protocol (TCP) [18]. While impractical 
for high-performance computing, TCP on GigE is well understood 
and widely deployed. Based on the availability of platform 
FPGAs with built-in transceivers, we have also decided to 
implement the communication layer for the NI entirely in FPGA 
logic. The overall architecture of this layer is presented in Figure 
3, with separate modules for GigE and TCP Offload Engine 
modules. 
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Figure 3: The NI communication layer is comprised of Gigabit 
Ethernet (GigE) and TCP Offload Engine (TOE) modules. 

3.3 Gigabit Ethernet (GigE) 
Low-level interactions with the network are handled through a 
GigE module. The components in this module perform the 
following functions. 

• Rocket I/O Transceiver: A Xilinx V2P Rocket I/O 
transceiver is utilized for physical layer interactions with the 
GigE medium. The transceiver performs 
serialization/deserialization (SERDES), 8B/10B 
encoding/decoding, embedded clock recovery, and CRC 
generation/validation. GigE’s 1.25Gb/s serial data rate is 
generated using either a 62.5 MHz or 125 MHz low-skew 
reference clock and the transceiver’s 20x or 10x clock 
multiplier. User circuitry supplies packet data at a 1.0 Gb/s 
data rate through a 16-bit, 62.5 MHz data bus. Additional 
logic monitors the transceiver’s state and invokes 
maintenance signaling when necessary.  

• Framing: The GigE module provides units for creating and 
parsing protocol information at the Ethernet frame, MAC, 
and IP levels. These interfaces simplify the work that must 
be done by external modules for generating and consuming 
valid packets. 

• Addressing: IP-to-Ethernet address translation is performed 
in the GigE module automatically using a 256-entry, direct-
mapped address translation cache. This cache is updated 
when address resolution protocol (ARP) messages are 
received from the network. The GigE module consults the 
cache when building an outgoing message. If a translation is 

not available, the GigE module automatically stalls the 
message and transmits an ARP request message to locate the 
unknown IP address.  

• PING Handling: The GigE module provides optional 
support for responding to ICMP PING messages. In addition 
to serving as a means of detecting whether the FPGA is 
networked and functioning, the PING circuitry can be used 
as a simple mechanism for triggering application operations. 
For example in several of our experiments, we designed our 
FPGA applications to wait unit a PING message is received 
before attempting to open a network connection. This 
approach allows us to use built-in network operations as a 
means of controlling the experiment. 

3.4 TCP Offload Engine (TOE) 
For lossy networks such as Ethernet, reliable transmission 
protocols can be employed in order to guarantee that application 
data is transferred properly between sender and receiver. While 
complex, the transmission control protocol (TCP) provides this 
functionality and is available for nearly every networked system 
in use today. We have constructed a TCP Offload Engine (TOE) 
for FPGAs that is designed to manage a single TCP network 
connection. It is comprised of four types of units: 

• Protocol Management: At the heart of the TOE module is a 
pair of protocol engines that maintain the TCP connection. 
The incoming TCP message control unit parses incoming 
packets and extracts both state updates and appends to the 
user’s data stream. The outgoing TCP message control unit 
generates control messages as well as data transmissions. 
Due to the limited buffer space in the FPGA, the state 
machines employ a “go-back-n” retransmission policy rather 
than “selective repeat”. 

• Timeout Monitor:  The TOE employs a timeout monitor to 
trigger the outgoing TCP message control unit to invoke 
retransmission mechanisms when a response is not detected 
within a specified amount of time. These mechanisms reset 
the outgoing FIFO back to the oldest unacknowledged 
message, and then retransmit all messages in the queue.  

• Packet FIFOs: The TOE utilizes a pair of packet FIFOs to 
convert between an application’s byte stream interface and 
TCP packets. FIFOs are 32-bits wide and can store 8 KB of 
data each (configurable at build time). The packet FIFOs are 
designed to allow rollback (e.g., if an incoming TCP 
message is about to saturate the buffer and needs to be 
dropped, or if the outgoing engine needs to rollback to a 
particular point in order to retransmit a message). 

• TCP CRC Generation: One of the hardships of TCP is that 
the TCP message checksum is stored in the header of the 
message instead of the tail. In order to remove the need for 
scanning a message more than once, a checksum engine is 
built into the outgoing message FIFO user interface. This 
unit calculates a partial CRC for each message as it is written 
into the FIFO. The outgoing TCP message control unit uses 
this information to build the full checksum when the message 
is transmitted. 



