
Floating-Point Unit Reuse in an FPGA Implementation of a
Ray-Triangle Intersection Algorithm

Craig Ulmer

Sandia National Laboratories*
Livermore, California USA
cdulmer@sandia.gov

Adrian Javelo
UCLA EE Department

Los Angeles, California USA
ajavelo@ucla.edu

ABSTRACT

The recent emergence of high-quality floating-

point libraries for FPGAs has sparked a renewed
interest in accelerating scientific applications through
Reconfigurable Computing (RC) techniques.
Unfortunately, the sheer size of these floating-point
units makes it difficult to house a large number of
units in a single FPGA. In order to support the
adaptation of non-trivial algorithms to hardware, it is
therefore necessary to consider methods by which a
set of floating-point units can be reused to perform
different operations in an algorithm.

In this paper we discuss a “recycling
architecture” that reuses a fixed number of floating-
point units to implement an algorithm. We customize
the hardware data path for this architecture at
compile time based on a static computational schedule
that is generated for an algorithm. As a means of
illustrating tradeoffs, we step through the adaptation
process with an example application that computes
ray-triangle intersection points. By reusing hardware,
we are able to halve resource requirements while
maintaining acceptable performance. As a means of
motivating future work, we also discuss our
experiences constructing tools that translate an
algorithm’s equations into a synthesizable netlist.

Keywords: FPGA, Floating-Point Reuse

1. Introduction

1.1 Reconfigurable Computing
Reconfigurable Computing (RC) [1] refers

to the practice of utilizing reconfigurable
hardware devices to accelerate the computational
performance of a system. In RC, an application’s
performance-critical computational kernels are
adapted to function as digital circuitry that can be
emulated by a reconfigurable hardware device.
By implementing the kernels in efficient
hardware, it is possible to obtain significant
performance speedups over solutions that

implement an algorithm entirely in software. A
number of RC researchers have reported
improvements in many application domains,
including cryptography [2], signal processing [3],
and pattern matching [4].

Field-Programmable Gate Arrays (FPGAs)
are the dominant form of reconfigurable
hardware utilized by RC researchers, due to the
wide availability of commercial products and the
broad flexibility of the hardware. Modern FPGAs
such as the Xilinx Virtex II/Pro (V2P) [5] have
the capacity to emulate hardware designs that are
comprised of millions of logic gates.
Additionally, these “platform FPGAs” feature
large amounts of internal memory, dedicated
integer multiplication units, and embedded
processors that can be utilized in a flexible
manner.

1.2 Floating-Point Operations in FPGAs
While commercial FPGAs have improved

significantly over the last decade, they still lack
native support for floating-point calculations. As
a result, RC researchers that use FPGAs in
scientific work have either (1) adjusted their
applications to use fixed-point calculations, or (2)
implemented their own floating-point units using
FPGA logic. Implementing a floating-point unit
is non-trivial and requires a sizable amount of
FPGA resources to even be feasible. However,
the availability of high-capacity FPGAs has
renewed interest in building floating-point
libraries for FPGAs [6,7].

One such library for the Xilinx V2P FPGA
has been developed [8] by Keith Underwood and
K. Scott Hemmert at Sandia National
Laboratories. This library includes a diverse set
of floating-point operations that are available in
both single- and double-precision. The units are
deeply pipelined (10 to 20 stages) and operate at
high clock speeds (up to 200 MHz). For this

paper, we make use of single-precision adders
and multipliers available in the library. However,
this work is applicable for use with other
floating-point libraries.

1.3 Algorithm Adaptation: Full Pipeline
The simplest means of adapting an algorithm

to hardware is to allocate a floating-point unit for
each computation in the algorithm. This
adaptation results in a long, continuous pipeline
that we refer to as a full pipeline. For example,
consider the trivial case where an algorithm
computes y=(a+b)+(c+d). A full-pipeline
implementation would employ two adders to
compute (a+b) and (c+d) in parallel, and then
route the results to a third adder to generate y. In
addition to being straightforward to implement,
this approach offers excellent performance
because all floating-point units operate in parallel
once the pipeline fills. Users can issue a new
algorithmic operation every clock cycle. Results
are produced after a delay that is equivalent to the
longest path through the system (2*N clock
cycles in this example, where N is the number of
pipeline stages in an adder).

