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Network intrusion detection systems (NIDS) are critical network security tools that 
help protect computer installations from malicious users. Traditional software-based 
NIDS architectures are becoming strained as network data rates increase and attacks 
intensify in volume and complexity. In recent years, researchers have proposed using 
FPGAs to perform the computationally-intensive components of intrusion detection 
analysis. In this work, we present a new NIDS architecture that integrates the network 
interface hardware and packet analysis hardware into a single FPGA chip. This inte-
gration enables a higher performance and more flexible NIDS platform. To 
demonstrate the benefits of this technique, we have implemented a complete and func-
tional NIDS in a Xilinx Virtex II Pro FPGA that performs in-line packet analysis and 
filtering on multiple Gigabit Ethernet links using rules from the open-source Snort  
attack database. 
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1. Introduction 

A network intrusion detection system (NIDS) is a device that uses a combination of hard-
ware and software to monitor a computer network for attempts to violate a security policy. In 
addition to observing network operations, a NIDS can also be designed to react to attacks,  
either by filtering malicious packets from the network or by initiating appropriate counter-
measures. Over the years, a number of NIDS architectures have been discussed in the 
literature. At a fundamental level, these architectures are all based on two primary compo-
nents: a network interface (NI) unit that interacts with the physical network and an intrusion 
detection (ID) unit that examines and reacts to packets captured by the NI.  

Early network intrusion detection systems consisted of application software running ID 
analysis algorithms on commodity servers equipped with off-the-shelf network interface 
cards. An example of this type of system is the open-source NIDS software package, Snort 
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[Roesch 1999], which runs on a wide variety of operating systems and hardware platforms. 
While this approach provides straightforward development and economical deployment, its 
performance is limited because (1) there is a significant amount of I/O overhead associated 
with data transfers between the NI and the host CPU, and (2) general purpose CPUs are not 
able to take advantage of the available parallelism in the ID analysis tasks.  For these reasons, 
software-based NIDS are often unable to keep up with the data rates of modern high-speed 
networks.  

As a means of improving NIDS performance, researchers have turned to reconfigurable 
computing platforms where ID operations can be performed in hardware rather than software. 
In recent years, a number of designs have been presented that use field-programmable gate 
arrays (FPGAs) to implement intrusion detection analysis. A significant amount of work has 
been done on accelerating specific computationally-intensive tasks, such as TCP state track-
ing and stream reassembly [Necker et al. 2002; Li et al. 2003; Schuehler et al. 2004] and 
inspection of packet data [Franklin et al. 2002; Dharmapurikar et al. 2003; Moscola et al. 
2003; Baker et al. 2004; Cho et al. 2004; Clark and Schimmel 2004; Sourdis et al. 2004]. 
While these FPGA designs provide significant performance gains over software-based im-
plementations for ID processing, they do not address the other factor limiting NIDS 
performance: efficiently transferring data between the NI and ID components. 

There are some complete NIDS platforms incorporating FPGAs described in the literature.  
All of these designs attempt to overcome both performance bottlenecks of software-based 
NIDS, but they differ in their choice of system components and the partitioning of functional-
ity between components. In [Gokhale et al. 2002], a system is developed that uses FPGAs to 
offload most ID processing from a NIDS software application. A 1 Gb/s NI board is attached 
as a daughter card to an FPGA board through a custom interface. The combined board con-
nects to a host PC via a standard PCI bus. In this design, FPGAs perform header and payload 
analysis on network packets and then send a list of matching rules to software running on the 
host processor that then takes appropriate action. Although the FPGAs can process network 
data at 2 Gb/s, the PCI interface between the hardware and software processors limits the 
overall throughput of the system to 700 Mb/s. 

A different approach to partitioning NIDS tasks is taken by [Clark, Lee et al. 2004]. The 
aim of this work is to provide transparent intrusion detection functionality to a host by imple-
menting a complete NIDS on a network card. The design used is based on the integration of 
off-the-shelf network processor and FPGA development boards. The network processor board 
connects to a host PC via a PCI connector and to the FPGA board via a separate PCI mezza-
nine connector (PMC). The use of a software-programmable network processor allows more 
complex stateful analysis to be carried out close to network before packets are sent across the 
bus to the host. The FPGA is used by the network processor as a pattern-matching accelerator.  
In this system, the overhead of PCI communication between the network processor and FPGA 
reduces pattern-matching throughput to less than 10 percent of that achievable by the FPGA 
design. 



An extensible, FPGA-based firewall appliance is described in [Lockwood et al. 2003]. 
This system is based on a modular platform consisting of network line cards connected to cus-
tom FPGA boards. On each FPGA board, one FPGA is dedicated to interacting with the 
external network interfaces, and another FPGA is available to implement content processing 
applications, such as NIDS. All components of this custom platform support at least 2 Gb/s 
throughput. 

