
A Network Interface for Enabling Visualization with FPGAs

Craig D. Ulmer and David C. Thompson
Sandia National Laboratories*

7011 East Avenue
Livermore, California USA

{cdulmer, dcthomp}@sandia.gov

ABSTRACT
Visualization in scientific computing refers to the process of
transforming data produced by a simulation into graphical
representations that help scientific users interpret the results.
While the back-end rendering phase of this work can be
performed efficiently in graphics card hardware, the front-end
“post processing” portion of visualization is currently performed
entirely in software. Field-Programmable Gate Arrays (FPGAs)
are an attractive option for accelerating post-processing operations
because they enable users to offload computations into
reconfigurable hardware.

A key challenge in utilizing FPGAs for this work is developing an
infrastructure that allows FPGAs to be integrated into a
distributed visualization system. We propose a networked
approach, where each post-processing FPGA is equipped with
specialized network interface (NI) hardware that is capable of
transporting graphics commands across the network to existing
rendering resources. In this paper we discuss a NI for FPGAs that
is comprised of a Chromium OpenGL interface, a TCP Offload
Engine, and a Gigabit Ethernet module. A prototype system has
been tested for a distributed isosurfacing application.

Keywords
FPGA, visualization, networking, isosurfacing, TCP

1. INTRODUCTION
One of the challenges associated with scientific computing is
interpreting the numerical results that are generated by a
simulation. Simulation results can be exceptionally large data sets
with subtleties that are both important to researchers and non-
trivial to observe. In order to better explore these data sets,
researchers often utilize visualization tools that can highlight

relevant features in the data and represent regions of interest in a
more insightful, graphical form. The availability of cost-effective,
high-performance hardware has shaped modern visualization into
a process with three distinct operations. As illustrated by the data
flow of Figure 1, these phases are post processing, data staging,
and graphical rendering.

1.1 Post Processing
In post processing, scientific analysis is performed on a
simulation’s results in order to extract information that is
meaningful to the end user. Post processing can involve a variety
of operations, including data transformations, statistical analysis,
and integrity validation. In general, post-processing results are
converted to graphical primitives that can then be rendered to a
visual display. For an example of post processing, consider the
case where a user wants to isolate a pressure wave as it moves in
time through a three-dimensional space. Assuming that the
simulation produces a three-dimensional block of integer pressure
values for each time set, the user could apply an isosurfacing
algorithm to locate the pressure values that exceed a particular
threshold in each time step. This isosurfacing algorithm would
then produce a collection of polygon primitives that approximate
the surface of the threshold region. Therefore, in addition to
extracting relevant features from the data set, the isosurfacing
algorithm would produce data objects that could be rendered by
graphics hardware.

1.2 Data Staging
Data staging in visualization refers to the process of transferring
data between post processing and rendering unit(s). While trivial
in a single-host system, data staging can be complex in systems
such as tile display walls, where graphics objects are frequently

Post
Processing Rendering

10100011
01100001
10111010
00101011
00000100
11111101

Simulation Results Graphics Objects

Data Staging
(Network)

Output Display

Figure 1: The process for visualizing scientific data involves post processing, data staging, and rendering.

* Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the
United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94-AL8500.

transferred between distributed visualization resources. One
popular software library for orchestrating data staging in a
distributed environment is Chromium [1]. Chromium is an open-
source software package for sending rendering commands over a
communication link to graphics hardware. Chromium provides an
Open Graphics Language (OpenGL) [2] front end that intercepts
an application’s graphics commands and encodes them as
messages for network delivery. Chromium messages can be
transferred to rendering nodes through a variety of network
transports, including TCP/IP Ethernet, InfiniBand [5], and
Myrinet [6]. At the rendering nodes, OpenGL commands are
extracted from Chromium messages and issued to the local
graphics card’s device driver for rendering.

1.3 Rendering
The final phase of the visualization process is rendering.
Rendering refers to the task of converting a collection of graphical
objects into a displayable image. Modern systems utilize high-
performance graphics cards that are capable of rapidly generating
high-resolution images from data sets that contain millions of
polygons. Internally these cards employ multiple graphic
pipelines to convert three-dimensional polygons into two-
dimensional images. Rendering is controlled through specialized
graphics languages such as OpenGL [2]. While video card
vendors are always expanding the capabilities and speeds of their
hardware, their work is motivated by a multi-billion dollar gaming
and entertainment market. Unfortunately, the technical needs for
this market are generally different than those found in scientific
computing. Therefore it is unlikely that commercial graphics
cards will directly support the post-processing operations required
by the scientific computing community in the near future.

1.4 Modern FPGAs
Field-Programmable Gate Arrays (FPGAs) are reconfigurable
hardware devices that can be programmed to emulate large,
digital hardware circuits. Over the last decade researchers have
used FPGAs as computational accelerators in a variety of
applications. Recent advances in commercial FPGA architectures
have renewed interest in this form of reconfigurable computing.
Modern “platform” FPGAs feature large amounts of
reconfigurable logic as well as special-purpose hardware units
that can be leveraged by designers. For example, the Xilinx
Virtex-II/Pro (V2P) FPGA architecture [3] includes
reconfigurable logic, one or more PowerPC processors, internal
memory, and flexible transceivers that can interact with high-
speed networks such as Gigabit Ethernet [4], InfiniBand [5], and
Myrinet [6]. These components enable researchers to integrate
networking capabilities into their FPGA work, and therefore allow
FPGAs to be utilized in new manners.