3.5 Performance 
The TOE/GigE portion of the NI was implemented and adapted 
for use with the ADS FPGA board. A series of experiments were 
then conducted to observe the communication performance of the 
FPGA with a host PC. A test module was constructed for the 
FPGA that uses the NI to transmit several bursts of data through 
the TCP connection to a host application. The host application 
extracts the data from a standard TCP socket and measures the 
amount of time required to send a series of bursts. The connection 
is warmed prior to any measurements to remove TCP slow-start 
effects. 

 

The results of the bandwidth test are presented in Figure 4, along 
with ideal values for a TCP connection and values measured for 
data transfers between a pair of hosts. From these tests we see that 
FPGA-to-Host bandwidth increases at roughly a linear rate with 
packet size, and that Host-to-Host bandwidth saturates much 
earlier. This difference can be attributed to the fact that the FPGA 
TOE does not implement the Nagle algorithm [19] which 
combines a series of small bursts into a larger packet. In any case, 
the FPGA implementation provides comparable performance for 
larger packet sizes. Given that visualization applications generally 
transport large blocks of data, this performance is acceptable for 
our applications. 

3.6 Observations 
The GigE/TOE combination provides a basic communication 
engine that enables us to reliably transmit data between an FPGA 
and a host computer using a standard GigE network. While our 
initial approach in this effort was to implement a only subset of 
TCP/IP functionality, we discovered that it was nearly impossible 
to build a working system that did not handle all of the subtle 
behaviors of TCP/IP. Over the course of development, the TOE 
grew to include support for slow start, NACK detection, and rate 
throttling. Additional work for combining small messages (i.e., 
the Nagle algorithm [19]) has been implemented, but is not 
discussed in this paper due to the large packet sizes used by our 
applications. The functional requirements for the GigE module 
expanded in a similar manner in order to maintain interoperability 
with commodity network hardware. Implementations that lacked 
these enhancements did not function well, if at all, with host 
computers that were equipped with commercial network 

components. 

From a user’s perspective, the TOE/GigE communication engine 
is appealing for multiple reasons. First, the TOE provides a simple 
byte-stream API that is easy to use. The fact that the TOE handles 
reliable transmissions over the network simplifies the amount of 
work that higher-level modules (e.g., Chromium) must perform. 
Second, the TOE/GigE communication core is self-contained and 
easily replicated. This trait enables designers to easily instantiate 
multiple NIs on each FPGA as resources permit. Finally, because 
the communication module’s API is not TCP/IP specific, it is 
possible for users to replace the module with hardware that 
utilizes different network substrates (e.g., InfiniBand) or protocols 
(e.g., reliable UDP or a more full-featured TCP). This flexibility 
ensures that applications can be written in a manner that is 
indifferent to the underlying network technologies. 

4. NI GRAPHICS TRANSPORT LAYER 
The second layer of the FPGA NI for visualization is responsible 
for graphics transport. This layer translates a post-processing 
application’s graphics operations into commands that can be 
transported across the network to a host for rendering. While it is 
possible to implement this functionality in a variety of manners, 
we advocate an approach that leverages existing standards. In 
particular, we propose utilizing the OpenGL standard as the user’s 
programming interface and Chromium as the interface for 
transporting OpenGL commands over the network. For simplicity, 
we refer to the graphics transport hardware implemented in the NI 
as the Chromium module. 

The Chromium module utilizes a reliable network transport 
module such as the TOE to establish and maintain a connection 
with the remote host that is responsible for rendering the 
applications graphics commands. Once the TOE establishes a 
connection, the Chromium module exchanges a small amount of 
information with the remote rendering application to share context 
information. After initialization, the FPGA application is free to 
issue OpenGL commands. The Chromium module packages a 
sequential list of OpenGL commands into a standard Chromium 
packet that can be transported across the connection. While the 
current implementation of the Chromium module only 
implements a basic subset of the OpenGL commands that 
Chromium is capable of transporting, new commands can be 
added simply by updating a translation table that associates a 
particular OpenGL command with a Chromium-specific 
identifier. 

