
SANDIA REPORT
SAND2008-7687
Unlimited Release
November 2008

FCLib:
The Feature Characterization Library

Wendy S. K. Doyle
Ann C. Gentile
W. Philip Kegelmeyer
Craig D. Ulmer

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

2

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government, nor any agency thereof,
nor any of their employees, nor any of their contractors, subcontractors, or their employees,
make any warranty, express or implied, or assume any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represent that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government, any agency thereof, or any of
their contractors or subcontractors. The views and opinions expressed herein do not
necessarily state or reflect those of the United States Government, any agency thereof, or any
of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
 U.S. Department of Energy
 Office of Scientific and Technical Information
 P.O. Box 62
 Oak Ridge, TN 37831

 Telephone: (865) 576-8401
 Facsimile: (865) 576-5728
 E-Mail: reports@adonis.osti.gov
 Online ordering: http://www.osti.gov/bridge

Available to the public from
 U.S. Department of Commerce
 National Technical Information Service
 5285 Port Royal Rd.
 Springfield, VA 22161

 Telephone: (800) 553-6847
 Facsimile: (703) 605-6900
 E-Mail: orders@ntis.fedworld.gov
 Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

3

SAND2008-7687
Unlimited Release
November 2008

FCLib: The Feature Characterization Library

W.S.K. Doyle
Google Incorporated

WAT-337F c/o Google
651 N. 34th Street

Seattle, WA 98103

A.C. Gentile and C.D. Ulmer
Visualization and Scientific Computing

Sandia National Laboratories
P.O. Box 969 MS 9152

Livermore, CA 94551-0969

W.P. Kegelmeyer
Informatics and Decision Science

Sandia National Laboratories
P.O. Box 969 MS 9159

Livermore CA 94551-0969

Abstract

The Feature Characterization Library (FCLib) is a software library that simplifies the
process of interrogating, analyzing, and understanding complex data sets generated by
finite element applications.

This document provides an overview of the library, a description of both the design
philosophy and implementation of the library, and examples of how the library can be
utilized to extract understanding from raw datasets.

4

5

Acknowledgments

The FCLib authors would like to thank Jay Dyke, Tim Shelton, Tim Kostka, and Nathan Spencer
of SNL who provided many of the problems that FCLib tools were designed to address and
worked with us to develop meaningful analyses; Ken Buch of SNL, who developed Machine
Learning capabilities utilizing FCLib; and Robert Banfield and Larry Hall of the University of
Florida.

This research was supported by ASC’s Pre and Post Processing Environments (PPPE) Data
Discovery (DD) Program.

6

Contents
FCLib: The Feature Characterization Library .. 3

1. Introduction .. 10
1.1 Obtaining FCLib ... 10
1.2 Features of FCLib ... 10
1.3 Data Representation and Access... 11
1.4 Characterizations and Characterization Building Blocks ... 12
1.5 Feature Tracking ... 13

2. General Use .. 14
2.1 Data Types .. 14
2.2 Simple Data Objects ... 14
2.3 Data Interface.. 14

2.3.1 Dataset... 15
2.3.2 Sequence ... 15
2.3.3 Mesh.. 15
2.3.4 Subset.. 15
2.3.5 Variable... 15
2.3.6 FileIO .. 16

2.4 Utilities.. 16
2.5 Geometric Relations.. 16
2.6 Topological Relations ... 17
2.7 Variable Math ... 17
2.8 Statistics Routines... 17
2.9 Series Routines.. 18
2.10 Threshold .. 18
2.11 Shape... 18
2.12 Element Death... 18
2.13 Feature Tracking ... 19

3. FCLib Design Notes... 20
3.1 Entity and Data Terminology.. 20
3.2 Data Management using Opaque Handles.. 20
3.3 Datasets: Managing File I/O ... 20

3.3.1 Lazy Loading and Releasing of Big Data ... 21
3.3.2 Information about Supported File Formats... 21
3.3.3 File Format Caveats .. 22

3.4 Mesh.. 24
3.4.1 Internal Types ... 24
3.4.2 Mesh Structure .. 25
3.4.3 Built Data for Meshes ... 25
3.4.4 Building Mesh Data .. 26
3.4.5 Releasing the Mesh... 26

4. Library Testing ... 27
4.1 Unit Tests .. 27
4.2 Regression Tests ... 27

7

4.3 Software Quality Analysis Testing ... 27
4.4 Nightly Testing and Documentation... 28

5. Example Tools and Capabilities... 29
5.1 Gaplines .. 29
5.2 Tears.. 31
5.3 ScrewBreaks ... 33
5.4 Feature Tracking ... 35
5.5 Skeleton Extraction and Manipulation.. 37
5.6 Region Subsetter/Reassembler.. 39

6. Summary and Future work ... 40

7. Distribution... 41

Figures

Figure 1: Code coverage estimates for FCLib's modules. .. 28
Figure 2: An item before deformation. Note that the green plate is flush with the read container.
... 29
Figure 3: The item in the previous figure after deformation. The damage results a gap between
the red container and its green outer plate which were initially in contact. The internals of the red
container are visible through the resulting gap. .. 30
Figure 4: The Gaplines tool determines gaps that occur between meshes as a result of
deformation. Gaplines are shown that result from the situation in the previous figure................ 30
Figure 5: Partial output of the Gaplines tool for the situation shown in the figures. Characteristic
information for each gap is provided, including size and location information. 31
Figure 6: Tears resulting from the situation described regarding the gaps tool. The Tears tool
discovers and characterizes tears, including determining bounding boxes for the tears (shown in
figure).. 32
Figure 7: Partial output of the Tears tool for the situation shown in the previous figure.
Characteristic information for each tear is provided, including size and location information.... 33
Figure 8: Timestep 5: The screws are partially damaged. The Breakage Ratio (BR) is calculated
by projecting the damaged areas onto the screw base (uppermost in picture).............................. 34
Figure 9: Final State: All screws are broken. The leftmost screw is severed. The middle and right
screws are broken by surface erosion. While erosion does not result in a complete segmentation
of the screws, nonetheless, the erosion results in a loss of contact of the remaining screw material
with any of its neighboring meshes. ... 34
Figure 10: Partial output of the ScrewBreaks tool for the situation shown in the figures.
Characteristic information for each screw is provided, including breakage ratio (BR) and break
type.. 35
Figure 11: In the can crush example, features are located and colored in the right-most picture. 36
Figure 12: Maximum stress per feature over time for the can crush example. A feature graph
displays the progression of different features in the dataset as time progresses. Feature colors
correspond to those illustrated in the crushed can picture. ... 36