2. VISUALIZATION WITH FPGAS
The scientific community’s continuous thirst for powerful
visualization systems motivates us to consider architectures where
post processing can be performed more efficiently. FPGAs are an
attractive technology for this work because FPGAs enable users to
cost-effectively implement key portions of an algorithm in fast,
custom hardware. Adapting post-processing algorithms to
function in hardware instead of software can result in significant
performance improvements that increase the overall quality and
usability of a visualization application.

However, before FPGAs can be utilized in this regard, an
important architectural question must be addressed: how should
FPGAs be integrated into visualization systems that already
employ powerful rendering resources?

While there are multiple strategies for addressing this challenge,
most have negative side effects. For example, the most
straightforward approach would simply be to equip a workstation
with an FPGA card for post processing and a video card for
rendering, and then instruct the host processor to move data
between resources as needed by the application. Unfortunately,
this approach suffers from scalability issues because processing is
limited to the resources that are available in the local host. At the
other end of the spectrum, integration could be addressed by
ignoring existing rendering resources and implementing both
post-processing and rendering operations in the FPGA. In addition
to duplicating industry efforts, this approach is unlike to provide
competitive results compared to a system that uses commodity
video card hardware for rendering. What is needed is an
integration solution that can (1) leverage existing rendering
hardware/software and (2) be scaled to an architecture that
supports hundreds of post-processing and rendering resources.

2.1 A Networked Approach
In this paper we present an alternative strategy for incorporating
post-processing FPGAs into the distributed visualization
environment. We propose a networked approach, where each
post-processing FPGA is loaded with a specialized network
interface (NI) circuit that is capable of transmitting graphics
commands over the network to a remote host for rendering.

While a NI consumes FPGA resources and is nontrivial to
implement, this approach is beneficial for multiple reasons. First,
the networked approach decouples post processing hardware from
rendering hardware. This trait enables us to focus on developing
post-processing accelerators in FPGAs while leveraging existing
graphics cards for rendering. Second, this approach is scalable
because the communication network functions as the fabric for
interconnecting our visualization resources. As such, the system
can easily be expanded by (1) attaching additional FPGAs or
rendering nodes to the network and (2) increasing the network’s
routing resources to meet bandwidth requirements. Finally, if the
NI is designed to work with existing standards for transporting
graphics commands, post-processing FPGAs can be connected to
current visualization system that are already in place. This feature
therefore leverages existing hardware/software investments and
does not require radical changes in current practices.

Post-Processing
Visualization Application

Chromium

TCP Offload Engine

Gigabit Ethernet
NI

FPGA

Figure 2: A Network Interface for FPGA-based Visualization

In order to enable post-processing visualization research with
FPGAs, we have implemented a NI that is capable of transporting
graphics commands to a remote host for rendering. This NI is
written in the Verilog hardware description language [7], and
currently targets the Xilinx Virtex II/Pro (V2P) FPGA
architecture. As depicted in Figure 2, this NI is comprised of three
components: a Gigabit Ethernet (GigE) module for managing
low-level network interactions, a TCP Offload Engine (TOE) for
reliable communication, and a Chromium module for transporting
OpenGL graphics commands.

The remainder of this paper describes our experiences in
designing and working with this NI. Sections 3 and 4 provide
details about individual NI components and their performance.
Section 5 presents an example of an FPGA-based, post-processing
application. A functional prototype of the application with the NI
is then presented in Section 6 to demonstrate a complete, working
system. Finally, the paper is concluded with observations about
this work and a discussion of opportunities for future research.

2.2 Experiment Environment
Due to the nature of this research effort, it was necessary to create
an experiment environment that enables us to observe how our
implementations behave when connected to commodity network
hardware. For this work we utilize a commercial stand-alone
FPGA card that is connected to a PC through a GigE link. The
FPGA card is an Avnet Virtex-II/Pro Development Kit [8] from
Avnet Design Services. This development board is equipped with
a Xilinx V2P20 FPGA and two small-form pluggable (SFP)
receptacles that are loaded with GigE optical transceivers. The
host PC has dual 2.6 GHz Xeon processors, an NVIDIA Quadro4
AGP video card, and an Intel 8245EM GigE controller. The PC is
loaded with the Linux 2.4.20 operating system and the December
2004 version of the Chromium software library. Additional FPGA
network compatibility studies have been conducted using a Packet
Engine G-NIC network interface card. Hardware designs are
compiled using the Xilinx ISE 6.3 design tool chain, which
performs synthesis through the Xilinx Synthesis Tool (XST).

2.3 Related Work
There have been a number of relevant FPGA-related research
projects over the last decade that have influenced our work. In
terms of visualization, several researchers have reported on the
use of FPGAs in graphics application. A complete FPGA-based
volumetric rendering system is presented in Vizard-II [9]. A real-
time ray tracing architecture for FPGAs was developed in the
SaarCOR project [10]. In terms of traditional polygon rendering
efforts, the Sepia [11] project used FPGAs to composite data
extracted from multiple video cards in a distributed system to
facilitate real-time rendering. This work used external ServerNet
network hardware for communication between FPGAs.