4.1 Chromium Messages 
Chromium is designed to pack data as efficiently as possible into 
a maximum transfer unit (MTU) of the underlying network 
substrate. Packets are comprised of three sections: a header, a list 
of commands, and a data payload section. The 16-byte header for 
the message contains basic information for the message, including 
the identity of the OpenGL context that the message is destined 
for. The commands section of a message holds one or more 8-bit 
opcodes that correspond to the specific OpenGL actions that are 
to be invoked at the rendering node. Opcodes are packed in 
reverse order and then zero padded to align the section on a 32-bit 
boundary. Each opcode has one or more 32-bit data values that 
are stored sequentially in the data section of the message. 
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Figure 4: Measured TCP bandwidths for FPGA-to-Host and 
Host-to-Host transmissions. 



 

The architecture for the Chromium module is illustrated in Figure 
5. Internally the Chromium module utilizes two blocks of memory 
for packet assembly: one for opcodes and the other for opcode 
data. Opcodes are packed as they arrive using a shift register and 
stored in a LIFO to reverse the opcode sequence. The data section 
is assembled in a FIFO. As the FIFO and LIFO approach capacity, 
a high-water flag is asserted to notify the visualization application 
that only a few more operations can be inserted before the 
message needs to be flushed. This approach enables the 
application to gracefully terminate a stream of OpenGL 
commands. Once the application issues a flush command, the 
Chromium module assembles the message and delivers it to the 
TOE. In cases where the TOE does not have appropriate buffer 
space, the Chromium engine blocks until the data can be accepted. 

4.2 Interface Implementations 
Three versions of the Chromium module were constructed in 
order to implement different APIs. The first two implementations 
utilize a blocking interface that requires explicit handshaking 
whenever an application inserts a new OpenGL command into the 
data stream. The blocking modules employ either a single-
buffered of double-buffered approach to assembling Chromium 
packets. The third implementation of the Chromium module 
implements a non-blocking interface where user applications can 
stream commands into the module without handshaking overhead 
until the buffers reach capacity. The non-blocking implementation 
is double buffered.  Simulation and synthesis experiments were 
performed to observe the tradeoffs involved in these interfaces. 
For the simulation work, a design was constructed to measure the 
number of clock cycles required to convert 1,000 OpenGL 
triangles into the corresponding Chromium packets. Results from 
these experiments are presented in Table 1. 

Table 1: Implementation details for the Chromium module. 

Interface Blocking Non-
Blocking 

Buffering Single Double Double 

Slices 757  772  814  

BRAMs 2 6 12 

Max Clock 
Frequency 186 MHz 200 MHz 85 MHz 

Clocks for 
1K Triangles 29,537 15,450 12,824 

 
 

It is necessary to examine both the synthesis and simulation 
results to select the most appropriate Chromium module for a 
design. Simulation experiments confirmed that the non-blocking, 
double-buffered implementation required the least number of 
clock cycles to process 1,000 triangles due to reduced signaling 
overhead. However, as the synthesis results reveal this 
performance comes at the cost of additional hardware resources 
and a much lower maximum clock frequency. Overall, the 
blocking double-buffered approach provides the best tradeoff in 
terms of performance and resources, and is therefore the 
recommended implementation choice. However, the other 
implementations are available for design situations that have 
tighter or looser resource requirements. 

4.3 Performance Measurements 
A series of experiments were performed using the ADS FPGA 
board and a host PC to observe the communication performance 
of the visualization NI. For these tests we constructed a triangle 
generation module that supplies the NI with a stream of OpenGL 
commands for drawing triangles. Three different host applications 
were utilized to measure data rates at various points in the 
rendering system. The first program (Network) simply extracts all 
incoming data from the TCP socket and discards it. This program 
provides an estimate of the raw rate at which the NI can stream 
triangle data over a connection. The second program (Rendering 
NOP) uses the Chromium software library to parse incoming 
messages, but does not render the results. This program provides 
an estimate of parsing overhead. Finally, the last program 
(Rendering Full) uses the Chromium library to parse messages 
and render the results to the display. This program provides an 
end-to-end performance measurement for the system. 
Performance is measured in terms of thousands of triangles 
transferred  per second. A single triangle is comprised of 49 bytes 
of data. 
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Figure 5: The architecture of the Chromium Module. 