2. Reusing Floating-Point Units
While full-pipeline implementations provide

excellent performance, they are impractical for
general use due to two reasons. First, current
generation FPGAs only have enough capacity to
house a small number of floating-point units (i.e.,
less than 100). Therefore, full-pipeline
implementations are generally only possible for
algorithms with a small number of operations.
Second, practical RC systems have finite memory
resources from which input values are supplied.
As such, it is possible that an FPGA would have
the capacity to house a full pipeline, but
insufficient bandwidth to supply new input data
values to the pipeline every clock cycle.

In order for RC to move forward in the
scientific community, it is necessary to develop
alternative design techniques that enable large-
scale algorithms to be mapped to resource-
constrained hardware. Our solution to this
problem is to construct a hardware architecture
that reuses a set of floating-point units over time
to perform different operations that are required
by the algorithm. This hardware is customized to
the algorithm’s data flow, and is referred to as a
recycling architecture in this paper.

2.1 The Recycling Architecture
As depicted in Figure 1, the recycling

architecture is comprised of four components: (1)
an array of floating-point units, (2) an input
selection unit to route data values to the right
units at the right times, (3) an intermediate
buffering unit to store results for later use, and (4)
a control unit for managing the architecture on a
cycle-by-cycle basis.

Control

Intermediate Buffering

Input Selection

Inputs

Outputs
Figure 1: The Recycling Architecture

The concept of reusing floating-point units

through a recycling architecture is attractive for
multiple reasons. First, this approach provides us
with a means of executing large algorithms on
FPGAs that have limited floating-point and/or
memory bandwidth resources. Second, the
recycling architecture shares similarities with the
architecture of a general-purpose CPU, and
therefore it is possible to leverage existing
techniques for maximizing the hardware’s
utilization. Finally, unlike CPUs, the recycling
architecture’s hardware data path can be
customized to the characteristics of the algorithm.
This customization can include adjustments to the
number of floating-point units, the amount of on-
chip buffering, and the manner in which
resources are interconnected.

2.2 Ray-Triangle Intersection Example
The tradeoffs associated with developing a

recycling architecture are best illustrated with a
practical example. In this paper we focus on the
adaptation of a computational kernel that
computes the intersection point between a ray and
a triangle. We selected this kernel because it is
frequently required in visualization applications

such as photon mapping [9]. Photon mapping
applications inject millions of photons into a
scene and then track the photons’ paths as they
reflect off objects. A ray-triangle intersection
algorithm is used to determine which object a
photon will hit next and where the collision will
take place. The sheer number of photons and
objects in a scene highlight the importance of
performing the intersection computation as
rapidly as possible.

The Moller-Trumbore [10] algorithm is a
well-known method for efficiently computing the
ray-triangle intersection point. Given a ray and a
triangle, the algorithm produces a TUV
intersection point, where T is the distance from
the ray origin to the triangle and UV is the offset
of the intersection within the triangle. The
algorithm exclusively utilizes additions,
multiplications, and comparisons, except for one
division that is used to scale the final TUV
values.

For our work we assume that the ray-triangle
intersection algorithm will be used in a photon
mapping context, where it is necessary to
compute the intersection point of each photon
with each triangle. In order to minimize the work
performed in the inner loop, we have modified
the algorithm to defer the final division and
scaling operation until all intersections have been
computed. This optimization requires
comparisons to be performed using a
numerator/denominator notation, but removes
two stages of floating-point computation from the
critical path.

(A)

(B)

(C)

(D)

(E)

0 3 6

9 15

21 24

27 30 33 36

39 40 41 42

43 44 45 46

47

50

Figure 2: Ray-Triangle Intersection Data Flow

A high-level representation of the modified
algorithm implemented in this work is depicted in
Figure 2. Data flows from top to bottom in this
diagram, with results generated by one row of
boxes being used in one or more of the lower
boxes. The rows of boxes perform (A) three
vector subtractions, (B) two dot products, (C)
four cross products, (D) numerator-denominator
cross multiplication, and (E) comparisons to
determine if the intersection is closer than the
current value. We reference individual operations
by a numerical identifier that is assigned based on
the operation’s location in the diagram. In terms
of floating-point operations, the algorithm
requires 26 multiplies, 24 adds, and 4 compares.