In this paper, we study the integration of network interface and intrusion detection cir-
cuitry to provide a complete NIDS on a single FPGA device. This allows for a more flexible 
NIDS architecture that also avoids the bottlenecks associated with transfers between the NI 
and ID components. 

2. An Integrated NIDS in an FPGA 

Field-programmable gate arrays (FPGAs) are programmable logic devices that can be 
configured to implement custom digital systems. Over the years, FPGAs have evolved into 
more than just simple arrays of reconfigurable logic. Modern ‘platform’ FPGAs are system-
on-a-chip devices that contain complex components, such as embedded SRAM, digital signal 
processing blocks, high-speed transceivers, and embedded CPU cores, in addition to large 
amounts of reconfigurable logic.  

The Xilinx Virtex II Pro (V2P) FPGA [Xilinx-V2P] is an example of a modern platform 
FPGA architecture that includes these new components. Of particular relevance to this work 
are the V2P’s multi-gigabit transceiver (MGT) modules, which are also referred to as Rocket 
I/O [Xilinx-RIO] ports. A Rocket I/O port is a versatile transceiver that enables the FPGA to 
physically communicate with a variety of network standards, including Gigabit Ethernet 
(GigE) [IEEE-802.3] and InfiniBand (IB) [IBTA]. Each Rocket I/O port is comprised of func-
tional blocks that implement common physical-layer network operations, such as 8b/10b 
encoding, serialization/deserialization, embedded clock recovery, and CRC verification. The 
largest FPGA in the V2P family includes 20 Rocket I/O ports, with each port operating at up 
to 3.125 Gb/s full-duplex. 

The fact that modern FPGAs are capable of interacting directly with a physical network 
enables us to propose an evolution of NIDS architecture: the integration of network interface 
and intrusion detection circuitry in a platform FPGA. We argue that there are multiple advan-
tages to consolidating NIDS components into a single FPGA. From a platform design 
perspective, integration simplifies board layout and reduces the chip count and form factor of 
a NIDS. Integration also removes the need for large chip-to-chip data transfers, which can be 
a performance bottleneck in multi-chip systems. However, the main benefit of an integrated 
system is the increased level of customization that is made available to system designers. 
FPGAs are flexible architectures that can be reconfigured after fabrication time to meet new 
application demands. In order to maximize this opportunity, it is desirable to implement as 
much of the NIDS architecture as possible in reconfigurable logic. 

There are a variety of means by which an FPGA-based NIDS can be customized. At the 
component level, individual units can be tuned to meet the needs of the application. For ex-



ample, the NI units in many NIDS applications blindly transfer data into and out of the net-
work in an unsophisticated manner. As we discuss later, this knowledge can be used to 
simplify the NI implementation in order to conserve FPGA resources and decrease processing 
overhead. In addition, the ID component can be tailored to a particular set of detection rules, 
thereby reducing logic usage and increasing performance. Customization can also be applied 
at higher levels of the system architecture. By implementing the NIDS inside the FPGA, de-
signers are free to implement a variety of data flow architectures and processing topologies. 
For example, we have used a single reference board to develop multiple NIDS implementa-
tions with different NI configurations. If the NI modules were not implemented in the FPGA, 
we would have had to fabricate multiple circuit boards or one complex board. 

The remainder of this paper addresses issues associated with constructing a complete 
NIDS in a single platform FPGA. The network interface, intrusion detection, and monitoring 
modules are described in sections 3, 4, and 5, respectively. The developed components lever-
age architectural features of the Xilinx Virtex II Pro FPGA family. A proof-of-concept 
example of a complete NIDS is presented in Section 6. We implement and evaluate a NIDS 
that transparently monitors and filters up to four full-duplex GigE connections. In section 7, 
experimental results from a design space exploration are presented.  Finally, the paper is con-
cluded with some observations about this work and possibilities for future work. 

3. Network Interface Module 

The first component of an integrated, FPGA-based NIDS is the network interface (NI), 
which is responsible for coherently exchanging packets between the FPGA and the physical 
network. Given the nature of the work performed by the NIDS, it is possible to simplify the 
functionality of the NI to a minimum. Simplifying the NI reduces the overall size of the unit, 
which allows more detection rules to be instantiated in the system. A simplified diagram for 
the NI utilized in this work is depicted in Figure 1. The main components of this module are 
transmit and receive controllers for the Rocket I/O port and packet FIFOs for in-flight mes-
sages.  