 

The results of the experiments are presented in Figure 6. From 
these results we observe that there is a considerable amount of 
overhead associated with the Chromium software library. The raw 
TCP connection was able to supply a million triangles per second 
(or approximately 400 Mb/s of triangle data). Using Chromium to 
parse these messages dropped performance to 450 thousand 
triangles per second (or 168 Mb/s of triangle data). A complete 
system with rendering dropped performance to 50 thousand 
triangles per second (or 20 Mb/s of triangle data). 

5. AN ISOSURFACING EXAMPLE 
In order to demonstrate the functionality of the visualization NI, 
we have constructed a post-processing application for FPGAs that 
performs isosurfacing on a three-dimensional data set. 
Isosurfacing in this context refers to the process of thresholding a 
multidimensional data set in order to locate features that are of 
interest to the user. For example, isosurfacing is often utilized in 
medical imaging applications. These applications use isosurfacing 
to locate bone or tissue structures within a volume of data 
generated by computed tomography (CT) or magnetic resonance 
imaging (MRI) equipment. 

Our isosurfacing implementation is based on the Marching Cubes 
[20] algorithm. This algorithm decomposes a volume of input data 
into a collection of data cubes and then analyzes each cube 
individually. Each of the eight values in a cube is compared 
against a threshold value to determine which of the cube’s edges 
intersect the isosurface. A lookup table is then used to transform 
this information into a list of triangles that best approximate the 
intersection surface within the cube. Our implementation employs 
integer operations for its calculations and uses edge midpoint 
values to approximate intersection points.  

5.1 Isosurfacing Module Data Flow 
The architecture of the isosurfacer module constructed for this 
effort is depicted in Figure 7. The three-dimensional volume of 

32-bit input data values is stored in an external block of memory. 
The fetch unit retrieves four input values at a time from the 
memory and repeats the process three more times until a stack of 
three data cubes is assembled for processing. Data cubes are then 
individually streamed into the module’s analysis units. During 
analysis, each value in the cube is compared to a threshold value 
to create an 8-bit signature for the cube. Concurrently, midpoint 
coordinates for all the edges in the cube are computed. If the 
threshold signature is all ones or all zeros, the cube does not 
intersect the threshold and can be dropped. Otherwise all data for 
the cube is stored in a slack buffer for later processing. The final 
unit in the module translates a cube’s threshold signature into a 
collection of triangles that approximate the surface. This 
translation is facilitated by a 256-entry table that specifies the (2) 
number of triangles to be generated and (2) the edge midpoints to 
use for each triangle vertex. 

The dataflow for the isosurfacing module is designed to maximize 
processing performance while handling output generation rates 
that vary based on the input data set. The fetch unit obtains four 

column values at a time in order to match the rate at which cubes 
are analyzed. The slack buffer is extremely wide (488-bits) and 
can accept a new cube of data every clock cycle until the buffer is 
saturated (1,024 entries). This buffer effectively decouples the 
front-end analysis work from the back-end triangle generation, 
and is necessary because each cube (eight 32-bit values) can 
generate up to five triangles (each with three 3x32-bit vertices).  

5.2 Simulation Example 
Prior to synthesis, the isosurfacing module was tested using the 
ModelSim Verilog simulator and a test bench design. The test 
bench instantiates a large block of memory for housing input data, 
an isosurfacing module, and a unit for writing output vertex data 
to a file. This data is then viewed offline using an external C 
program. Results generated by the hardware simulation are also 
validated against those generated by a software implementation of 
the isosurfacing algorithm. 
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Figure 6: Measured performance for transporting triangles 
from FPGA to Host, based on action performed by host. 
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Figure 7: Architecture of the isosurfacing module. 



In order to verify the functionality of the hardware, the memory 
unit in the simulation test bench was loaded with a 643 data set of 
CT values. This data is courtesy of the North Carolina Memorial 
Hospital and was acquired with a General Electric CT scanner 
[21]. A rendering of the 30,391 triangles produced by the 
hardware simulation is presented in Figure 8. While this rendering 
provides a rough approximation of the patient’s skull, the surface 
is blocky due to (1) the low resolution of the data set and (2) the 
implementation’s use of integer arithmetic for calculating edge 
intersections.  