2.3 Hardware Environment
We selected the Xilinx V2P20 FPGA as the

target FPGA for this study. This decision was
motivate by the availability of a V2P20 reference
board for experiments. While the V2P20 is
relatively small by current standards, it features
enough capacity to house 10-20 single-precision
floating-point units. Working with a small part is
beneficial in that it motivates the designer to
implement the hardware as compactly as
possibly. We note that for larger FPGAs, the
design can simply be replicated in order to
improve performance.

An initial investigation was performed to
determine how many of each type of floating-
point unit should be utilized in the design. From
Figure 2 we see that the algorithm performs 12
multiplies, 9 adds, and 4 compares at most in any
row. After estimating that only half the chip
should be allocated for floating-point units, we
decided to constrain the recycle architecture to
employ 6 multiply, 5 add, and 4 comparison
units.

2.4 Related Work
Our work draws upon the insight provided

by a variety of related research projects. In terms
of scheduling, the compiler community has
developed a number of techniques that are
directly applicable in this work, such as modulo
scheduling [11] and register coloring [12].
However, it is clear that software compiler efforts
have different constraints than hardware
developers. Most notably, software compiler
efforts typically assume that the hardware is
predefined and cannot be changed. Hardware
developers on the other hand have the ability to

adjust both the schedule of operations and the
hardware data path that executes those
operations.

Hardware compilers have been discussed a
great deal in the literature. Prominent efforts such
as StreamsC [13] and Handel-C [14] have
produced tools that convert C-like languages into
FPGA hardware. Hardware compilers typically
exploit parallelism by instantiating as many
computational units as possible to implement an
application’s operations. This technique works
well for integer applications because integer
operations can be implemented compactly in an
FPGA. However, the sheer size of floating-point
hardware limits the effectiveness of this
technique for floating-point applications. As
such, most high-level compilers for FPGAs do
not support floating-point operations. While
recent efforts such as Trident [15] seek to remedy
this shortcoming, we believe that floating-point
will be a central challenge in RC for several
years.

We differentiate our work from high-level
compiler efforts based on our focus. Rather than
build a general-purpose hardware compiler, we
are focused on techniques and tools for creating
complex computational kernels that can be used
as components in other hardware designs. While
an optimizing compiler is desirable, we expect
that there we will always need to perform a
moderate amount of design and optimization by
hand in hardware development.

2.5 Paper Organization
The remainder of this paper steps through

the process of adapting the ray-triangle
intersection algorithm to a recycling architecture
implementation. Sections 3-5 describe the
construction of a computational schedule for the
algorithm, the mapping of operations to specific
units, and the design of hardware to buffer
intermediate values. Section 6 provides
performance estimates for the implementation,
while Section 7 outlines opportunities for
automating the design process. Finally, we
conclude the paper with a brief summary of our
experiences.

3. Operation Scheduling
At the heart of the recycling architecture is

an array of floating-point units. These units are
used to perform the computations needed by an
algorithm at different points in time. As such, the
first task in mapping an algorithm to a recycling
architecture is to generate a computational
schedule that sequences the flow of execution for
an algorithm on the hardware.

3.1 Pipeline Challenges for Scheduling
There are two characteristics of floating-

point unit pipelines that make scheduling
challenging. First, different floating-point
operations have different pipeline latencies (e.g.,
the adder used in this work is 10 stages long
while the multiplier is 11). As a result, the
designer must perform temporal alignment when
different types of operations are executed in
parallel. Second, there is a sizable amount of
delay between when an operation is issued and
when the result is produced. This delay makes it
challenging for the scheduler to find enough work
to keep the units utilized unless the algorithm
exhibits a significant amount of parallelism.

In order to simplify the task of scheduling,
we (1) add buffering to the floating-point units so
that all operations have the same number of
pipeline stages (i.e., 11) and (2) employ a strip-
mining technique to maximize resource
utilization. With this technique, we sequentially
process a strip of N independent iterations of an
algorithm at a time, where N is equivalent to the
number of stages in the pipeline. This technique
enables us to perform scheduling on a strip-by-
strip basis that hides the fact that the floating-
point units are deeply pipelined

3.2 A Single-Strip Schedule
As a first step in scheduling the ray-triangle

intersection algorithm, we constructed a
computational schedule that processes a single
strip of 11 iterations at a time. We refer to the
amount of time required to perform a single
operation for a strip of values as a single stage of
execution in the schedule. Modulo scheduling
was applied to enable the back-to-back
processing of multiple strips of data to take place
more efficiently. The schedule is listed in Table
1. Each numerical identifier in the table refers to
a particular operation in Figure 2.