8

Figure 13: The skeleton utilities transform a mesh into a spanning tree structure. 38
Figure 14: Spanning tree structures can be reduced to simplify the representation into a form that
is easier to manage. ... 38
Figure 15: In this subsetter example, a large shockwave dataset is reduced to a minimal form that
contains only elements that are significant to an analysis. ... 39

Tables

Table 1: FCLib variable concepts and Exodus Support. Letters indicate current support. Colors
indicate possible support... 24

9

Nomenclature

ALEGRA A family of shock and multiphysics codes developed at Sandia
DOE Department of Energy
Exodus A standard file format for Sandia FEM datasets
FCLib Feature Characterization Library
FEM Finite Element Modeling
LS-DYNA Livermore Software’s FEM tool
netCDF Network Common Data Form: a library for managing datasets
ROI Region of Interest
SNL Sandia National Laboratories

10

1. INTRODUCTION

One very common strategy for doing data analysis in spatial-
temporal datasets is to focus on regions of the dataset where
interesting things are happening. If we define a feature as a
coherent region that persists over time, this data analysis
strategy becomes feature-based data analysis. The entire
process of finding features, analyzing features, and using the
results is called feature characterization.

Although feature-based data analysis is common, the feature
characterization process is not very well supported. Most users
manually identify and analyze features, a process which is
tedious and prone to errors. Additionally, when tools are created
they are usually one-off solutions that are difficult to reapply to
new problems.

The goal of Sandia's Feature Characterization project (FCDMF) is to provide general resources
for the creation and use of feature characterizations. The codebase developed by the FCDMF
project is the Feature Characterization Library, called FCLib, which is a toolkit for creating
characterizations and characterization applications. The philosophy of FCLib is to automate as
many of the tedious parts of doing characterizations as possible, while remaining flexible enough
to create a wide range of characterizations.

1.1 Obtaining FCLib
FCLib was developed as an open-source project. The FCLib homepage is
https://fclib.ca.sandia.gov. The FCLIb code and related documentation can be found there. The
FCLib development team can be reached at fclib-help@sandia.gov.

1.2 Features of FCLib
FCLib consists of a library of routines and a small number of command-line tools. The library
routines can be roughly divided into the following categories:

• Data Representation and Access: FCLib provides its own internal data structures for
representing finite element structures (e.g., mesh, elements) and associated data (e.g.,
variables, subsets). Rather than requiring the user to manipulate the data structures
directly, FCLib provides higher-level functions which enable read/write capabilities to
data, such as the mesh’s coordinate values, or a variable’s data values.

• Characterization Building Blocks: FCLib provides a number of higher-level data access
or interpretation functions that can be used for building characterizations. For example,
FCLib provides functions that locate elements in a mesh that share edges or faces with a
given set of elements. These functions can be used as building blocks in a higher-level
characterization that requires an ordered traversal of the mesh.

• Feature Tracking: FCLib provides facilities for managing and tracking features in a
generalized manner. For example, the user can define a new feature algorithm using
FCLib’s data manipulation and characterization building blocks, and then use FCLib’s
feature processing functions to track and plot the feature as it evolves through time.

11

• Characterizations: Finally, FCLib supports a variety of characterizations. For example,
the library can determine minimum and maximum values of a variable in a feature.

The categories necessarily overlap as one analyst's characterization will be another analyst's
building block. The command-line tools include a few examples of generic and custom
characterization applications built with FCLib.

The biggest feature of the library is that it is built to be feature aware--that is, to understand and
operate on features. Another important feature of the library is its simplified interface. The API
was written to support multiple levels of users--from those who will use the built-in "check-box"
characterizations (so called because of our prototype development of a GUI that allows users to
"check" the characterizations that they want) to more advanced users who wish to build their
own characterizations.

FCLib is coded in C and operates on unstructured mesh data.

1.3 Data Representation and Access
One of the fundamental benefits of FCLib is that it organizes simulation data and analysis
functions in a manner that allows tedious, low-level data manipulation tasks to be hidden from
the end user. In order to make use of this programming environment, data is organized into the
categories below. Note that some categories can be considered as “owning” another category,
e.g., sequences are owned by the dataset, subsets are owned by the meshes.

• Dataset: A dataset is a single file that exists on disk. FCLib currently supports multiple
file formats for reading and writing data. A dataset contains one or more meshes, zero or
more sequences, and zero or more variables. Datasets do not contain subsets.

• Sequence: Datasets that house multiple timesteps employ a sequence to specify when
each timestep took place.

• Mesh: A mesh represents the physical structure of one or more objects in a dataset. A
mesh’s structure is defined by the coordinates and connectivity of its vertices. A mesh is
comprised of one or more elements. These elements do not necessarily have to be
contiguous in space (e.g., a single mesh in one of the bolt examples contains multiple
bolts that are located at different spatial locations). Element faces and edges are inferred
from the coordinates and their connectivity. Meshes contain zero or more variables and
zero or more subsets. Meshes do not own sequences, but can instead reference the
dataset’s sequences.

• Variable and Sequence Variable: A variable can be defined on a dataset or on a mesh as
a whole (in essence, global variables from the perspective of the meshes), or, for a single
mesh, can hold data values for each vertex, edge, face, or element. A single data value
may have one or more components. A sequence variable is an array of variables for a
given time sequence. All variables in a sequence variable must reference the same mesh.

• Subset and Sequence Subset: A subset provides a means of identifying individual
locations in a mesh or variable that are of interest. A subset may contain anywhere from
zero to all of the members of the object it describes. A sequence subset is comprised of
one or more subsets that are associated with a sequence.

FCLib’s hierarchy of data objects may be at odds with that of a file format from which data is
read. For example, Exodus defines its vertices at the global level, rather than the mesh level, and

12

thus there are implications in such a translation (this particular issue is covered in more detail in
Section 3.3). While users do not strictly need to make use of the hierarchy of data objects FCLib
provides, there are a number of built-in functions to allow users to understand the hierarchy and
to locate descendants and parents in the hierarchy. For example, the fc_dump tool reads in an
input file, creates the corresponding FCLib data structures, and then writes out the information as
FCLib represents it in its hierarchy. In the writeout, then, sequence information is written out at a
dataset level, and then on a mesh by mesh basis the program examines the mesh’s coordinates
and connectivities, and all of the mesh’s variables, sequence variables, subsets, and sequence
subsets and generates an information summary. In a similar manner it is possible to examine an
item and then use parent references to ascend the hierarchy.

1.4 Characterizations and Characterization Building Blocks
FCLib provides a number of built-in, generic characterizations and characterization building
blocks that enable users to implement analysis functions rapidly. The following is a list of
example characterizations that are available in FCLib. These characterizations are organized by
the type of data that they process.