For comparison purposes, the software implementation of the 
algorithm was utilized to process a 1283 value version of the data 
set. The software produced the 138,428 triangle rendering 
presented in Figure 9. From this image it is clear that increasing 
the input resolution enhances the overall quality of the image. 
However, the integer calculations used in this algorithm still result 
in blocky features in the image. These flaws can be obscured 
through standard shading techniques, but are omitted from this 
work in order to provide a detailed view of the algorithm’s raw 
output.  

6. A FUNCTIONAL PROTOTYPE 
Our vision for this research is one where a host PC is equipped 
with an FPGA board that offloads post-processing operations and 
transmits results over the network to a rendering node. As a 
means of demonstrating this vision, we have constructed a 
functional prototype that incorporates an isosurfacing module and 
a visualization NI into the ADS board’s FPGA. Due to a lack of 
support with this board for PCI interactions, we decided to replace 
the host PC’s CPU in our model with one of the V2P’s on-chip 
PowerPC CPUs. While this substitution ignores intra-PC I/O 
effects, it provides a flexible platform for experiments where a 
software application can utilize a hardware unit for offloading 
post processing operations. 

As illustrated in Figure 10, the prototype design features a 
visualization NI, an isosurfacing module, and a PowerPC CPU for 

hosting software applications. The PowerPC is connected to two 
blocks of on-chip memory. The first houses the application’s 
executable data and is attached to the CPU through a Processor 
Local Bus (PLB) that is implemented in FPGA logic. The second 
memory block houses input data for the isosurfacing module, and 
is connected to the PowerPC through its data-side on-chip 
memory controller (DSOCM). Additional logic is included in this 
interface to implement memory-mapped control/status registers 
that enable the PowerPC to control the isosurfacing module.  

 

6.1 Resource Utilization 
The prototype design was compiled for the ADS board’s V2P20 
FPGA and examined to determine resource utilization for the 
hardware. Overall the design consumed 79% of the V2P20’s 
available logic and 86% of its on-chip memory. Table 2 presents 

 
Figure 8: Hardware-based isosurfacing of 643 CT data set. 

 
Figure 9: Software-based isosurfacing of 1283 CT data set. 

PowerPC
CPU

I-Cache D-Cache
PLB

P
L
B

CPU
Memory

16KB

Input
Buffer
16KB

Isosurfacer

Network

Chromium

TOE

GigEFPGA

 
Figure 10: The post-processing system FPGA prototype. 



estimates for both logic (i.e., FPGA slices) and memory (i.e., 
FPGA Block RAMs) utilization for each of the modules in the 
design. The units requiring the most resources are the isosurfacing 
module and the TOE. The isosurfacing module consumes 
significant memory resources because it employs a wide data path 
and deep buffers. The TOE’s resource requirements are due to its 
complex protocol processing state machines and its use of packet 
FIFOs (16 KB/6KB for outgoing/incoming data).    

6.2 Verification 
The hardware portion of the prototype design was compiled and 
loaded on the ADS board’s FPGA. We then constructed a 
software application for the PowerPC that generates a sequence of 
data values that are written into the input buffer of the 
isosurfacing module. While the 16 KB capacity of the input buffer 
limits isosurfacing data sets to 163 values, the resolution was 
suitable for verifying the system worked properly with simple 
objects. The prototype was connected through a GigE link to a 
host PC and then instructed to begin processing data. A 
Chromium application on the PC captured the FPGAs data and 
rendered the results to a display. We verified that the spherical 
data set generated by the PowerPC matched the output rendered 
by the Chromium application. This experiment confirmed not 
only that the system operated properly, but also that the FPGA 
could be integrated into an existing visualization system through 
the networked approach. 

7. OBSERVATIONS 
The broad scope of this project has provided us with a significant 
amount of insight into multiple topics of FPGA research. From a 
networking perspective, modern platform FPGAs are now capable 
of interacting with commodity network hardware through their 
flexible, on-chip transceivers. However, it is important to note 
that designers must implement a moderate amount of control logic 
in the FPGA in order to ensure that the FPGA interacts properly 
with the network. The new Virtex-4 FX [22] FPGA architecture 
simplifies this development because it provides built-in MAC 
units for GigE. However, other networks such as InfiniBand still 
require NI implementations similar to the GigE module presented 
in this paper. 