Table 1: Single-Strip Schedule

Stage Add Multiply Compare
0 0-4
1 5-8
2 9-14
3 21-23 15-20
4 24-26

5 30-32,
36-38

6 40,42 27-29,
33-35

7 39,41,
44,46

8 43,45,48
0 47,49
1 50-53
2 (output)

The single-strip schedule requires 12 stages

of execution to produce all the output values for a
single strip of 11 iterations, resulting in a total
execution time of 132 clock cycles. Utilization
for the 5 adders and 6 multipliers is 40% and
36% respectively. Should multiple single-strips
of data be processed back-to-back, the overlap
provided by modulo scheduling increases
utilization to 53% and 48%.

3.3 A Double-Strip Schedule
The low resource utilization of the single-

strip schedule motivated us to consider a
modified schedule that processes two strips of
data (i.e., 22 iterations) in a single pass. In order
to include the second strip of operations, the first
strip’s schedule had to be relaxed and the overall
schedule lengthened. The resulting double-strip
schedule is presented in Table 2. Each identifier
in the table refers to a particular operation in
Figure 2. Operations that are for the second strip
of data are listed in brackets.

While this schedule requires three extra
stages of execution, it processes twice as many
values as the single-strip schedule. Utilization for
processing a double-strip of computations is 64%
for the adders and 57% for the multipliers.
However, if multiple double-strip computations
are processed back-to-back, this utilization
increases to 80% and 72%.

Table 2: Double-Strip Schedule

Stage Add Multiply Compare
0 0-4
1 5-8
2 [0-4] 9-14
3 [5-8] 15-20
4 21-23 [9-14]
5 24-26 [15-20]

6 [21-23] 30-32,
36-38

7 40,42
[24-26]

27-29,
33-35

8 39,41,
44,46

[30-32,
 36-38]

9 43,45,48
[40,42]

[27-29,
33-35]

10 [39,41,
44,46] 47,49

11 [43,45,48] 50-53
0 [47,49] (output)
1 [50-53]
2 [(output)]

3.4 Schedules with Additional Strips
It is possible to continue unrolling the

algorithm further in order to process more strips
of data in a single pass of work. As the double-
strip schedule illustrates, the advantage of
increasing the number of iterations processed in a
pass enables the designer to backfill empty slots
in the schedule and achieve higher utilization of
the computational hardware.

However, increasing the number of strips
processed in a single pass also increases the
complexity of the hardware that must be
generated to implement the schedule. This
complexity can have a negative impact on the
maximum clock rate of the system (e.g., see
Table 4). Given that the double-strip schedule
achieves respectable utilization, we did not unroll
the loop beyond two strips (22 iterations).

4. Mapping Operations to Units
Once a designer has created a computational

schedule, the next step in building a recycling
architecture is to map individual operations to
specific floating-point units. This mapping has a
direct effect on the input selection unit’s
hardware, which is responsible for routing data
values to the input ports of the floating-point
units. Therefore, it is beneficial to examine how
mapping optimizations can be applied to yield
hardware that is more efficient.

4.1 Input Selection Unit
Our approach to implementing an input

selection unit for a particular algorithm is to
generate application-specific hardware that routes
data values to the input ports of the floating-point
units. As illustrated in Figure 3, this routing can
be accomplished through the use of data buses
and multiplexers. Each input port for a floating-
point unit is equipped with a multiplexer that is
connected to a subset of the available data buses.
At runtime, configuration data is supplied to each
multiplexer in order to perform the necessary
routing. Multiplexer configuration data is defined
at compile time based on the data flow of a
mapped schedule.