• Mesh topology based (mesh entities are vertices, edges, faces, or elements):
• Get mesh entity children (e.g., get vertices that make up an element).
• Get mesh entity parents (e.g., get elements that contain a vertex).
• Get mesh entity neighbors.
• Skin (e.g., get the entities that make up the outer layer of a set of mesh entities).
• Segment (separate a set of mesh entities into separate connected components).

• Mesh coordinates based:
• Edge lengths, surface area, and region volumes.
• Bounding boxes.
• Centroid, variable-weighted centroid.
• Get mesh entities within a box or sphere.
• Kernel smooth variable.

• Variable based:
• Variable math (e.g., add two variables to get a third).
• Threshold (e.g. get set of entities that pass threshold criteria).
• Statistics (min, max, mean, standard deviation)

• Time based:
• Feature tracking
• Entity variable history

13

1.5 Feature Tracking
One of the more powerful capabilities of FCLib is that it provides a general framework for
feature tracking. Feature tracking refers to the process of identifying a region of interest (ROI) in
a dataset and then monitoring its evolution as time progresses in the dataset. This section
provides a brief discussion of how FCLib’s feature tracking works. A detailed example of how
this capability was used in a can crush analysis problem is provided in Section 5.4.

The first task in feature tracking is identifying one ore more ROIs that have meaning to the end
user. In FCLib this task is performed through the use of characterization functions that are either
built-in or supplied by the user. These functions quantify whether data points are significant or
not in a particular analysis. For example, a user might employ a characterization function that (1)
locates all points in the mesh where a stress value exceeds a specific tolerance and then (2) uses
FCLib’s segmentation functions to group nearby points into distinct ROIs. A collection of related
ROI is called a feature. Multiple features (e.g., features for different time steps) are then stored in
a FeatureGroup container.

The second task in feature tracking involves analyzing a set of features in order to derive
relationship information about the features. FCLib provides functions for comparing and tracking
differences between ROI based on their overlap. The most common operation is to use the
tracking capability to monitor how a collection of features evolve over multiple timesteps. By
changing the manner in which overlap is calculated between ROI, users can adjust the
granularity at which parent-child relationships are extracted.

Feature graphs that depict the evolution of ROI can be written out and plotted graphically with
graphviz.

14

2. GENERAL USE
While FCLib provides a large number of functions for data analysis, it is relatively
straightforward to make use of the library and develop point tools for application-specific
analysis. The library is written in C and requires that a small number of libraries be linked in at
compile time with a user’s application. The FCLib software distribution provides a number of
tutorial examples that walk the user through the process of building analysis applications. API
information for the library is documented through doxygen-generated HTML pages that are
constructed when the library is built. Finally, as an open source project, the user is free to inspect
both the point tools and the actual library calls in order to fully explore the library.

The library itself is arranged as a set of modules. This section provides an overview of each of
these modules in order to illuminate the structure and capabilities of FCLib.

2.1 Data Types
The data types module in FCLib defines a number of enumerated types that help make the API
flexible and more readable. In addition to performing general library management control (e.g.,
verbosity, return codes, etc.), these enumerated types allow a single function to be utilized with a
variety of data types. Specific examples of these enumerations include the following:

• Element Type: A variety of fundamental element types are supported in FCLib, including
points, lines, triangles, quadrilaterals, tetrahedra, pyramids, prism, hexahedra, and
arbitrary shapes.

• Data Type: Data values in nearly all functions can be composed of many different
numerical representations, such as floating point or integer.

• Math Type: Data values can be scalar, vector, or tensor.

• Association Type: This type is used to define how data values are associated with a
mesh. For example, a variable may associate data values with each vertex, edge, face, or
element in a mesh, or for as a single data value for a mesh or dataset.

Many of the function calls in FCLib require flags using the above data types in order to be
precise about the operation that is to be performed. While at first glance this appears to make the
interface complex, it reduces the total number of functions required by the API and fosters better
reuse within the library.

2.2 Simple Data Objects
The simple data objects module provides a basic set of data management functions that are used
throughout the library and are generic enough for general use. The majority of these functions
are containers for storing and accessing data objects. Internally, FCLib houses container items in
sorted order. This organization makes it possible to locate items rapidly. Values are sorted as they
are inserted into their containers.

2.3 Data Interface
The routines in the data interface module section are the primary interface between the
computational routines in the Feature Characterization library and the actual data. As outlined in
Section 1.3, the five major data object types are datasets, sequences, meshes, variables, and
subsets.

15

2.3.1 Dataset
A dataset serves as a container for all data relating to a simulation. Dataset objects can be created
from files using FileIO operations (Section 2.3.6) or explicitly by the user without having to
write the results out to a file. Moving data between datasets is also possible.

2.3.2 Sequence
A sequence is a set of values, typically time, over which a variable or subset can be defined, one
such entity at each step in the sequence. FCLib can have multiple sequences, although Exodus
supports only one. The sequence is associated with the entire dataset. The values of a sequence
are called its “coordinates” while the number of values of a sequence is its number of “steps”.

In addition to functions for creating, destroying, and accessing sequence data and meta data,
some functions exist for manipulating sequences. The latter functions include capabilities to shift
and scale a sequence and to convert a sequence (or sequences) with irregular spacing into a
regularly spaced sequence(s). These capabilities are intended to be used in conjunction with
functions in the Series module which provides sequence-based analyses.

2.3.3 Mesh
A mesh provides basic geometry information about a structure in a dataset. Meshes are defined
by two sets of values: (1) a list of coordinates for all vertices in the mesh and (2) a connectivity
map which specifies the vertices that make up each element in the mesh. While all of a mesh’s
elements must be the same order, it is not necessary for elements to form a contiguous region in
space. The face and edge information is then built from the coordinates and connectivities. The
mesh interface provides a number of commands for querying the mesh structure, including
higher-level operations that extract face and edge information about the mesh.

2.3.4 Subset
A subset is a set of ids over a mesh. It is associated with some subentity of a mesh, such as
vertices, elements, faces, or edges. In addition to functions for creating, destroying, and
accessing the subset data and meta data, functions exist for determining the intersections and
complements of a subset(s).

2.3.5 Variable
A variable is data, such as temperature, over a mesh. It is associated with some subentity of a
mesh such as vertices or elements. Internally, a sequence variable is an array of variable handles
associated with a sequence, with one variable per step of the sequence. In this way functions that
work on a single variable can also work on a single step of a sequence variable. Often a user's
computations on a sequence variable thus consist of looping over a single variable function call,
one for each timestep. Global variables also exist which are a single value owned by the dataset.