3.1. Rocket I/O Controllers 

At the heart of an NI for the V2P FPGA is a Rocket I/O module. The Rocket I/O module 
provides low-level services for interactions with physical network standards such as Gigabit 
Ethernet (GigE). A Rocket I/O module effectively provides a raw byte stream interface to the 
network. Users must insert and extract data in lockstep with the Rocket I/O module in order to 
prevent data from being corrupted or lost. Because of the clock-by-clock operations that must 
take place at the interface of a Rocket I/O module, it is useful to construct wrappers around 
the hardware to present a more user-friendly interface to other circuits that need to interact 
with the network. Transmit and receive engines were constructed to provide a more usable 
interface to the network. The receive engine de-frames and extracts Ethernet packets from the 
incoming network stream. Conversely, the transmit engine frames and transmits outgoing 



messages. When the transmit engine does not have data to send, it transmits idle channel se-
quences to maintain clock synchronicity on the link. The receive and transmit engines strip 
and generate CRCs for incoming and outgoing messages in order to prevent the ID module 
from generating false positive matches on the CRC data. Additional circuitry monitors the 
physical layer status in the Rocket I/O module and automatically resets the unit as needed. 

3.2. Packet FIFOs 

The final component of the NI module is a pair of packet FIFOs for buffering incoming 
and outgoing packets. These units are implemented using a small number of dual-ported 
BlockRAM banks that are available within the FPGA. While internal SRAM is limited in the 
V2P architecture, there is still enough memory available to support 2 KB - 16 KB of messages 
for a packet FIFO in the smallest V2P part. The current implementation of the GigE NI does 
not support jumbo frames due to the limited amount of buffer space available in the FPGA.  
The dual-ported nature of the SRAM allows the producer to operate at a different rate and 
data width than the consumer. The packet FIFOs are also designed to allow an optional flag to 
be asserted after an injection that forces the last inserted message to be ignored by the con-
sumer. This feature is useful in a NIDS, where the ID module’s assessment of whether a 
packet should be dropped can be delayed by a small number of clock cycles. While packet 
buffering is not strictly necessary in an FPGA-based NIDS, doing so adds a great deal of de-
sign freedom to the architecture because it decouples the NI and ID modules. This decoupling 
allows the ID module to operate at a higher clock rate and with wider data streams. As ex-
plained later, these factors enable the NIDS to share an ID module among multiple NI cores. 
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Figure 1: Gigabit Ethernet network interface module 



3.3. Resource Utilization 

While the V2P architecture has been available for some time, there have been few reports 
in the literature on the networking capabilities of the devices. The placed and routed design 
for the GigE NI used in this work was analyzed to better characterize the hardware. Our GigE 
NI without FIFOs occupies 259 V2P slices, which consumes approximately 5.3 percent of a 
V2P7 FPGA and less than 0.6 percent of a V2P100 FPGA. While smaller NI cores may be 
possible, this NI design is a relatively compact implementation that provides all the function-
ality needed for our NIDS.  As a point of reference, the Xilinx sample implementations of 
minimal GigE MAC and PHY components without FIFOs requires 763 slices [Xilinx-Eth], 
which is about three times larger than our NI.  As this optimization demonstrates, implement-
ing the NI in reconfigurable logic is beneficial because it allows designers to customize the NI 
according to an application’s characteristics. 

4. Intrusion Detection Module 

An intrusion detection (ID) FPGA core has been developed that inspects packets on high-
speed networks in real-time. The design compares each packet against a large number of de-
tection rules simultaneously. Each rule specifies multiple packet properties that together 
identify an interesting event. The open-source rule language and rule set from Snort [Roesch 
1999] were chosen because of their flexibility and availability. The rule language supports 
relational comparisons on the packet header fields, as well as regular expression searches on 
the packet payload. The ID core will detect network packets that meet all the criteria of any 
rule. Even with a small FPGA, hundreds of rules can be programmed into a single chip. 

Network data is streamed through the ID core, which operates on multiple bytes of input 
data per clock cycle. The core's input data width is configurable at compile-time to be two, 
four, or eight bytes. A block diagram of the ID module is shown in Figure 2. Each of the 
components is described in detail in the following sections. 
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Figure 2: Intrusion detection (ID) module 



4.1. Header Decoder 

The header decoder accepts frames from an Ethernet interface and extracts fields from the 
data-link, network, and transport layer protocol headers. The supported protocols include 
Ethernet, ARP, IP, ICMP, TCP, and UDP. All of the relevant header fields are stored in regis-
ters and made available to the header analyzer. Also, for each packet, the decoder determines 
the end of the header data and produces a signal for the payload analyzer indicating that the 
payload data will begin on the next clock cycle. However, due to variable header lengths and 
the configurable input data width of the ID module, the start of the payload data does not al-
ways occur on an input word boundary. It is important to ensure that the payload analyzer 
processes all of the payload data (no more and no less) to avoid missing a potential match or 
falsely detecting a match. Therefore, the header decoder includes a small buffer of the input 
data and outputs a data stream with the payload aligned to the configured input data width. 