Our TOE implementation demonstrates that a self-contained TCP 
unit can be implemented in hardware for current generation 
FPGAs. While the TOE consumes 32% of a V2P20’s logic, this 
FPGA is one of the smaller parts available in the V2P family. 
From a development perspective, constructing the TOE was 
nontrivial and time consuming due to the subtleties of TCP 
behavior. In retrospect we observe that a simpler approach would 
have been to instantiate a soft processor in FPGA logic and port a 
software version of TCP to the processor. However, the TOE 
implementation is built and will be released as open source 
hardware for the public. 

Our experiences with Chromium indicate that it is a suitable 
transport layer for graphic commands. The OpenGL API is well 
understood by visualization researchers and Chromium utilizes a 
well-packed data format for transmissions. While this format is 
easy to assemble on systems that employ random access memory, 
we note that it does not map well to a streaming architecture. As a 
result, the Chromium module must capture an entire message in 
LIFO/FIFO elements before any portion of it can be transmitted. 

The isosurfacing application provided a real-world example of 
post processing that is commonly used in current visualization 
work. The implementation confirmed that the FPGA could 
support very wide data paths, as well as application-specific 
pipelines. Additionally, the design’s slack buffer enables the fast, 
front-end analysis components to operate independently of the 
slow, back-end triangle generators, until saturation occurs. These 
types of optimizations are critical for achieving high performance 
in hardware designs. 

7.1 Future Work  
There are a number of opportunities for future work in this field. 
In terms of performance, we note that the primary bottleneck in 
the prototype system is the network substrate. We have found that 
the Chromium modules are capable of producing data streams at 
near GByte/s data rates. Therefore, the next logical step in this 
work would be to move to a faster network substrate such as 
InfiniBand. In addition to providing higher-bandwidth, InfiniBand 
provides support for attaching peripheral devices to the network 
and is therefore more appropriate for distributed visualization 
research. 

The isosurfacing example presented in this paper suffers from two 
significant limitations that preclude its use in real applications. 
First, isosurfacing applications require significant amounts of 
memory in order to work with high-resolution data sets. For 
example, 64 MB is required to house a 2563 data set of 32-bit data 
values. Therefore, future work would replace the on-chip memory 
interface with a controller for external (DDR) memory. Second, in 
order to provide high-quality images, it is necessary to update the 
design to use floating point operations and calculate the actual 
edge intersection points instead of approximating them with edge 
midpoint values. Our initial experiments with single-precision 
floating-point cores indicate that these units incur enough 
overhead to warrant adjusting the module’s data flow. 

Finally, this work would benefit from an adaptation to other 
FPGA accelerator boards. An ideal FPGA accelerator board 
would provide a high-bandwidth connection to the host (e.g., PCI-
Express), a large FPGA (e.g., a V2P50 or higher), a large block of 
DDR memory, and multiple network ports that are driven by the 
FPGA’s Rocket I/O transceivers. This architecture enables 
researchers to construct a network interface card that performs 
application-specific processing on messages as they are 
exchanged with the network.  

8. CONCLUDING REMARKS 
FPGAs are and attractive option for visualization research 
because they enable algorithms that are currently implemented in 
software to be adapted to efficient, custom-built hardware. 
Integrating FPGAs into a functional visualization system can be 
achieved by adding a special-purpose network interface to the 
FPGA that facilitates the transport of graphics data over a local 

Table 2: Resource utilization estimates for the prototype. 

Module Slices 
(% of V2P20) 

Block RAMs 
(% of V2P20) 

PowerPC 639 (7%) 8 (9%) 
Isosurfacing 1,286 (14%) 48 (55%) 
Chromium 801 (9%) 6 (7%) 

TOE 2,990 (32%) 11 (12%) 
GigE 1,592 (17%) 3 (3%)  



area network. In this paper we have demonstrated such a NI, and 
have used it to send graphics primitives over the network to a host 
for rendering. By equipping the NI with a standard API for 
transporting graphics commands, we are able to leverage existing 
hardware and software for rendering. End-to-end tests of this 
hardware revealed that the NI implementation gave reasonable 
performance for the network substrate that was utilized. 

We constructed an isosurfacing application for this work to 
demonstrate our vision of how post-processing operations can be 
performed in FPGA hardware. While the current implementation 
is limited in terms of input resolution and data precision, it 
illustrates our vision of a distributed system with a functional 
prototype.  
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