Researchers have also reported on their experiences with
connecting FPGAs to communication networks. In various
research efforts, FPGAs have been connected to ATM [12],
Gigabit Ethernet [13], and Myrinet [14, 15]. However, all of these
efforts utilized external network interface hardware to facilitate
the communication. There have been relatively few academic
papers that document experiences with the high-speed
transceivers found in recent FPGAs, with the exception of
network security applications [16]. Perhaps the greatest source of
information for FPGA-based networking can be found in design

documents from the FPGA vendors. For example, Xilinx provides
a reference design that implements a Gigabit Ethernet NI in
FPGA logic, and connects it to an on-chip processor that runs
TCP in software [17].

3. NI COMMUNICATION LAYER
Our networked approach to integrating FPGAs into visualization
systems is based on the design of a special-purpose NI for
FPGAs. This NI provides two layers of functionality for
supporting distributed visualization: reliable network
communication and graphics primitive transport. In the layer that
performs reliable network communication, NI hardware interacts
with the network fabric and guarantees that data is properly
transmitted between the post-processing application and the
rendering node. For this task, we focus on an approach that
utilizes FPGA hardware to implement TCP over a GigE network
fabric.

3.1 External vs. Internal NI Hardware
Prior to the current generation of platform FPGAs, the only means
by which an FPGA could be connected to a local area network
was through the use of an external NI chip. As such, FPGA
researchers with network applications have historically either built
custom FPGA boards that employ external NI chips, or connected
add-on network cards to an FPGA board through standard I/O
interfaces such as the PCI Mezzanine Connector (PMC). In either
case, designers were faced with board-level design issues as well
as the task of incorporating circuitry in the FPGA to interact with
the external NI.

Platform FPGAs provide an attractive alternative for connecting
FPGAs to the network because these FPGAs feature on-chip
transceivers that can interact directly with a network at the
physical layer. These transceivers therefore present an opportunity
for implementing a complete NI inside the FPGA without external
circuitry. For our research purposes, there are two distinct
advantages for integrating the NI into the FPGA. First, integration
reduces the need for external circuitry and therefore makes a
design more portable. As evidence, we cite that our NI design
work was easily ported from one commercial FPGA board to
another, simply by updating the top-level pin outs for the design.
Second, integration enables customization in the design because
the NI is implemented in FPGA logic. This trait provides a great
deal of freedom to tailor the NI to both the application and the
network fabric.

3.2 An On-Chip TCP/IP NI
Developing a reliable, network communication engine for FPGAs
is dependent on the network substrate selected for the
visualization system. For our research environment we have
selected a network fabric that utilizes Gigabit Ethernet (GigE) and
the Transmission Control Protocol (TCP) [18]. While impractical
for high-performance computing, TCP on GigE is well understood
and widely deployed. Based on the availability of platform
FPGAs with built-in transceivers, we have also decided to
implement the communication layer for the NI entirely in FPGA
logic. The overall architecture of this layer is presented in Figure
3, with separate modules for GigE and TCP Offload Engine
modules.

Outgoing TCP
Message
Control

Rocket I/O TxRx

Align

Decode

ARP
Cache

Framer

MAC
Header

Control

ARP Reply

Ping Reply IP Header

Incoming
Byte Stream

Timeout
Monitor

CRC
Outgoing

Byte Stream

Incoming TCP
Message
Control

GigE

TOE

Network
Figure 3: The NI communication layer is comprised of Gigabit
Ethernet (GigE) and TCP Offload Engine (TOE) modules.

3.3 Gigabit Ethernet (GigE)
Low-level interactions with the network are handled through a
GigE module. The components in this module perform the
following functions.

• Rocket I/O Transceiver: A Xilinx V2P Rocket I/O
transceiver is utilized for physical layer interactions with the
GigE medium. The transceiver performs
serialization/deserialization (SERDES), 8B/10B
encoding/decoding, embedded clock recovery, and CRC
generation/validation. GigE’s 1.25Gb/s serial data rate is
generated using either a 62.5 MHz or 125 MHz low-skew
reference clock and the transceiver’s 20x or 10x clock
multiplier. User circuitry supplies packet data at a 1.0 Gb/s
data rate through a 16-bit, 62.5 MHz data bus. Additional
logic monitors the transceiver’s state and invokes
maintenance signaling when necessary.

• Framing: The GigE module provides units for creating and
parsing protocol information at the Ethernet frame, MAC,
and IP levels. These interfaces simplify the work that must
be done by external modules for generating and consuming
valid packets.

• Addressing: IP-to-Ethernet address translation is performed
in the GigE module automatically using a 256-entry, direct-
mapped address translation cache. This cache is updated
when address resolution protocol (ARP) messages are
received from the network. The GigE module consults the
cache when building an outgoing message. If a translation is

not available, the GigE module automatically stalls the
message and transmits an ARP request message to locate the
unknown IP address.

• PING Handling: The GigE module provides optional
support for responding to ICMP PING messages. In addition
to serving as a means of detecting whether the FPGA is
networked and functioning, the PING circuitry can be used
as a simple mechanism for triggering application operations.
For example in several of our experiments, we designed our
FPGA applications to wait unit a PING message is received
before attempting to open a network connection. This
approach allows us to use built-in network operations as a
means of controlling the experiment.