4.2. Header Analyzer 

The header analyzer consists of circuits that compare the fields of the incoming packet 
with each of the rule specifications. Only the fields with values defined in a rule are checked; 
all other fields are ignored. The supported comparison operations on each field include check-
ing for specific values, ranges of values, and negated values or ranges. In order to save 
hardware resources, the circuit generator avoids creating duplicate circuitry for common 
comparison operations. For example, if there are multiple rules that trigger on traffic from 
web servers, the header analyzer would include only one comparison circuit to detect packets 
with a TCP source port of 80. There is a separate match output bit for each rule, which is true 
only when all of the field comparisons specified in the rule are true for the current packet. 

4.3. Payload Analyzer 

The payload analyzer searches each packet payload for the occurrence of patterns speci-
fied by the detection rules. The supported patterns include simple text or binary strings, as 
well as more complex expressions with wildcards. The pattern location within the payload can 
be left unspecified, specified relative to the beginning of the data, or specified relative to an-
other pattern. The pattern-matching circuits in the payload analyzer are implemented using the 
globally-decoded non-deterministic finite automata (NFA) approach described in [Clark and 
Schimmel 2004]. This technique produces area-efficient circuits and scales to high through-
puts and large numbers of patterns.  

The input data is compared against all patterns in parallel at the rate of two, four, or eight 
bytes per clock cycle. Processing more than one input character per clock cycle allows the 
design to support higher throughput without increasing the clock frequency. However, there is 
a trade-off between throughput and circuit area. When processing N characters per clock cy-
cle, a pattern may start at any position within each N-character block. Therefore, it is 
necessary to add logic to detect patterns at all N possible offsets. 



Figure 3 shows the implementation of a payload analyzer that processes two input charac-
ters per clock cycle. Each input character is decoded into a one-hot set of character match 
indicator wires. For the 8-bit ASCII character set used there are 256 output wires from the de-
coders. Exactly one wire from each decoder will be asserted in each clock cycle. A wire 
labelled c

kθ  indicates whether or not the character read from the input text in character posi-
tion c of the input word is the character represented by ASCII code k. 

In the figure, Pattern Matcher 1 detects the character sequence {a, b, c} represented by the 
ASCII code sequence {97, 98, 99}. This circuit contains two parallel NFA state machine 
pipelines, each capable of detecting the pattern starting at one of the two possible offsets. The 
match indicator wires from the global character decoders are distributed to the appropriate 
NFA pipeline stages. Each stage of a pipeline outputs true if the output of the previous stage 
was true and the current stage’s match indicator wires are all true. If there is a character se-
quence in the input that matches the pattern, a true value will propagate to the output of the 
final stage in the pipeline. For example, the state machine for Offset 0 of Pattern Matcher 1 
will detect a match if the input contains an ‘a’ character in position 0 and a ‘b’ character in 
position 1 in one cycle, followed by a ‘c’ character in position 0 in the next cycle. The OR of 
the outputs from both pipelines determines the overall pattern matcher output. The match out-
puts of the pattern matcher circuits for all p patterns form a p-bit match vector that is used by 
the match decision logic. 

4.4. Match Decision Logic 

For each packet, the match decision logic uses the match outputs from the header analyzer 
and the payload analyzer to determine which rules, if any, were triggered by the packet. If one 
or more rules are triggered, the match output will be asserted and a decision will be made re-
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Figure 3: Payload analyzer circuit 



garding what action should be taken based on the policy specified in the rule file. If any of the 
matching rules indicate that the packet should be blocked, the drop output will be asserted and 
the packet will be removed from the transmit buffer. This unit also outputs a match vector that 
indicates the matching rules. 

4.5. ID Module Generation 

Software has been written that generates an ID module given a file containing Snort-
format rules. First, a Java program parses the rule file and translates the rules into an internal 
representation. Next, classes written with the Java Hardware Description Language (JHDL) 
[Bellows et al. 1998] libraries are used to assemble functional blocks into circuits capable of 
detecting packets meeting the rules’ specifications. Finally, the JHDL structural circuit de-
scriptions are converted to an EDIF netlist that is integrated with the other NIDS components 
by the FPGA vendor’s compilation tools. The components of the ID module are implemented 
using a fixed configuration of the FPGA logic and routing resources, which provides high per-
formance but requires the design to be regenerated and recompiled in order to change the 
rules matched by the NIDS.  

5. Monitoring Module 

In some network security applications, a NIDS can be designed to operate in an autono-
mous manner that does not require human guidance at runtime. However, most network 
security specialists find that it is useful to be able to interact with a NIDS in order to obtain 
detailed information about the dynamic status of the network. For example, a security special-
ist might use the information that a NIDS is filtering a large number of attacks from a 
particular user to direct countermeasures against the user. As a means of making the NIDS 
more interactive, we have constructed a runtime monitoring module that can be attached to a 
NIDS FPGA design at compile time. This monitor exports status information about network 
traffic and could easily be extended to allow a network administrator to make adjustments to 
the NIDS at runtime. 