Inputs

Input
Selector
Control

Intermediate
Data Values

Input Selection Unit

Figure 3: The Input Selection Unit

The mapping of a schedule’s operations to

specific floating-point units affects the routing
that the multiplexers must provide, which in turn
affects the input selection unit’s overall
performance. Therefore it is beneficial to map
operations in a way that balances the workload
and minimizes the size of the largest multiplexer
in the input selection unit. Our strategy for
creating an acceptable mapping is based on a
two-part heuristic. First, we step through a
schedule and assign operations to units based on
input similarities. Second, an operation’s inputs
are swapped if doing so reduces the total number
of unique sources that are required by the unit’s
input ports. In the case of a subtraction operation,
the sign bits are swapped accordingly.

4.2 Balancing the Double-Strip Schedule
The double-strip schedule’s operations were

assigned to floating-point units using our
mapping strategy. For comparison, a second
mapping was generated using a first-come-first-

serve (FCFS) approach that simply flood-fills the
units. The distribution of multiplexers in the input
selection unit for each mapping strategy is
presented in Table 3. The heuristic approach
decreases the largest multiplexer size from 7 in
FCFS to 5 in our heuristic. Additionally, the
heuristic approach’s distribution favors smaller
multiplexer sizes. These experiments demonstrate
that it is possible to adjust the hardware
requirements for the input selection unit simply
by assigning computations to floating-point units
in a more logical manner.

Table 3: Multiplexer Distribution

Number of
Multiplexers Multiplexer

Size
FCFS Heuristic

7 2 0
6 3 0
5 10 4
4 5 10
3 2 8

5. Intermediate Values
The final task in converting an algorithm to

a recycling architecture is to implement a unit
that is capable of buffering intermediate data
values. This unit captures results generated by the
floating-point unit and supplies the values back to
the input selection unit as needed by the schedule.
At first glance it would appear as though it would
be best to buffer intermediate values using on-
chip block RAM (BRAM). However, while
BRAMs provide a convenient means of storing
large amounts of data, a single BRAM only
provides two access ports for exchanging data.
As such, BRAM bandwidth is likely to be
insufficient for schedules that fetch a moderate
number of independent intermediate values
during execution.

Our approach is to instead implement all
intermediate buffering with registers. Modern
FPGAs can easily support hundreds of registers
that can be accessed independently by the input
selection unit. In order to handle the fact that the
recycling architecture processes a strip of 11 data
values per execution stage, we place 11 registers
in series and refer to the memory as a delay
block. Delay blocks are implemented compactly
in the V2P architecture through the SRL16
primitive. For this work, we consider two

strategies for utilizing the delay blocks: one
where the delay blocks are independently
writable and another where a chain of delay
blocks is associated with a specific floating-point
unit.

5.1 Two Buffering Strategies
One approach to buffering intermediate data

values is to allocate a number of independent
delay blocks that can be written to by different
floating-point units. At runtime a floating-point
unit writes a strip of results to a pre-specified
delay block, which in turn preserves the data until
it is required later in the schedule. As illustrated
in Figure 4, routing data between the floating-
point units and the delay blocks can be performed
by equipping each delay block with a multiplexer
that is connected to relevant floating-point units.
The advantages of this buffering strategy are that
delay blocks can be reused and that register
coloring techniques can be applied to minimize
the total number of delay blocks in the system.

Intermediate Buffering

Input Selection

Figure 4: Independently-Writeable
Delay Blocks

An alternate approach to buffering data

values is to assign a chain of delay blocks to each
floating-point unit, as Figure 5 depicts. The
number of delay blocks in a chain is equivalent to
the largest number of execution stages that a strip
of results must be buffered for the floating-point
unit. While this approach does not permit delay
blocks to be shared between floating-point units,

there are multiple benefits that arise from its
simplicity. First, the delay blocks do not require
input multiplexers and are therefore smaller and
faster than the previous approach. Second, a
chain’s delay blocks do not require explicit
management at runtime, which simplifies the
control hardware for the system. Finally, the
pipelined nature of the delay chain implies that
delay units are automatically reused temporally.