3.4 TCP Offload Engine (TOE)
For lossy networks such as Ethernet, reliable transmission
protocols can be employed in order to guarantee that application
data is transferred properly between sender and receiver. While
complex, the transmission control protocol (TCP) provides this
functionality and is available for nearly every networked system
in use today. We have constructed a TCP Offload Engine (TOE)
for FPGAs that is designed to manage a single TCP network
connection. It is comprised of four types of units:

• Protocol Management: At the heart of the TOE module is a
pair of protocol engines that maintain the TCP connection.
The incoming TCP message control unit parses incoming
packets and extracts both state updates and appends to the
user’s data stream. The outgoing TCP message control unit
generates control messages as well as data transmissions.
Due to the limited buffer space in the FPGA, the state
machines employ a “go-back-n” retransmission policy rather
than “selective repeat”.

• Timeout Monitor: The TOE employs a timeout monitor to
trigger the outgoing TCP message control unit to invoke
retransmission mechanisms when a response is not detected
within a specified amount of time. These mechanisms reset
the outgoing FIFO back to the oldest unacknowledged
message, and then retransmit all messages in the queue.

• Packet FIFOs: The TOE utilizes a pair of packet FIFOs to
convert between an application’s byte stream interface and
TCP packets. FIFOs are 32-bits wide and can store 8 KB of
data each (configurable at build time). The packet FIFOs are
designed to allow rollback (e.g., if an incoming TCP
message is about to saturate the buffer and needs to be
dropped, or if the outgoing engine needs to rollback to a
particular point in order to retransmit a message).

• TCP CRC Generation: One of the hardships of TCP is that
the TCP message checksum is stored in the header of the
message instead of the tail. In order to remove the need for
scanning a message more than once, a checksum engine is
built into the outgoing message FIFO user interface. This
unit calculates a partial CRC for each message as it is written
into the FIFO. The outgoing TCP message control unit uses
this information to build the full checksum when the message
is transmitted.

3.5 Performance
The TOE/GigE portion of the NI was implemented and adapted
for use with the ADS FPGA board. A series of experiments were
then conducted to observe the communication performance of the
FPGA with a host PC. A test module was constructed for the
FPGA that uses the NI to transmit several bursts of data through
the TCP connection to a host application. The host application
extracts the data from a standard TCP socket and measures the
amount of time required to send a series of bursts. The connection
is warmed prior to any measurements to remove TCP slow-start
effects.

The results of the bandwidth test are presented in Figure 4, along
with ideal values for a TCP connection and values measured for
data transfers between a pair of hosts. From these tests we see that
FPGA-to-Host bandwidth increases at roughly a linear rate with
packet size, and that Host-to-Host bandwidth saturates much
earlier. This difference can be attributed to the fact that the FPGA
TOE does not implement the Nagle algorithm [19] which
combines a series of small bursts into a larger packet. In any case,
the FPGA implementation provides comparable performance for
larger packet sizes. Given that visualization applications generally
transport large blocks of data, this performance is acceptable for
our applications.

3.6 Observations
The GigE/TOE combination provides a basic communication
engine that enables us to reliably transmit data between an FPGA
and a host computer using a standard GigE network. While our
initial approach in this effort was to implement a only subset of
TCP/IP functionality, we discovered that it was nearly impossible
to build a working system that did not handle all of the subtle
behaviors of TCP/IP. Over the course of development, the TOE
grew to include support for slow start, NACK detection, and rate
throttling. Additional work for combining small messages (i.e.,
the Nagle algorithm [19]) has been implemented, but is not
discussed in this paper due to the large packet sizes used by our
applications. The functional requirements for the GigE module
expanded in a similar manner in order to maintain interoperability
with commodity network hardware. Implementations that lacked
these enhancements did not function well, if at all, with host
computers that were equipped with commercial network

components.

From a user’s perspective, the TOE/GigE communication engine
is appealing for multiple reasons. First, the TOE provides a simple
byte-stream API that is easy to use. The fact that the TOE handles
reliable transmissions over the network simplifies the amount of
work that higher-level modules (e.g., Chromium) must perform.
Second, the TOE/GigE communication core is self-contained and
easily replicated. This trait enables designers to easily instantiate
multiple NIs on each FPGA as resources permit. Finally, because
the communication module’s API is not TCP/IP specific, it is
possible for users to replace the module with hardware that
utilizes different network substrates (e.g., InfiniBand) or protocols
(e.g., reliable UDP or a more full-featured TCP). This flexibility
ensures that applications can be written in a manner that is
indifferent to the underlying network technologies.

4. NI GRAPHICS TRANSPORT LAYER
The second layer of the FPGA NI for visualization is responsible
for graphics transport. This layer translates a post-processing
application’s graphics operations into commands that can be
transported across the network to a host for rendering. While it is
possible to implement this functionality in a variety of manners,
we advocate an approach that leverages existing standards. In
particular, we propose utilizing the OpenGL standard as the user’s
programming interface and Chromium as the interface for
transporting OpenGL commands over the network. For simplicity,
we refer to the graphics transport hardware implemented in the NI
as the Chromium module.

The Chromium module utilizes a reliable network transport
module such as the TOE to establish and maintain a connection
with the remote host that is responsible for rendering the
applications graphics commands. Once the TOE establishes a
connection, the Chromium module exchanges a small amount of
information with the remote rendering application to share context
information. After initialization, the FPGA application is free to
issue OpenGL commands. The Chromium module packages a
sequential list of OpenGL commands into a standard Chromium
packet that can be transported across the connection. While the
current implementation of the Chromium module only
implements a basic subset of the OpenGL commands that
Chromium is capable of transporting, new commands can be
added simply by updating a translation table that associates a
particular OpenGL command with a Chromium-specific
identifier.