5.1. NIDS Monitor Functionality 

At a fundamental level, a NIDS monitor performs two types of operations: system analy-
sis and off-chip communication. For system analysis, the monitor examines the state of the 
NIDS and compiles runtime statistics for the system that are meaningful to network security 
specialists. While state information can only be captured with hardware circuitry, it is possible 
to implement analysis operations in either hardware or software. In a software-based ap-
proach, a CPU embedded in the FPGA is loaded with a program that parses state information 
and generates runtime statistics. The advantage of implementing this functionality in software 
is that new algorithms can be loaded into the monitor simply by changing the processor’s pro-
gram. This technique is also valuable because users can update a running NIDS without 



having to recompile and reload the FPGA configuration. For our work we utilize one of the 
V2P’s PowerPC CPUs to execute a simple analysis program that summarizes the number of 
malicious packets filtered out of the network by the NIDS. 

The second type of operation performed by a NIDS monitor is off-chip communication. 
This hardware is used to transfer data between the NIDS and the network security specialist’s 
console. The simplest means of facilitating this exchange is through in-band communication 
using the GigE ports of the NIDS. However, mixing NIDS monitor data with general network 
traffic is insecure. A more secure method is to use a separate communication interface for ex-
changing monitor data out-of-band. For our work we export monitor data to an external host 
through a standard RS-232 serial approach. This approach requires minimal hardware and 
provides a bi-directional channel for low-speed exchanges.  

5.2. Monitor Architecture 

Figure 4 depicts the architecture of the NIDS monitor constructed for this work. At the 
heart of the unit is an embedded PowerPC processor, which is a hard-core that is implemented 
in dedicated silicon in the V2P devices. The PowerPC includes both instruction and data 
caches, and features multiple interfaces that can be connected to the FPGA’s reconfigurable 
logic. One of these interfaces is the Processor Local Bus (PLB). We utilize this flexible bus to 
connect an on-chip memory block and an RS-232 UART unit to the CPU. The PowerPC’s 
program and runtime data are stored entirely in the on-chip memory block, thus eliminating 
the need for external memory. 

The PowerPC exchanges data with the intrusion detection module through a custom-built 
ID monitor interface. This interface employs a small block of dual-ported memory that is 
connected on one side to the PowerPC’s data-side on-chip memory (DS-OCM) port. This port 
enables the PowerPC to interact with hardware in a memory-mapped fashion, without the 
communication overhead of the PLB. The other side of the memory in the ID monitor is con-
nected to hardware that captures state information about the intrusion detection module. If the 
data buffer in the interface becomes full, new information will be dropped and the ID module 
will continue to operate. In the current implementation, the hardware records both malicious 
packets ejected by the system and network traffic statistics. With this hardware, the CPU’s 
analysis program can export the status of the NIDS to the user through the serial port, as well 
as the data contained in malicious packets.  



5.3. Implementation Details 

The monitoring module was implemented for the V2P architecture and added to our NIDS 
design as an optional unit. The on-chip memory available for PowerPC programs was set to 
32 KB. While relatively small, this amount of memory proved sufficient for hosting most 
analysis programs. An additional 4 KB of on-chip memory is utilized in the ID monitor inter-
face. Overall the monitoring module occupies approximately 957 V2P slices. In the V2P7, 
this consumes 20% of the FPGA’s slices and 45% of its memory resources. In the largest V2P 
part, the V2P100, these system requirements equate to 2% and 5% of the FPGA’s slice and 
memory resources, respectively. These experiments indicate that a software-controlled moni-
tor can be added to a NIDS without significant resource utilization. However, it should be 
assumed that the remaining experiments in this paper do not include the optional monitoring 
hardware. 

While the current implementation of the ID monitor is geared for exporting statistics, it 
would be straightforward to modify the monitor to enable users to steer the behaviour of the 
NIDS at runtime. In this work, administrators would issue commands through the serial con-
nection that are interpreted and invoked by the PowerPC program. This steering could be 
leveraged in multiple ways. For example, hardware could be added to enable the administrator 
to modify the ID module’s scheduling unit at runtime. This capability would enable an admin-
istrator to manually throttle the data rate of a GigE link that is suffering from an unknown 
attack. The monitor interface could be used in conjunction with an additional hardware mod-
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ule to enable an administrator to insert new packet-filtering rules into the ID module at run-
time. This capability would allow a limited number of temporary patches to be applied until 
an updated configuration can be compiled and programmed into the FPGA.  

6. System Evaluation 

A complete FPGA-based network intrusion detection system has been constructed to vali-
date the concepts of this work and serve as a source for implementation details. The 
application goal of this NIDS is to transparently perform inline packet filtering on multiple 
network links. The NIDS in this case is effectively a man-in-the-middle system that inspects 
in-flight messages, dropping those that match a predefined rule signature. For clarity, a single 
monitored connection between a pair of hosts is referred to as a filter bridge (or simply a 
bridge) in this work.  