Intermediate Buffering

Input Selection

Figure 5: Chaining Delay Blocks

5.2 Delay Block Implementation
Two designs were constructed to observe the

performance differences between the
independently-writable and chaining strategies
for buffering intermediate data values. In terms of
resources, the independently-writable strategy
required 40 delay blocks while the chaining
strategy required 81. The longest chain of delay
blocks required in the chaining approach was 6
for the adders and 1 for the multipliers. While the
chaining approach requires twice as many delay
blocks, synthesis results indicated that the overall
design was 6% faster and 19% smaller than the
design that employed the independently-writable
strategy. These benefits indicate that a simple but
brute-force approach can yield better results than
a complex but intelligent approach. As such, we
employ chaining for buffering intermediate
values in the remainder of this paper.

6. Performance
We implemented complete recycling

architecture hardware designs for both the single-
and double-strip versions of the ray-triangle
intersection algorithm. Following simulation
experiments to confirm that these designs were
functionally correct, we compiled the designs to
hardware and tested them on an Avnet Virtex
II/Pro Development Kit [16]. This board features
a Xilinx V2P20 FPGA that has enough capacity
to house small floating-point designs. The
designs were compiled using the Xilinx ISE 6.3
tool chain, which performs synthesis through the
Xilinx Synthesis Tool (XST).

For comparison purposes, we also
implemented the ray-triangle intersection
algorithm as a full pipeline of 54 floating-point
operations. This pipeline is 74 stages deep and
produces an output every clock cycle once the
pipeline is filled with data. Due to the capacity
constraints of the V2P20, the full-pipeline design
was built targeting the larger V2P50 FPGA. Area
estimates for this design are scaled to be in terms
of V2P20 capacity for relevancy.

6.1 Build Results
The build results for the three designs are

presented in Table 4. Area estimates are based on
the percentage of a V2P20’s available slices that
are utilized by a design. Speed refers to the
maximum clock rate at which the design can
operate in a part with a -7 speed grade. The
performance estimate is determined by
multiplying the average number of floating-point
operations that are performed per clock period by
the design’s maximum clock rate.

Several observations can be made from the
build results. First, the recycling architecture
enables a large design to be implemented in an
FPGA that does not have the capacity to house
the full pipeline in its entirety. Second, a
significant performance drop is incurred when
moving away from the full pipeline. This drop is
to be expected because the full pipeline has 100%
utilization and allows more computations to be in
flight at the same time since it has nearly five
times as many floating-point units as the
recycling architecture. However, the performance
of the recycling architectures is still roughly
equivalent to performance observed on a host
CPU. Finally, the recycling architecture designs
are capable of operating at higher speeds than the

full pipeline. While it is likely that the full
pipeline’s clock rate could be improved, doing so
involves a fair amount of fine tuning through
floor-planning tools.

Table 4: Design Performance Measurements

Design Area
(V2P20)

Speed
(MHz)

Performance
(GFLOPS)

Single-
Strip 70% 155 0.9

Double-
Strip 79% 148 1.2

Full
Pipeline

199% 142 7.1

6.2 Memory Bandwidth
In addition to area and performance, another

metric by which the full pipeline and recycling
architectures can be compared is memory
bandwidth requirements. Each computation
performed by the ray-triangle intersection
algorithm requires a total of 17 floating-point
inputs (i.e., 68 bytes). In order to keep the full-
pipeline design saturated, this input data must be
supplied every clock cycle. While many FPGA
platforms support multiple banks of memory, few
are able to sustain this performance. In
comparison, the double-strip schedule requires
2x17x11 floating-point values to be fetched every
12x11 clock cycles. As such, this recycling
architecture must read 3 floating-point values (12
bytes) on average every clock cycle. This data
rate is much more manageable and can easily be
implemented on many FPGA platforms.

7. Future Work: Automation
Having explored several design options for

adapting a single floating-point algorithm to
hardware, the next logical step in this work is to
automate the development process. As a means of
working towards this goal, we have constructed
an initial set of data-flow graph tools. These tools
(1) translate a set of equations to a computational
graph, (2) determine an optimal computational
schedule for a specified number of units, (3)
locate an optimal mapping of operations to units,
and (4) generate a synthesizable VHDL netlist for
the hardware.

7.1 Design-Space Tradeoffs
The data-flow graph tools were used to

conduct a broader study of design tradeoffs for
the ray-triangle intersection algorithm. In this
experiment we removed the strip-mining
constraint and varied the number of floating-point
units available in the architecture. We then
measured the total number of clock cycles
required to process 128 iterations of the ray-
triangle intersection algorithm.