In mapping onto the Exodus constructs, variables are Exodus attributes and sequence variables
are Exodus results. Variables with vertex associations are Exodus nodal results (for sequence
variables) and attributes (for non-sequence variables) which means that they are defined for all
nodes (filled in with data value equal to 0 for any nodes in any element block that does not
define that variable). Note that Exodus does not support multiple data types and everything gets
converted to doubles, including chars. Exodus only stores single component variables and relies
on naming conventions (endings x,y,z for vectors, xx,yy,xy for tensors) for the consumer. While
the general Exodus file reader reads variable data in as single components (e.g., velocity_x),
FCLib provides higher-level functions for handling multi-component data (e.g., velocity_x,
velocity_y, and velocity_z are merged together into a single velocity variable with three

16

components). More information on FCLib’s handling of Exodus variable data can be found in
Section 3.3.

Variable data is lazily loaded, in the sense that a variable’s data is not loaded until the user
specifically requests access to the data. While FCLib generally provides a clean copy of data to a
user that can be read or written without side effects, there are additional functions that provide
pointer access to the data without the overhead of copying it. These functions require the user
treat the data as read only and should therefore be utilized with caution.

Functions exist to:

• create, copy, and delete variables,
• get their meta data (e.g., association, number of components, data type, number of data

points, and name),
• get their big data (values) or pointers to such,
• perform conversions (e.g., convert sequence variables to non-sequence variables, single-

component to multi-component, and one association to another).

2.3.6 FileIO
The File IO functionality consists of an interface defined in a generic wrapper, with specific
implementations defined in separate files. The specific implementations should generally not be
used directly. At this time FCLib defines specific implementations for two different file types:
Exodus and LS-Dyna.

Generic capabilities required in the FileIO module (with implementation in the specific
implementation file) include the abilities to read and write the dataset from and to the appropriate
file format, including the mesh coordinates and connectivities, sequence data, variable data, and
subsets. Any file type-specific issues are handled in the specific implementations as well (e.g.,
Exodus Attributes). These implementations must employ data structures for holding any
information that is specific to the file type. For example for subsets in Exodus, the Exodus file
reader/writer must maintain Exodus SetId and Exodus Association values in order to correctly
convert an Exodus set to and from the analogous FCLib representation.

Some particular design issues related to FileIO for particular formats are discussed further in
Section 3.3.

2.4 Utilities
Various convenience functions are provided in the utilities module. A set of floating point
operations are included in the module to perform comparisons between different values when
precision is an issue. Additionally, the utilities module provides miscellaneous convenience
utilities, such as functions for decomposing file paths into individual components (e.g., directory
name, base name, and extension).

2.5 Geometric Relations
The geometric relations module provides functions that compute relationships between the
coordinates of mesh vertices. Functions exist for deriving specific geometric quantities such as
diameters, centroids, areas, volumes, and normals of subsets and meshes. Additional functions
provide more general geometric relationships, such as the Euclidean distance between two
vertices, the angle between two vectors, and proximity measures between subsets and between

17

meshes. Location information can be obtained via bounding box functions and functions to
determine if one item contains another (e.g., if an element contains a point or a bounding box
contains an element). Additional miscellaneous functions manipulate bounding boxes, calculate
mesh deformations, smooth variable values, and determine if and where a ray intersects with a
triangle. Versions of most functions exist to calculate quantities based on either the original or
the displaced coordinates. Many of these functions utilize FCLib’s internal data structures to
produce results faster than what could be achieved by an end-user application.

2.6 Topological Relations
The topology relations module provides functions for computing relationships between elements
and vertices of the mesh itself, with no consideration of the actual physical coordinates of the
vertices. The topology functions thus include operations such as computing which elements
share a vertex, which vertices are part of an element, which vertices are part of an element that
shares a face with a given element, etc.

This module also includes function to obtain membership relations (such as getting a mesh
entity's parents or children), entity neighbors, and higher-level connectivity information
(segmenting and array of entities based on their neighbor relationships).

2.7 Variable Math
The variable math module provides three sets of functions for performing mathematical
operations on and between variables. In general these functions create variables which contain
the desired result. There are versions of these functions for both normal variables and sequence
variables. All sensible operations between variables, sequence variables, and constants are
supported. The functions all follow a particular naming convention that utilizes the placement of
“operator” and “var” to indicate the order of the variables involved and the mathematical
operator performed. The three sets of functions are as follows.

• Built In: The first group of functions can be used to execute simple, built-in
computations such as addition or multiplication on the individual components of the
inputs. They preserve or promote type as necessary with the major expectation that the
resultant values are always either integers or doubles.

• User Supplied: The second group of functions allows the user to provide a pointer to a
function that performs a computation on individual members of the inputs. These
functions automatically perform data conversions (e.g., change a variable to a sequence
variable) in order to make operations work.

• Non-Standard: Additional functions perform operations that do not match the previous
two function groups. These functions perform operations when there are fundamental
differences between the inputs, such as the number of components in the inputs, or
outputs, such as creating magnitude variables.

The flexibility of the variable math module allows users to extend the library with new
computational algorithms without having to understand all of the inner workings of the library.

2.8 Statistics Routines
The statistics routines module includes functions that involve simple statistics (min, max, std)
over variables, sequence variables, subsets, and sequences.

18

2.9 Series Routines
The series routines module consists of functions intended for sequence based analyses. These
include capabilities that (1) compare two sequence variables by generating a characteristic value
representing the comparison, (2) generate characteristic values of a single sequence variable, and
(3) map a sequence variable into another sequence variable. Mapping functions include window
averaging routines in both non-time-series and time-series versions. The former considers
number of sequence steps involved in the window and the latter considers the sequence values to
be time values and is then concerned with the time range of the sequence steps involved in the
window. Additional functions exist to calculate derivatives, integrals, and interpolations of
sequence variables. There are also functions for comparing sequence variables by determining
distances and areas between their curves. Finally there is a least squares fit.

2.10 Threshold
The threshold modules consists of functions that, given a variable and criteria, return a subset
consisting of the entities that satisfy that criteria (e.g., returns a subset of all elements whose
temperature is greater than 100).

2.11 Shape
The shape module is intended to give information about shapes (shapes of meshes etc.). These
may have a topological flavor to them, but since they are not hierarchical (e.g., children-parent),
they are being located here rather than topological relations. This is meant to work in conjunction
with the Element Death module (e.g., given some information about the shape of a mesh is there
some information about a dead element region that would be of interest, such as the region
cutting through the shape?).

An FC_Shape is a structure that contains the number of sides of a shape, arrays of subsets of the
faces making up each side, arrays of subsets of the element making up each side, and the
adjacency matrix describing the relationship of the sides.