As a means of demonstrating the flexible nature of FPGAs for NIDS, our implementation 
can support multiple filter bridges in a single FPGA. In this configuration, a single intrusion 
detection module is shared by multiple filter bridges. By operating the ID module at a data 
rate that is sufficiently greater than the data rates of the NI modules, the system can operate 
without unintentional packet loss. The design has been tested using a commercial FPGA de-
velopment board containing four GigE interfaces. 

6.1. Multiple Filter Bridge Architecture 

A simplified diagram of the multi-filter bridge architecture is presented in Figure 5. In this 
NIDS, each filter bridge has two data paths that are routed through the ID module (one for 
each direction of the full-duplex bridge). Time-division multiplexing is employed to share the 
ID module among all the NI modules in the system. A scheduling unit monitors the status of 
each GigE interface in the system and determines the order in which NIs access the shared ID 
module. The current implementation utilizes a round-robin scheduler, although more sophisti-
cated algorithms could be easily applied. 



Packet loss in the multi-filter bridge design can be avoided if the ID module operates at a 
data rate that is greater than the aggregate data rate of the system’s NIs. Given that each GigE 
NI captures data at a maximum rate of 1 Gb/s, a lossless system with N filter bridges and 2N 
NIs would require an ID module that processed data at a rate that is at least 2N Gb/s. Operat-
ing the ID module at a higher rate than the NI data streams is possible by buffering incoming 
messages, and using wider and/or faster data channels for communication between the NI and 
the ID modules. The 1 Gb/s data streams produced by the NIs in this work are 16-bit channels 
that are clocked at 62.5 MHz. Simply widening the ID data path to 32-bits or 64-bits provides 
a data rate speedup of 2x or 4x. An additional 2x data rate increase can be achieved by dou-
bling the clock to 125 MHz and applying tighter timing constraints to the ID component of 
the design at compile time. 

6.2. Testbench Hardware 

The NIDS design was implemented and tested using Xilinx’s ML300 platform [Xilinx-
ML300]. The ML300 is a stand-alone reference board for the Virtex II Pro FPGA that con-
tains a variety of hardware resources, including four fiber-optic GigE network ports that are 
driven by the FPGA’s Rocket I/O modules. The ML300’s FPGA is a V2P7, which is one of 
the smallest FPGAs in the V2P family. This device has roughly 11 percent of the logic re-
sources of the largest FPGA in this family, the V2P100. 
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As a means of testing and debugging the system, the reference board was placed between 
a pair of workstations with standard GigE network interface cards. For tests that involved two 
filter bridges, a GigE cable was used to externally connect the two filter bridges in series. Xil-
inx’s ChipScope [Xilinx-CSP] tool was used to observe the characteristics of the NIDS. 
ChipScope adds instrumentation hardware to a design at compile time, which can be used to 
monitor the internal signals of the NIDS at runtime. ChipScope is an incredibly valuable tool 
for designs such as a NIDS, where system behavior is highly dependent on external data 
sources. ChipScope was used to view the packets generated by the workstations’ GigE cards 
and to extract low-level performance information about the NIDS design.  

6.3. Minimal Rule Set Implementations 

The initial set of experiments performed on the NIDS utilized ID cores that contained 
minimal rule sets to allow the performance of the rest of the system to be studied. First, a 
dummy ID module with negligible overhead was used to determine that the packet FIFOs 
have a maximum clock rate of 185 MHz. This information was used later in the development 
process to steer optimization efforts when real ID cores were applied to the NIDS. 

A second experiment was conducted to observe resource allocations with a functional ID 
module. This ID core was generated to filter packets that matched one Snort rule. Table 1 pre-
sents the BlockRAM (BRAM), lookup table (LUT), and total slice allocations in a V2P7 
FPGA for various NIDS configurations. In terms of buffering, the results reveal that doubling 
the FIFO queue size does not cause dramatic changes to logic utilization. However, the 
BlockRAMs used to implement the FIFO queues are a limited resource. The NIDS with two 
filter bridges does not have enough available BlockRAM to implement 16 KB queues. In-
creasing the width of the ID data path does cause a more noticeable jump in utilization. 
Fortunately, a doubling in width does not result in a doubling of size. 