1
2

4
8

16
32

1

2

4

8

16

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

Cycles for 128 Operations

Iterations/block
Number of Units

Figure 6: Performance Tradeoffs

The results of the experiment are presented

in Figure 6. From these results, we observe that
performance improves as we increase the number
of floating-point units in the system or the
number of iterations processed in a schedule. Of
the two, increasing the number of iterations has
more of an effect, due to the fact that the floating-
point units are deeply pipelined. Another
important observation is that it is possible to
achieve a performance goal through a
combination of these two options. This
characteristic is particularly useful when the
FPGA can only house a small number of floating-
point units.

8. Summary
Floating-point units consume significant

resources in modern FPGAs. Therefore it is
beneficial to develop methodologies by which
floating-point units can be reused to perform
different computations required by an algorithm.
In this paper we have described a design
technique for mapping large floating-point
algorithms to FPGAs that is based on the notion

of a recycling architecture. By customizing the
data path of this architecture and optimizing the
computational schedule, it is possible to
implement non-trivial algorithms on resource-
constrained FPGA platforms.

The authors thank K. Scott Hemmert and
Keith Underwood for allowing us to use their
floating-point libraries in this work.

References

[1] K. Compton and S. Hauck, “Reconfigurable

Computing: A Survey of Systems and
Software,” in ACM Computing Surveys,
Vol. 34, No. 2, June 2002.

[2] T. Wollinger, J. Guajardo, and C. Paar,
“Security on FPGAs: State-of-the-Art
Implementations and Attacks,” in ACM
Transactions on Embedded Computing
Systems, Vol. 3, No. 3, August 2004.

[3] A. Shoa and S. Shirani, “Run-Time
Reconfiguration Systems for Digital Signal
Processing Applications: A Survey,” in
Journal of VLSI Signal Processing, Vol. 39,
No. 3, 2005.

[4] C. Clark and D. Schimmel, “Modeling the
Data-Dependent Performance of Pattern-
Matching Architectures,” in proceedings of
International Symposium on Field-
Programmable Gate Arrays, 2006.

[5] Xilinx Inc., “Virtex-II Pro and Virtex-II Pro
X Platform FPGAs Data Sheet,” 2005.

[6] B. Catanzaro and B. Nelson, “Higher Radix
Floating-Point Representations for FPGA-
Based Arithmetic”, in Field-Programmable
Custom Computing Machines 2005.

[7] M. Haselman, M. Beauchamp, A. Wood, S.
Hauck, K. Underwood, and K. Hemmert, “A
Comparison of Floating Point and
Logarythmic Number Systems for FPGAs,”
in Field-Programmable Custom Computing
Machines 2005.

[8] M. Beauchamp, S. Hauck, K. Underwood,
and K. Hemmert, “Embedded Floating-Point
Units in FPGAs,” in proceedings of
International Symposium on Field-
Programmable Gate Arrays, 2006.

[9] H. Jensen, Realistic Image Synthesis Using

Photon Mapping, A.K. Peters, Ltd.,
Massachusetts, 2001.

[10] T. Moller and B. Trumbore, “Fast, minimum
storage ray-triangle intersection,” Journal on
Graphics Tools, Vol.2, No.1, 1997.

[11] B. Rau, “Iterative Modulo Scheduling: An
Algorithm for Software Pipelining Loops,”
in International Symposium on
Microarchitecture, 1994.

[12] G. Chaltin, “Register Allocation and
Spilling via Graph Coloring,” in
Proceedings of Symposium on Compiler
Construction, 1982.

[13] M. Gokhale, J. Stone, J. Arnold, and M.
Kalinowski, “Stream-Oriented FPGA
Computing in the Streams-C High-Level
Language,” in proceedings of Field-
Programmable Custom Computing
Machines 2000.

[14] Celoxica Inc., “Handel-C Language
Overview”

[15] J. Tripp, K. Peterson, C. Ahrens, J.
Poznanovic, and M. Gokhale, “Trident: An
FPGA Compiler Framework for Floating-
Point Algorithms,” in Field Programmable
Logic and Applications, 2005.

[16] Avnet Design Services whitepaper, “Xilinx
Virtex-II Pro Development Kit,” 2003.