The fundamental functions create shapes from meshes or subsets. In these functions, the user
specifies an angle and the faces of the mesh or subset that are traversed such that if the normals
of two adjacent faces differ by an angle greater than that of the specified angle, the two faces are
considered to be on different sides. This methodology can only realistically be applied to simple
shapes. There are additional functions to reshape an existing shape by using a new angle or to
reshape it into a shape with fewer sides. This latter function is used to merge small, perhaps
curved faces into a major side.

Special functions exist for simple well-defined and well-used shapes like a screw and a thin
shape. A thin shape is a shape that is in some dimension narrow and in a roughly perpendicular
direction has a pair of large opposing sides that are the major sides that a user is interested in.

Once the shape is determined, additional functions in this module are used to get areas of sides
and side normals, and characteristics based on the adjacency matrix, such as distance matrix,
and shape ends (sides that are adjacent to only one other side) and opposing sides. This type of
characterization is useful in determining if a dead element region cuts through a shape verses
eroding away a part of side.

2.12 Element Death
In many simulations, changing mesh topology is approximated by allowing elements to "die".
The mesh topology stays the same, but any elements that are labeled "dead" no longer participate

19

in the simulation. Dead elements can be used to model rips, tears and other changes in the mesh.

The input of most of the routines in this module is a subset representing a dead element region,
and is assumed to have the association type of FC_AT_ELEMENT. It is also assumed that the
coordinates of vertices within a dead element region cannot be trusted (the vertices on the
boundary of the dead element region may be o.k. if they are still on live elements).

A dead element region does not have to be a single topological segment, but most of the results
are more easily interpreted if this is true.

Functions in the element death module are used to determine the effect of a dead element region
on a mesh or FC_Shape. In particular, functions exist to determine the “exposed skin”, defined as
the subset of the entities that would become exposed (become part of the mesh skin) if given
elements were removed from the mesh and the “decayed skin”, defined as the subset which is the
intersection of a dead element region and the skin. There are also segmenting functions to
determine the segmenting of a mesh or subset as a result of a dead element region (e.g., does a
dead element region break the mesh, erode the side of a mesh, etc.). Further there are
characterizations of the size of the dead-element region.

2.13 Feature Tracking
The feature tracking module provides a general framework for studying how phenomena evolve
over time in a dataset. Features can be identified at timesteps and then associated with one
another through time, so that the user can study the evolution of a feature.

A Region of Interest (ROI) is internally represented as a C structure with a subset that exists at a
single timestep comprised of the entities that make up the ROI. As of this writing, a Feature is a
C structure with an array of these subsets, one for each timestep. In future work, the array may
be replaced by use of the SeqSubset (whose creation postdates the creation of the Feature
Tracking data structures). Feature information is then accessed via the FeatureGroup which is a
container for the results of the Feature Tracking as a whole.

This module contains the functionality by which ROI are matched up into a single Feature
spanning time. It provides the machinery by which one ROI is determined to “overlap” another
sufficiently to be deemed to be a single feature. Functions that determine the ROI and define the
overlap are to be provided by the user. However, a default function for overlap is provided that is
based on geographical overlap.

20

3. FCLIB DESIGN NOTES
In this section we discuss some design issues of FCLib. This is not meant to be a comprehensive
design document, but rather a presentation of key points that will help improve understanding of
the library’s characteristics. In particular we present design issues developers must be aware of
when modifying the internals of the library and when exchanging data with different file formats.

3.1 Entity and Data Terminology
The library manages multiple datasets and each dataset can have multiple meshes. A sequence is
the coordinates of a parameter space orthogonal to the space of the mesh. The most common type
of sequence would be the time values of a time series. A subset is a set of mesh subentities (e.g.
vertices or elements). A variable is a function, such as temperature, over a mesh. It is associated
with some subentity of a mesh such as vertices or elements. A sequence variable is actually an
array of variable handles associated with a sequence, with one variable per step of the sequence.
Similarly, a sequence subset is an array of subset handles associated with a sequence, with one
subset per step of the sequence.

It is very important to note that the library makes a distinction between meta data and "big data",
and that access to these is treated very differently. Big data are the really large arrays of data that
we want to avoid duplicating or moving around. Currently, the coordinate arrays for the meshes
and the sequences, and the data from the variables, are considered big data and everything else is
meta data.

When users ask for metadata they get copies of the data that can be manipulated freely. Users are
responsible for freeing these copies. On the other hand, when users ask for big data, they receive
a pointer to the data (the names of these routines typically end with ‘Ptr’). Users must treat this
data as read only, and should never attempt to free the big data directly (memory is instead
released by calling FCLib-specific functions). For performance reasons, big data is lazily loaded
when possible (this is discussed in more detail in Section 3.3.1), or, when appropriate, built only
when necessary (this is discussed for the mesh in Section 3.4.2)

3.2 Data Management using Opaque Handles
For robustness FCLib manages data through an “opaque handles” usage model. In opaque
handles a library maintains and manipulates application data on behalf of the user. This data is
referenced through a handle identifier that is different than the pointer to the actual data. This
technique provides an object-oriented feel to the programming interface and discourages casual
direct access to complex data structures that are managed by the library. As such, FCLib’s
functions require users to reference objects through a small number of strongly-typed handles.

Internally, FCLib utilizes a hierarchy to keep data organized and employs validation functions to
catch instances where the user has supplied bad inputs to the library. Application data is stored in
a “slot”. In order to handle multiplicity, similar object slots are stored in “tables” which are
effectively arrays of slots. The handle that is supplied to a user for referencing an object provides
all the index information necessary for the library to either locate a slot’s data or determine that
the reference is invalid.

3.3 Datasets: Managing File I/O
At a fundamental level, FCLib is typically used to read in a data file, perform a characterization,
and then write out results or an output data file. Given that a general design goal of FCLib is to
make it a tool for performing analysis in different application domains, it was necessary to

21

engineer the file I/O interface in a way that multiple, diverse file formats could be supported.
Additionally, the large size of the datasets involved in modern simulations motivated us to
consider techniques where file operations were performed only when necessary.

In order to accommodate these requirements, FCLib was constructed with a generic FileIO API
that supports multiple format-specific interfaces. This API provides a consistent interface to the
user and allows format-specific translation operations to take place behind the scenes without
specific guidance by the user. This interface is built upon the concept of lazy loading and the
separation of metadata from big data.

3.3.1 Lazy Loading and Releasing of Big Data
Data files often have large amounts of data that is not pertinent to the user's intended
characterization. For this reason, one is encouraged to implement "lazy loading" wherever
possible. That is, upon determining the existence of a variable in a data file, one can build the
variable's data structure, but not read in the actual data values until that data is requested. For
example, in the Exodus specific FileIO module, ExodusIO, sequence variable metadata and
uniquely identifying Exodus variable identification are read in during the initial load, but the data
field remains NULL. Upon request of a sequence variable, the data field is checked and, if
NULL, only then is the actual data read in.