Table 1: FPGA resource utilization of 125 MHz single-rule ID module  

Filter 
Bridges 

GigE 
NI  

Modules 

ID 
Interface 

Width 

FIFO 
Size 

V2P7 
BRAM 

Utilization

V2P7 
LUT 

Utilization 

V2P7 
Slice 

Utilization
8 KB 36 % 23 % 38 % 16 16 KB 72 % 24 % 37 % 
8 KB 36 % 25 % 39 % 32 16 KB 72 % 25 % 40 % 
8 KB 36 % 28 % 45 % 

1 2 

64 16 KB 72 % 29 % 47 % 
16 8 KB 72 % 43 % 63 % 
32 8 KB 72 % 46 % 68 % 2 4 
64 8 KB 72 % 51 % 82 % 



6.4. Snort Rule Set Implementations 

A Snort-based ID module was generated and inserted into the design to discover how 
many detection rules could be supported in the V2P7 FPGA. The design was configured to 
use 8 KB packet FIFOs in order to maximize the number of rules. Table 2 shows the ap-
proximate number of rules and pattern characters that can be implemented in the V2P7 as well 
as the throughput of designs with one and two filter bridges for different ID interface widths. 
The ID units in each of these designs were set to run at 125 MHz, which is twice the fre-
quency of the GigE units. The higher clock rate enables an ID module with 16-bit input to 
meet the 2 Gb/s aggregate data rate of a full-duplex filter bridge. To ensure that the ID mod-
ule can keep up with data from two filter bridges, the input width must be increased to at least 
32 bits.  The designs using a 64-bit ID interface could support four filter bridges on a board 
with eight GigE ports. 

6.5. Latency Measurements 

Tests were performed on the NIDS to determine the amount of time the NIDS requires to 
process packets. In the first set of these tests, ChipScope was used to count the number of 
clock cycles that take place between events in the data flow of the NIDS. We first measured 
the amount of latency associated with sending and receiving data using the Rocket I/O trans-
ceivers. This measurement was performed by connecting two filter bridges in series using an 
external cable and injecting packets into one end of the system. ChipScope was used to count 
the number of clock cycles between when the packet first touches the Rocket I/O output inter-
face of the first bridge, and when data first appears on the Rocket I/O input interface of the 
second bridge. We observed a latency of 40 clock cycles at 62.5 MHz, which equates to a de-
lay of 640 ns. Similar measurements were performed on the internals of the NIDS. Latencies 
of 2.4 µs and 1.6 µs were observed for systems that used an ID module with 1x and 2x data 
rates, respectively. 

Another set of tests was performed to observe the effects of the NIDS on end applications. 
The NIDS was inserted between a pair of hosts that were connected by a GigE link. A simple 
UDP-based, ping-pong benchmark was constructed to measure the amount of time required 
for a message to be sent from one host to another, and then returned to the sender. Both short 
(43 byte) and long (1024 byte) messages were transmitted in these tests. When the hosts were 

Table 2: Rule set capacity and throughput of 125 MHz ID module (V2P7) 
 

16-bit ID  
(2 Gb/s) 

32-bit ID  
(4 Gb/s) 

64-bit ID 
(8 Gb/s) Filter 

Bridges 

Aggregate 
Network 

Rate Rules Chars Rules Chars Rules Chars 
1 2 Gb/s 130 1,046 71 505 21 250 
2 4 Gb/s 71 505 21 250 14 200 



connected directly (i.e., without the NIDS in place), round-trip timings for short and long 
messages were approximately 119 µs and 224 µs, respectively. Inserting a single pass through 
the NIDS increased the timings to 123 µs and 244 µs. Making two passes through the NIDS 
(i.e. through two filters) resulted in timings of 128 µs and 291 µs. These tests illustrated that 
the NIDS does add a small amount of delay, and that the delay increases with message size. 
However, this overhead is negligible compared to the typical delays found in GigE networks.  

6.6. Observations 

Multiple observations can be made from the experiments performed with the multi-filter 
bridge design. First, data-path bit width affects the NI and ID portions of the design differ-
ently, due to the functionality of the units. The ID module is more sensitive to bit-width 
increases because it has a more computational nature than the NI modules. For a fixed amount 
of logic, a narrower bit-width data path results in larger number of instantiated rules. How-
ever, wider ID modules are still preferable in designs with multiple filter bridges because the 
necessary ID data rates cannot be obtained by clock rate increases alone, and it is too costly to 
replicate the ID module for each bridge. 

Another observation of this work is that the architecture adds a small amount of latency to 
data transmissions. This delay is due to the fact that a message cannot be processed until it is 
received in its entirety. Cut-through techniques could be applied to improve performance. 
However, doing so is challenging in the context of multiple NIs sharing the same ID module.  

Finally, while the V2P7 has proven to be a flexible platform for NIDS work, it lacks the 
logic capacity to support a large number of detection rules and functional network interface 
cores. If all eight of the V2P7’s Rocket I/O modules were utilized for GigE interfaces, there 
would be little room for any additional circuitry. Even with fewer GigE interfaces, only a 
small number of intrusion detection rules can be implemented in the V2P7. In order to handle 
a production-level number of rules, a larger capacity FPGA would need to be employed.  

7. Design Space Exploration 

Due to the limited capacity of the V2P7 FPGA on our reference board, only a fraction of 
the default Snort rule set could be implemented. As a means of investigating more practical 
rule sets, we adapted the design to target larger FPGAs. This allowed us to study the trade-
offs associated with some design parameters and to determine the maximum rule capacity of 
various FPGA devices. 