4.1 Chromium Messages
Chromium is designed to pack data as efficiently as possible into
a maximum transfer unit (MTU) of the underlying network
substrate. Packets are comprised of three sections: a header, a list
of commands, and a data payload section. The 16-byte header for
the message contains basic information for the message, including
the identity of the OpenGL context that the message is destined
for. The commands section of a message holds one or more 8-bit
opcodes that correspond to the specific OpenGL actions that are
to be invoked at the rendering node. Opcodes are packed in
reverse order and then zero padded to align the section on a 32-bit
boundary. Each opcode has one or more 32-bit data values that
are stored sequentially in the data section of the message.

0

20

40

60

80

100

120

0 200 400 600 800 1,000 1,200 1,400

Payload Size (Bytes)

B
an

dw
id

th
 (M

iB
yt

es
/s

ec
on

d)

Ideal

Host-to-Host

FPGA-to-Host

Figure 4: Measured TCP bandwidths for FPGA-to-Host and
Host-to-Host transmissions.

The architecture for the Chromium module is illustrated in Figure
5. Internally the Chromium module utilizes two blocks of memory
for packet assembly: one for opcodes and the other for opcode
data. Opcodes are packed as they arrive using a shift register and
stored in a LIFO to reverse the opcode sequence. The data section
is assembled in a FIFO. As the FIFO and LIFO approach capacity,
a high-water flag is asserted to notify the visualization application
that only a few more operations can be inserted before the
message needs to be flushed. This approach enables the
application to gracefully terminate a stream of OpenGL
commands. Once the application issues a flush command, the
Chromium module assembles the message and delivers it to the
TOE. In cases where the TOE does not have appropriate buffer
space, the Chromium engine blocks until the data can be accepted.

4.2 Interface Implementations
Three versions of the Chromium module were constructed in
order to implement different APIs. The first two implementations
utilize a blocking interface that requires explicit handshaking
whenever an application inserts a new OpenGL command into the
data stream. The blocking modules employ either a single-
buffered of double-buffered approach to assembling Chromium
packets. The third implementation of the Chromium module
implements a non-blocking interface where user applications can
stream commands into the module without handshaking overhead
until the buffers reach capacity. The non-blocking implementation
is double buffered. Simulation and synthesis experiments were
performed to observe the tradeoffs involved in these interfaces.
For the simulation work, a design was constructed to measure the
number of clock cycles required to convert 1,000 OpenGL
triangles into the corresponding Chromium packets. Results from
these experiments are presented in Table 1.

Table 1: Implementation details for the Chromium module.

Interface Blocking Non-
Blocking

Buffering Single Double Double

Slices 757 772 814

BRAMs 2 6 12

Max Clock
Frequency 186 MHz 200 MHz 85 MHz

Clocks for
1K Triangles 29,537 15,450 12,824

It is necessary to examine both the synthesis and simulation
results to select the most appropriate Chromium module for a
design. Simulation experiments confirmed that the non-blocking,
double-buffered implementation required the least number of
clock cycles to process 1,000 triangles due to reduced signaling
overhead. However, as the synthesis results reveal this
performance comes at the cost of additional hardware resources
and a much lower maximum clock frequency. Overall, the
blocking double-buffered approach provides the best tradeoff in
terms of performance and resources, and is therefore the
recommended implementation choice. However, the other
implementations are available for design situations that have
tighter or looser resource requirements.

4.3 Performance Measurements
A series of experiments were performed using the ADS FPGA
board and a host PC to observe the communication performance
of the visualization NI. For these tests we constructed a triangle
generation module that supplies the NI with a stream of OpenGL
commands for drawing triangles. Three different host applications
were utilized to measure data rates at various points in the
rendering system. The first program (Network) simply extracts all
incoming data from the TCP socket and discards it. This program
provides an estimate of the raw rate at which the NI can stream
triangle data over a connection. The second program (Rendering
NOP) uses the Chromium software library to parse incoming
messages, but does not render the results. This program provides
an estimate of parsing overhead. Finally, the last program
(Rendering Full) uses the Chromium library to parse messages
and render the results to the display. This program provides an
end-to-end performance measurement for the system.
Performance is measured in terms of thousands of triangles
transferred per second. A single triangle is comprised of 49 bytes
of data.

OpenGL
Commands

OpenGL
Arguments

OpCode
LIFO

Shift Reg

OpData
FIFO

Outgoing
TOE

Incoming
TOE

OpenGL Input

Chromium Message Generator

Control

Chromium

Figure 5: The architecture of the Chromium Module.

The results of the experiments are presented in Figure 6. From
these results we observe that there is a considerable amount of
overhead associated with the Chromium software library. The raw
TCP connection was able to supply a million triangles per second
(or approximately 400 Mb/s of triangle data). Using Chromium to
parse these messages dropped performance to 450 thousand
triangles per second (or 168 Mb/s of triangle data). A complete
system with rendering dropped performance to 50 thousand
triangles per second (or 20 Mb/s of triangle data).