Lazy loading also allows one to selectively release big data that exists in the data file in order to
free up memory, since the data can always be reloaded from the file when necessary. This is
similar to the concept of releasing built data, although there the data is initially built and then
rebuilt rather than loaded in and re-loaded in from the file. In order to allow releasing and re-
loading of the data without loss of intermediate changes, changes to the data values from the
file's data values are not allowed. The "committed" flag exists to keep track of such data
structures. When a data item is loaded from a file and its metadata read in, the committed flag
should be set to indicate if both the variable data exists on the disk (that is, is committed to the
disk) and is able to be lazily loaded; it should be set to zero otherwise, and it is by default.
Methods that allow changes to a data structure's values (e.g, adding subset members) must then
explicitly check to see if the data structure is committed before performing the change. Functions
that release structures release only the committed structures.

Note that only lazily loadable data can have the committed flag set, since it is otherwise not
reloadable. For example, in the Exodus module, data values for node sets, element sets, mesh
variables and global sequence variables are currently read in during the load and are not lazily
loadable. Thus their committed flag is not set and they will not be released upon a release call. A
side effect of this is that these structures values are then allowed to change from their values in
the file. You may prefer to think of the "committed" flag as a "reloadable" flag. If you want to
change the values of a committed structure, you can make a new structure and copy the values of
the original structure over to the new structure, and then alter the new item's values.

3.3.2 Information about Supported File Formats
In this section we highlight some issues in file formats that we use. This is not meant to be a
comprehensive discussion of the file formats, but rather a calling out of some design issues and
related limitations in the handling of representations of data to/from various file formats.

22

• Exodus: Exodus is a well-known file format used at Sandia FEM codes that stores data
into a “meshes and variables” data model. Exodus is the preferred data format for
working with FCLib because it is well documented and is currently supported by multiple
applications. FCLib currently assumes that an Exodus dataset will be contained in a
single Exodus file. While codes such as Sierra generate multiple Exodus files for a
simulation (i.e., one file per processor node), results can be concatenated using a tool
such as SierraConcat. Exodus is built on top of NetCDF, a generic database file format.
However, NetCDF interfacing is handled entirely by the Exodus library.

• LS-DYNA Input Decks: LS-DYNA is a commercial mechanics simulation code
produced by LSTC. The LS-DYNA simulation tool reads input from a keyword file that
contains all the mesh information required to run a simulation. FCLib currently supports
the ability to read and write these keyword files.

• LS-DYNA Results: An LS-DYNA simulation writes its output results to binary d3plot
files. FCLib currently provides basic support for reading these files. However, it is
important to note that the d3plot files are a proprietary format that is poorly documented.
While we have made every attempt to be compatible with this format, we have
discovered inconsistencies between the format specifications and output generated by
LSTC’s simulation tools. FCLib produces warnings when known issues in the file format
are discovered.

• Sierra Input Decks: FCLib’s FileIO module also provides basic support for Sierra input
deck. This module was used in the spotweld analysis tool and may not be current with
more recent releases of Sierra.

3.3.3 File Format Caveats
Differences between FCLib’s internal data structures and those of the external file formats have
led to some limitations and/or inconsistencies on representing externally supplied data. The
following list summarizes some of the issues to be aware of when using FCLib in conjunction
with different file formats, or in expanding FCLib to handle new file formats.

Global vs Local Numbering
Exodus and LS-DYNA have a global node array and element blocks refer to these global
vertices. However, FCLib was designed to be able to look at single meshes, and, to support this,
it stores and renumbers the nodes local to each mesh. Nodes used in multiple meshes are thus
duplicated and they will not be numbered the same (as each other or as the original numbering).
Therefore the Exodus (or LS-DYNA) numbering and the FCLib numbering will be different and
thus one cannot reliably compare numbers written out by FCLib with numbers in the original
files. This also means that one can't compare against numbers from other tools, say Ensight,
which are using the original dataset.

One option for handling this is to load up the dataset in FCLib, write it out with FCLib, and then
use the rewritten dataset. After that, rewriting the dataset should not change the numbering if the
meshes don't change. To accomplish this, one can use the fcconvert tool which was written to
convert data from one file format to another, via FCLib’s internal data structures. In this case,
one can choose both the original and the final formats to be the same. A related tool is the
fcdump tool, which prints out FCLib’s internal representations of the input dataset.

23

Block and set name support
Dyna2names.pl converts the LS-DYNA keywords file (.k file) to a .names file which FCLib
parses rather than reading them from any LS-DYNA files directly. It supports element block
names, sideset names, and nodeset names only. This is a historical artifact as FCLib created the
.names file as a convention first for Exodus files before Exodus stored the names of element
blocks. Since then, Exodus has provided name support and so the reading and writing of .names
files has been removed from the ExodusIO module.

Sequence support
Exodus and LS-DYNA only support 1 sequence: time. FCLib thus discards all but the first
sequence when writing Exodus files.

Data types
Exodus does not support multiple data types. Therefore, all data values are stored as double-
precision floating point values (including characters).

Multicomponent variables
Exodus only stores single component variables and relies on naming conventions (endings x,y,z
for vectors, xx,yy,xy for tensors) for the consumer. The Exodus reader reads in all variables as
single component variables. Our other readers package vectors into multicomponent variables.
All the FCLib routines are intended to handle multicomponent variables. FCLib provides
functions to automatically discover and merge a group of similarly-named, single-component
variables into a multicomponent variable.

Exodus general data support issues
There are some concepts that Exodus does not support, or previously did not support, but will be
supporting in upcoming versions. This affects which external concepts can be created in an
FCLib dataset, and which FCLib concepts may be subsequently dropped when the dataset is
written out in a file format.

• Edge and face support
Exodus will be supporting explicit definitions of faces and edges and their relationships
to each other and to elements. FCLib currently does not support this, but supports the
older convention of sidesets. A sideset is a set of faces on a 3D mesh or edges on a 2D
mesh, which are stored as a global element/local side ID pair.

• Blocks and Subsets
Similarly, Exodus will be supporting nearly all types of blocks and subsets, and attributes
and results upon them. FCLib currently supports only element blocks. FCLib reads in and
write out only node and element sets and sidesets (for faces and edges).

• Sequence variables and non-sequence variables
FCLib reads in and write out node and element attributes as non-sequence variables and
node and element results as sequence variables. Note that for vertex associations, these
are exodus nodal results (for sequence variables) and attributes (for non-sequence
variables), which means that they are defined for all nodes (filled in with 0 for any nodes
in any element block that does not define that variable).