7.1. Area-Throughput Trade-off 

As mentioned previously, the throughput of the ID module can be increased by making its 
input data bus wider, but there is a trade-off between throughput and area. In order for the 
payload analyzer to process additional data in the same amount of time, its area utilization 



must be increased.  As described in section 4.3, this area increase is due to the fact that addi-
tional logic must be instantiated for each pattern in the rule set.   

In order to show the effects of the area-throughput trade-off, multiple NIDS designs were 
compiled using the same rule set but with different configurations. The rule set used was 
taken from the Snort distribution and contained 246 rules, 218 pattern strings, and 2001 pat-
tern characters. Twelve different design configurations were compiled, and the number of 
FPGA slices utilized by each was measured. Two design parameters were varied to create 
these designs: the number of GigE bridges and the ID input bus width. The number of bridges 
was varied from one to four. Each bridge is capable of sending up to 2 Gb/s of data to the ID 
module. The ID module was operated at twice the GigE clock rate, and input bus widths of 
16, 32, and 64 bits were used, resulting in supported throughputs of 2, 4, and 8 Gb/s, respec-
tively.   

The slice utilization (area) of each design is plotted in Figure 6. The target FPGA used in 
these experiments was a V2P50. From the chart, it can be seen that, for designs with the same 
number of bridges, the area increases linearly with increases in ID input width, as expected.  
Also of note is that the bridges use relatively little area and that their size is nearly independ-
ent of ID input width. 
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Figure 6: Area-throughput trade-off 



7.2. Rule Set Capacity 

Capacity is defined as the maximum number of Snort rules that can be stored for a par-
ticular configuration of bridges, ID width, and FPGA device. The complete default rule set 
included in the Snort 2.0 distribution contains 1305 rules, 1512 pattern strings, and 17 537 
pattern characters. We used different-sized subsets of the default rule set to determine the ca-
pacity of several FPGA devices from the Virtex II Pro family. For each chosen device, we 
compiled designs with increasingly larger subsets until at least 85% of the slices were utilized.  
This process was repeated for ID widths of 16, 32, and 64 bits. The capacities of different de-
vices relative to the default rule set size are shown by the graph in Figure 7.  In order to leave 
more room for ID rules, all of the designs in this experiment used a single GigE bridge. A 
V2P50 FPGA can support the entire default rule set when a 16-bit ID module is used, while a 
V2P70 FPGA is required for a 32-bit ID module. With a 64-bit ID module, about 50% of the 
default rule set fits into the largest device in the Virtex II Pro family, the V2P100. 

8. Future work 

There are a variety of opportunities for future work in this area. At a high level, the effec-
tiveness of the NIDS can be improved by considering techniques through which intrusion 
detection information captured at one network point can be shared with other interested par-
ties or devices. The V2P’s PowerPC processor would serve as a good processing substrate for 
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coordinating the distribution of this information. Our initial experiments indicate that the 
PowerPC is suitable for capturing runtime statistics about the NIDS, and that serial or network 
ports can be used to exchange this information with external systems. 

Another avenue of investigation for this work involves an exploration of how high-
capacity FPGAs can be better leveraged in a large-scale NIDS. Our experiments with the 
V2P100 device indicate that current FPGAs are capable of operating at high throughput with 
large rule sets. However, compiling these circuits is very time consuming, taking many hours 
to complete on state-of-the-art workstations. The compilation times and clock speeds can be 
improved with better floor-planning. Therefore, the next step in this work will involve refin-
ing how placement information is added to the ID cores when the circuit descriptions are 
generated. 

Finally, this work may be extended by considering methods in which an FPGA-based 
NIDS is incrementally updated with new patterns over time. In our current approach, the 
NIDS must be taken offline briefly and reconfigured whenever rule updates need to be ap-
plied. Because updates are infrequent and require only a few seconds of downtime, this 
approach is acceptable for many applications. However, if high availability is required, partial 
reconfiguration techniques are potential solutions. With partial reconfiguration, the NI mod-
ules would continue to operate and buffer incoming messages while the ID module is updated 
with new circuitry.  

9. Summary 

Network intrusion detection systems (NIDS) are a necessary tool for monitoring and pro-
tecting computer networks from malicious users. As network data rates have increased over 
the years, it has become necessary to consider new NIDS architectures that are able to meet 
stringent constraints. In this work, we have presented a flexible, high-performance NIDS ar-
chitecture that integrates network interface and intrusion detection circuitry into a single 
FPGA chip.  This integration eliminates the NI to ID data transfer bottleneck that has limited 
the performance of some NIDS designs.  We have shown that a modern FPGA is capable of 
performing in-line intrusion detection and packet filtering on multiple Gigabit Ethernet links. 
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