5. AN ISOSURFACING EXAMPLE
In order to demonstrate the functionality of the visualization NI,
we have constructed a post-processing application for FPGAs that
performs isosurfacing on a three-dimensional data set.
Isosurfacing in this context refers to the process of thresholding a
multidimensional data set in order to locate features that are of
interest to the user. For example, isosurfacing is often utilized in
medical imaging applications. These applications use isosurfacing
to locate bone or tissue structures within a volume of data
generated by computed tomography (CT) or magnetic resonance
imaging (MRI) equipment.

Our isosurfacing implementation is based on the Marching Cubes
[20] algorithm. This algorithm decomposes a volume of input data
into a collection of data cubes and then analyzes each cube
individually. Each of the eight values in a cube is compared
against a threshold value to determine which of the cube’s edges
intersect the isosurface. A lookup table is then used to transform
this information into a list of triangles that best approximate the
intersection surface within the cube. Our implementation employs
integer operations for its calculations and uses edge midpoint
values to approximate intersection points.

5.1 Isosurfacing Module Data Flow
The architecture of the isosurfacer module constructed for this
effort is depicted in Figure 7. The three-dimensional volume of

32-bit input data values is stored in an external block of memory.
The fetch unit retrieves four input values at a time from the
memory and repeats the process three more times until a stack of
three data cubes is assembled for processing. Data cubes are then
individually streamed into the module’s analysis units. During
analysis, each value in the cube is compared to a threshold value
to create an 8-bit signature for the cube. Concurrently, midpoint
coordinates for all the edges in the cube are computed. If the
threshold signature is all ones or all zeros, the cube does not
intersect the threshold and can be dropped. Otherwise all data for
the cube is stored in a slack buffer for later processing. The final
unit in the module translates a cube’s threshold signature into a
collection of triangles that approximate the surface. This
translation is facilitated by a 256-entry table that specifies the (2)
number of triangles to be generated and (2) the edge midpoints to
use for each triangle vertex.

The dataflow for the isosurfacing module is designed to maximize
processing performance while handling output generation rates
that vary based on the input data set. The fetch unit obtains four

column values at a time in order to match the rate at which cubes
are analyzed. The slack buffer is extremely wide (488-bits) and
can accept a new cube of data every clock cycle until the buffer is
saturated (1,024 entries). This buffer effectively decouples the
front-end analysis work from the back-end triangle generation,
and is necessary because each cube (eight 32-bit values) can
generate up to five triangles (each with three 3x32-bit vertices).

5.2 Simulation Example
Prior to synthesis, the isosurfacing module was tested using the
ModelSim Verilog simulator and a test bench design. The test
bench instantiates a large block of memory for housing input data,
an isosurfacing module, and a unit for writing output vertex data
to a file. This data is then viewed offline using an external C
program. Results generated by the hardware simulation are also
validated against those generated by a software implementation of
the isosurfacing algorithm.

0

200

400

600

800

1,000

1,200

0 5 10 15 20 25 30

Message Density (Triangles/message)

D
at

a
R

at
e

(K
ilo

-T
ri

an
gl

es
/s

ec
on

d)

Network

Rendering NOP

Rendering Full

Figure 6: Measured performance for transporting triangles
from FPGA to Host, based on action performed by host.

Input Data Memory

OpenGL Commands

Fetch

Threshold Midpoint

Slack Buffer

Generate Triangles
Isosurfacer

Figure 7: Architecture of the isosurfacing module.

In order to verify the functionality of the hardware, the memory
unit in the simulation test bench was loaded with a 643 data set of
CT values. This data is courtesy of the North Carolina Memorial
Hospital and was acquired with a General Electric CT scanner
[21]. A rendering of the 30,391 triangles produced by the
hardware simulation is presented in Figure 8. While this rendering
provides a rough approximation of the patient’s skull, the surface
is blocky due to (1) the low resolution of the data set and (2) the
implementation’s use of integer arithmetic for calculating edge
intersections.

For comparison purposes, the software implementation of the
algorithm was utilized to process a 1283 value version of the data
set. The software produced the 138,428 triangle rendering
presented in Figure 9. From this image it is clear that increasing
the input resolution enhances the overall quality of the image.
However, the integer calculations used in this algorithm still result
in blocky features in the image. These flaws can be obscured
through standard shading techniques, but are omitted from this
work in order to provide a detailed view of the algorithm’s raw
output.

6. A FUNCTIONAL PROTOTYPE
Our vision for this research is one where a host PC is equipped
with an FPGA board that offloads post-processing operations and
transmits results over the network to a rendering node. As a
means of demonstrating this vision, we have constructed a
functional prototype that incorporates an isosurfacing module and
a visualization NI into the ADS board’s FPGA. Due to a lack of
support with this board for PCI interactions, we decided to replace
the host PC’s CPU in our model with one of the V2P’s on-chip
PowerPC CPUs. While this substitution ignores intra-PC I/O
effects, it provides a flexible platform for experiments where a
software application can utilize a hardware unit for offloading
post processing operations.

As illustrated in Figure 10, the prototype design features a
visualization NI, an isosurfacing module, and a PowerPC CPU for

hosting software applications. The PowerPC is connected to two
blocks of on-chip memory. The first houses the application’s
executable data and is attached to the CPU through a Processor
Local Bus (PLB) that is implemented in FPGA logic. The second
memory block houses input data for the isosurfacing module, and
is connected to the PowerPC through its data-side on-chip
memory controller (DSOCM). Additional logic is included in this
interface to implement memory-mapped control/status registers
that enable the PowerPC to control the isosurfacing module.