24

FCLIB ATTRIBUTE TYPE NON_SEQ VAR SEQ VAR
FC_AT_WHOLE_DATASET N Y
FC_AT_WHOLE_MESH N (except DT_INT) N
FC_AT_VERTEX Y Y
FC_AT_EDGE Y N
FC_AT_FACE N N
FC_AT_ELEMENT N Y

Table 1: FCLib variable concepts and Exodus Support .
Letters indicate current support. Colors indicate p ossible
support.

Table 1 shows the mapping between FCLib variable concepts and those of Exodus. If Exodus
concept is currently read in or written out it is indicated by "Y"; if not, by "N". Those FCLib vars
that can eventually be supported as Exodus vars (results) are colored in green. Those that can be
supported by using an Exodus concept other than variables are shown in yellow. Those that
cannot be supported at all are shown in red. The remaining block (white) is described in more
detail below.

Exodus only has variable support for sequence variables. All of the FCLib sequence variables
can be directly mapped into Exodus results, with the exception of FC_AT_WHOLE_MESH.
These are shown in green and red, respectively. FCLib's FC_AT_WHOLE_DATASET is an
Exodus global result.

Exodus does not have support for the corresponding non-sequence variables, however some of
these can be handled by other means. FCLib’s non sequence nodal and element variables
correspond to Exodus’s nodal and element attributes. Non-sequence variables with association
FC_AT_WHOLE_DATASET cannot be supported, because there is no global attribute in
Exodus, and thus the relevant table cell is colored red.

Non-sequence variables with association FC_AT_MESH cannot be supported with the exception
of those of datatype FC_DT_INT. Support for this case is currently implemented by the Exodus
"property".

3.4 Mesh
In this section we describe some design issues of the Mesh.

3.4.1 Internal Types
FC_ElementTypes describe the elements in a mesh. Given an FC_ElementType, the number of
vertices, the number of edges, the number of faces, the topological dimension, and its
corresponding FaceType are established (and there are calls to get these).

FC_AssociationTypes are used to describe the association of items with a mesh or dataset. For
example, a data field may be associated with the elements of a mesh (i.e., able to vary from
element to element), or with an entire mesh, or with all meshes in a dataset. Variables and subsets
have Association Types. Non-global variables and subsets cannot have Association Type
FC_AT_WHOLE_DATASET. Global variables can only have association
FC_AT_WHOLE_DATASET. This latter means that Global Variables can only be single values;
one cannot have, for instance, a global variable that is a data field, varying from element to

25

element in a mesh, with the same across all meshes, defined only once as a global variable.

3.4.2 Mesh Structure
Generally you could specify a mesh by the coordinates of its vertices, the connectivities of the
vertices, and the element-to-vertex mappings. Other things, such as faces and edges, are then
implied. Thus the FCLib Mesh structure object consists of:

• Metadata comprised of:
• items such as the topological dimension of the mesh, the number of elements, etc.
• ids for owned entities such as subsets, variables, etc.

• Big Data which is provided by the file defining the mesh:
• the coordinate array
• element to vertex connectivity information

• Big Data which is built when needed:
• things such as the edge, face, and neighbor info

This distinction in the types of Big Data is important for at least the following reasons, which
will be discussed in more detail below:

• You must be careful when writing functions that add data to the mesh (such as those
involved in writing new readers) to be sure that in case additional data needs to be built,
that it will be built properly. The FCLib Mesh API is set up to ensure that the right
building will occur and if you bypass this to add things into the mesh structure directly
you may bypass this building.

• Access to and write out of the built data may behave differently than that of other data in
order to not waste space on things that may not be needed. Some interfaces to that data
are optimized so that things are not rebuilt, and some things that are built are not written
out should you want to write to a file, because they can just be built again.

3.4.3 Built Data for Meshes
The built data for a mesh consists of three types:

• downward connectivities - these refer to parent-to-child type relationships, such as: given
a face, what are all its vertices, or given an element, what are the IDs of its edges? These
are stored as fixed length (size determined by the topology) integer arrays. In downward
connectivities the order of the child items (for a given parent) is important.

• upward connectivities - these refer to child-to-parent type relationships, such as: given a
face, what are its parent element IDs? Since the number of these can vary per child, for
each type of relationship there is an array that contains the number of parents for each
particular child and an additional doubly indexed array that contains the actual ID. In
upward connectivities, the ordering of the parent items (for a given child) is arbitrary.

• neighbors - these are peer relationships, such as the element IDs of the neighbors of a
given element. The definition of these varies depending on the level of connectivity
desired - for instance, the number of neighboring elements connected by a face vs. the
number of neighboring elements connected by a vertex. As in the upward connectivities,
these vary for each item, and therefore both an array of the number of neighbors for each
case and a doubly indexed array containing the actual ids is kept.

Once upon a time, a number of different relationships for items were kept together in structures,
however this was dropped in favor of the arrays primarily because it allows the writing of a

26

smaller set of operations that only need to work on arrays and thus can be passed any of a
number of the different array options.

3.4.4 Building Mesh Data
There are five helper functions that cause this building when needed:

• _fc_buildEdgeConns
• _fc_buildFaceConns
• _fc_buildParents
• _fc_buildMeshVertexNeighborsViaEdge
• _fc_buildMeshElementNeighborsViaEntity

Higher level functions that need this information will call these helper functions that will build
this data as needed. Details of these functions are beyond the scope of this document, but more
detail can be found within documentation in the FCLib release. These will additionally make any
other information that it is convenient to create simultaneously.

3.4.5 Releasing the Mesh
ReleaseMesh will release as much of the big and built data as it can. The big data released will
be that data that was lazily loaded. The built data includes parent and neighbor data and the edge
and face information. Therefore, if you want to keep only part of the data (if, for instance you are
running low on space), you actually have to release all the data and then rebuild only the part you
want. In the future, we would like to support releasing data on a finer granularity.

27

4. LIBRARY TESTING
A key challenge in developing and maintaining a software library is verifying that updates to the
library do not (1) affect the correctness of the software (negatively) or (2) cause applications that
depend on the library to break. Given that FCLib has been deployed at a number of computing
installations around Sandia, we decided that it was important to implement a testing
infrastructure that allowed us to produce high-quality releases. This testing infrastructure is
comprised of three components: unit tests, regression tests, and software quality analysis tests.

4.1 Unit Tests
The unit testing facility builds a special test program that performs numerous operations with
FCLib’s functions. Each module is tested with a large number of inputs. First, each function call
is tested with bad inputs to verify that the function catches the input error and returns the proper
error code. Second, a number of good inputs are passed to each function to verify that the proper
output results are produced. The expected results are encapsulated in the testing software. As
such, the unit test program provides a great deal of assurance that the software is operating
properly, and helps verify that changes to the library do not break its existing functionality.