6.1 Resource Utilization
The prototype design was compiled for the ADS board’s V2P20
FPGA and examined to determine resource utilization for the
hardware. Overall the design consumed 79% of the V2P20’s
available logic and 86% of its on-chip memory. Table 2 presents

Figure 8: Hardware-based isosurfacing of 643 CT data set.

Figure 9: Software-based isosurfacing of 1283 CT data set.

PowerPC
CPU

I-Cache D-Cache
PLB

P
L
B

CPU
Memory

16KB

Input
Buffer
16KB

Isosurfacer

Network

Chromium

TOE

GigEFPGA

Figure 10: The post-processing system FPGA prototype.

estimates for both logic (i.e., FPGA slices) and memory (i.e.,
FPGA Block RAMs) utilization for each of the modules in the
design. The units requiring the most resources are the isosurfacing
module and the TOE. The isosurfacing module consumes
significant memory resources because it employs a wide data path
and deep buffers. The TOE’s resource requirements are due to its
complex protocol processing state machines and its use of packet
FIFOs (16 KB/6KB for outgoing/incoming data).

6.2 Verification
The hardware portion of the prototype design was compiled and
loaded on the ADS board’s FPGA. We then constructed a
software application for the PowerPC that generates a sequence of
data values that are written into the input buffer of the
isosurfacing module. While the 16 KB capacity of the input buffer
limits isosurfacing data sets to 163 values, the resolution was
suitable for verifying the system worked properly with simple
objects. The prototype was connected through a GigE link to a
host PC and then instructed to begin processing data. A
Chromium application on the PC captured the FPGAs data and
rendered the results to a display. We verified that the spherical
data set generated by the PowerPC matched the output rendered
by the Chromium application. This experiment confirmed not
only that the system operated properly, but also that the FPGA
could be integrated into an existing visualization system through
the networked approach.

7. OBSERVATIONS
The broad scope of this project has provided us with a significant
amount of insight into multiple topics of FPGA research. From a
networking perspective, modern platform FPGAs are now capable
of interacting with commodity network hardware through their
flexible, on-chip transceivers. However, it is important to note
that designers must implement a moderate amount of control logic
in the FPGA in order to ensure that the FPGA interacts properly
with the network. The new Virtex-4 FX [22] FPGA architecture
simplifies this development because it provides built-in MAC
units for GigE. However, other networks such as InfiniBand still
require NI implementations similar to the GigE module presented
in this paper.

Our TOE implementation demonstrates that a self-contained TCP
unit can be implemented in hardware for current generation
FPGAs. While the TOE consumes 32% of a V2P20’s logic, this
FPGA is one of the smaller parts available in the V2P family.
From a development perspective, constructing the TOE was
nontrivial and time consuming due to the subtleties of TCP
behavior. In retrospect we observe that a simpler approach would
have been to instantiate a soft processor in FPGA logic and port a
software version of TCP to the processor. However, the TOE
implementation is built and will be released as open source
hardware for the public.

Our experiences with Chromium indicate that it is a suitable
transport layer for graphic commands. The OpenGL API is well
understood by visualization researchers and Chromium utilizes a
well-packed data format for transmissions. While this format is
easy to assemble on systems that employ random access memory,
we note that it does not map well to a streaming architecture. As a
result, the Chromium module must capture an entire message in
LIFO/FIFO elements before any portion of it can be transmitted.

The isosurfacing application provided a real-world example of
post processing that is commonly used in current visualization
work. The implementation confirmed that the FPGA could
support very wide data paths, as well as application-specific
pipelines. Additionally, the design’s slack buffer enables the fast,
front-end analysis components to operate independently of the
slow, back-end triangle generators, until saturation occurs. These
types of optimizations are critical for achieving high performance
in hardware designs.

7.1 Future Work
There are a number of opportunities for future work in this field.
In terms of performance, we note that the primary bottleneck in
the prototype system is the network substrate. We have found that
the Chromium modules are capable of producing data streams at
near GByte/s data rates. Therefore, the next logical step in this
work would be to move to a faster network substrate such as
InfiniBand. In addition to providing higher-bandwidth, InfiniBand
provides support for attaching peripheral devices to the network
and is therefore more appropriate for distributed visualization
research.

The isosurfacing example presented in this paper suffers from two
significant limitations that preclude its use in real applications.
First, isosurfacing applications require significant amounts of
memory in order to work with high-resolution data sets. For
example, 64 MB is required to house a 2563 data set of 32-bit data
values. Therefore, future work would replace the on-chip memory
interface with a controller for external (DDR) memory. Second, in
order to provide high-quality images, it is necessary to update the
design to use floating point operations and calculate the actual
edge intersection points instead of approximating them with edge
midpoint values. Our initial experiments with single-precision
floating-point cores indicate that these units incur enough
overhead to warrant adjusting the module’s data flow.

Finally, this work would benefit from an adaptation to other
FPGA accelerator boards. An ideal FPGA accelerator board
would provide a high-bandwidth connection to the host (e.g., PCI-
Express), a large FPGA (e.g., a V2P50 or higher), a large block of
DDR memory, and multiple network ports that are driven by the
FPGA’s Rocket I/O transceivers. This architecture enables
researchers to construct a network interface card that performs
application-specific processing on messages as they are
exchanged with the network.

8. CONCLUDING REMARKS
FPGAs are and attractive option for visualization research
because they enable algorithms that are currently implemented in
software to be adapted to efficient, custom-built hardware.
Integrating FPGAs into a functional visualization system can be
achieved by adding a special-purpose network interface to the
FPGA that facilitates the transport of graphics data over a local

Table 2: Resource utilization estimates for the prototype.

Module Slices
(% of V2P20)

Block RAMs
(% of V2P20)

PowerPC 639 (7%) 8 (9%)
Isosurfacing 1,286 (14%) 48 (55%)
Chromium 801 (9%) 6 (7%)

TOE 2,990 (32%) 11 (12%)
GigE 1,592 (17%) 3 (3%)

area network. In this paper we have demonstrated such a NI, and
have used it to send graphics primitives over the network to a host
for rendering. By equipping the NI with a standard API for
transporting graphics commands, we are able to leverage existing
hardware and software for rendering. End-to-end tests of this
hardware revealed that the NI implementation gave reasonable
performance for the network substrate that was utilized.

We constructed an isosurfacing application for this work to
demonstrate our vision of how post-processing operations can be
performed in FPGA hardware. While the current implementation
is limited in terms of input resolution and data precision, it
illustrates our vision of a distributed system with a functional
prototype.

References

[1] G. Humphereys, M. Houston, R. NG, R. Frank, S.
Ahem, P. Kilchner, J. Klosowski. “Chromium: A Stream-
Processing Framework for Interactive Rendering on Clusters,” in
SIGGRAPH 2002.

[2] M. Segal, K. Ashley, “ The OpenGL Graphics System:
A Specification,” 2004

[3] Xilinx Inc. “Virtex-II Pro and Virtex-II Pro X Platform
FPGAs Data Sheet,” 2005.

[4] IEEE Standard 802.3z 1998.

[5] The InfiniBand Trade Organization, “InfiniBand
Architecture Specification,” 2002.

[6] N. Boden, D. Cohen, R. Felderman, A. Kulawik, C.
Seitz, J. Seizovic, and W. Su, “Myrinet: A Gigabit-per-Second
Local-Area Network,” in IEEE Micro Vol. 15 No. 1, 1995.

[7] IEEE Standard p1364-2001, “IEEE Standard
Hardware Description Language Based on the Verilog
Hardware Description Language,” 2001.
[8] Avnet Design Services whitepaper, “Xilinx
Virtex-II Pro Development Kit,” 2003.
[9] M. Meißner, U. Kanus, G. Wetekam, J. Hirche, A.
Ehlert, W. Straßer, M. Doggett, P. Forthmann, R. Proksa,
“VIZARD II: a reconfigurable interactive volume rendering
system,” in Proceedings of SIGGRAPH/EUROGRAPHICS
conference on Graphics hardware, 2002.

[10] J. Schmittler, S. Woop, D. Wagner, W. Paul, and P.
Slusallek, “Realtime Ray Tracing of Dynamic Scenes on an
FPGA Chip,” In SIGGRAPH/EUROGRAPHICS Graphics
Hardware 2004.

[11] L. Moll, A. Heirich, and M. Shand, “Sepia: scalable 3D
compositing using PCI Pamette,” in IEEE Symposium on Field-
Programmable Custom Computing Machines, 1999.

[12] J. Lockwood, N. Naufel, J. Turner, D. Taylor,
“Reprogrammable Network Packet Processing on the Field
Programmable Port Extender (FPX),” in Proceedings of the ACM
International Symposium on Field Programmable Gate Arrays,

2001.

[13] K. Underwood, R. Sass, W. Ligon III, “Cost
Effectiveness of an Adaptable Computing Cluster,” in the
Proceedings of the 2001 ACM/IEEE Conference on High
Performance Networking and Computing, 2001.

[14] M. Jones, L. Scharf, J. Scott, C. Twaddle, M. Yaconis,
K. Yao, P. Athanas, and B. Schott, “Implementing an API for
Distributed Adaptive Computing Systems,” in Proceedings of
IEEE Symposium on Field-Programmable Custom Computing
Machines, 1999.

[15] C. Ulmer, C. Wood, S. Yalamanchili, “Active SANs:
Hardware Support for Integrating Computation and
Communication,” in Proceedings of the Workshop on Novel Uses
of System Area Networks at HPCA, 2002.

[16] C. Clark and C. Ulmer, “Network Intrusion Detection
Systems on FPGAs with On-Chip Network Interfaces,” in
Proceedings of the International Workshop on Applied
Reconfigurable Computing, 2005.

[17] Xilinx Inc., “Application Note 536 (XAPP 536): Gigabit
System Reference Design.” June 3, 2004.

[18] Request for Comments RFC793. “Transmission
Control Protocol”, 1981.
[19] Request For Comments RFC896. “Congestion
Control in IP/TCP Internetworks,” 1984.
[20] W. Lorensen and H. Cline, “Marching Cubes: A High
Resolution 3D Surface Construction Algorithm”, in Proceedings
of SIGGRAPH 1987.

[21] Stanford Volume Data Archive,
http://graphics.stanford.edu/data/voldata
[22] Xilinx, Inc. Datasheet. “Virtex-4 Family
Overview,” 2005.