4.2 Regression Tests
The regression testing facility is responsible for running FCLib’s point tools with multiple
datasets and comparing the output results to known-good results. These regression tests validate
that the tools still produce the same results when changes are made to the library. The regression
tests were especially useful when installing FCLib on multiple platforms because they are
agnostic about the inner workings of the platform: ultimately all that matters is whether the
output results were produced properly. This testing proved to be especially useful when porting
FCLib to different platforms because it helped identify floating-point precision issues in
particular systems.

4.3 Software Quality Analysis Testing
During the development process for FCLib, we utilized multiple design analysis tools to help
improve the software quality of the library. First, we employed valgrind to help identify memory
leaks and programming errors in both the library and the point tools. The valgrind tool replaces
C’s memory management routines with profiling routines that track every block of memory that
is allocated during runtime. When the program ends, valgrind reports a summary of all the blocks
that were not properly freed by the program. As such we utilized valgrind on our nightly unit
tests to identify leaks. To our knowledge, there are no memory leaks in the current release.

28

Figure 1: Code coverage estimates for FCLib's modul es.

Second, we utilized the GNU profiling and coverage tools (i.e., gcov) to give an estimate of how
thoroughly our tests were testing the library. In general, most of the modules in the library are
covered at greater than 70% (i.e., 70% of the source code is tested). We examined the coverage
results and determined that many of the untested portions of the library are either non-critical
operations (e.g., printing warnings) or in redundant error checks (e.g., a function calls another
function and both do checking on input data).

4.4 Nightly Testing and Documentation
While developing FCLib we utilized a stand-alone workstation to automate the testing process.
This workstation used a cron job script to do the following operations:

• Download the latest version of the FCLib from the subversion repository
• Compile all of the software to a local directory
• Generate the doxygen web documentation and post the pages to a web server
• Run the unit and regression tests
• Run valgrind on the unit test to local memory leaks
• Log the results to a web page and email a copy to members of the development team

29

5. EXAMPLE TOOLS AND CAPABILITIES
In this section we describe some of the tools built with FCLib that demonstrate some of the more
interesting capabilities and characterizations utilizing FCLib. Note that the FCLib distribution
also includes a number of simpler tools that are not discussed here. These tools are quite useful
in day-to-day analysis (e.g., normalizing values, bounding regions that contain
maximum/minimum values of interest, quantizing statistics, etc.).

5.1 Gaplines
The gaplines toolset discovers and characterizes gaps that occur between meshes as a result of
deformation of the meshes involved. The tool first determines which meshes are initially abutting
(by examining the initial proximity of the vertices in the meshes) and then creates lines (initially
of zero length) between their surfaces. As the meshes deform, the line lengths are updated. If
they lengthen, a gap is signified. This tool makes extensive use of the Statistics,
GeometricRelations, and Shape modules.

Figure 2: An item before deformation. Note that the green plate is flush with
the read container.

30

Figure 3: The item in the previous figure after def ormation. The damage
results a gap between the red container and its gre en outer plate which
were initially in contact. The internals of the red container are visible
through the resulting gap.

Figure 4: The Gaplines tool determines gaps that oc cur between meshes as
a result of deformation. Gaplines are shown that re sult from the situation in
the previous figure.

31

Dataset: 'd3plot'

Meshes: 'Shell' and 'Cover Plate'

Displ: 'displacement'

Min Dist: 0.1

Number of gap lines found = 12482

Number of sets of sides involved = 2

Stats for set 1 ('Shell_shape0_side18-Cover Plate_s hape0_side2'):

numGapline = 10628

Step | | Gap Length .

ID Value | num | min max mea n stdev

0 0.000000 10628 0.000000 0.028636 0.003368 0.005055

...

12 0.003000 10628 0.002291 6.851685 1.527860 1.449041

Step | | Normal Component of Gap Lengt h .

ID Value | num | min max mea n stdev

...

12 0.003000 10628 0.002291 6.851685 1.527860 1.449041

Step | | Tangent Component of Gap Leng th .

ID Value | num | min max mea n stdev

...

12 0.003000 10628 0.000764 2.306140 0.911504 0.52459

Input details

Stats reported for each side and overall

Result Summary

Resolved with
respect to face
normals

Gap length stats

Figure 5: Partial output of the Gaplines tool for t he situation shown in the
figures. Characteristic information for each gap is provided, including size
and location information.

5.2 Tears
The Tears tool is used for characterizing tears, which are defined as volumes of dead elements. In
order to accommodate uncertainties in dead elements regions and tears that cross meshes, this
tool will optionally combine tears within a given proximity to one another.

Characterizations of tears include determination of the number of dead elements in a tear, the
volume of the tear, and a characteristic tear length, defined as the largest distance between any
two vertices that define the surface of the dead region.

In addition, for simple shapes, characterization of the types, subtypes, and classes of tear are
given, defined as:

Tear types:
• BREAK– breaks the shape into more than one pieces
• TUNNEL – intersects the shape in more than one place
• PIT – intersects the shape in a single place.

Subtypes:

• SINGLESIDE– intersects only a single side, but may be multiple time
• NONADJSIDE – intersects at least two non-adjacent sides
• ADJSIDES – intersects only adjacent sides (but may be in multiple places);

Class:
• MAJOR – intersects at least one major side fulfilling the thin shape assumption
• MINOR – intersects no major sides

32

These capabilities utilize the Statistics, Threshold, BoundingBox, DeadElement, and Shape
capabilities of FCLib.

Tear 0
Tear 1

Tear 3

Tear 4

Tear 2
Tear 22

Tear 14

Tear 0
Tear 1

Tear 3

Tear 4

Tear 2
Tear 22

Tear 14

Figure 6: Tears resulting from the situation descri bed regarding the gaps
tool. The Tears tool discovers and characterizes te ars, including
determining bounding boxes for the tears (shown in figure).

33

Tear characterizations for dataset 'd3plot'
Tears criteria: 'elem_death' <= 0
Time step index: 12
5 mesh(es)
Mesh 0: 'Shell' has 18 dead element region(s)
Mesh 1: 'Plate' has 26 dead element region(s)
Mesh 2: 'Cover Plate' has 0 dead element region(s)
Mesh 3: 'Horseshoe Plate' has 0 dead element region (s)
Mesh 4: 'Screws' has 6 dead element region(s)
Combining of dead elem regions not requested
Found 50 tears
Sorting tears by region diameter (largest first) .. .
Tear 0:
numDeadElementRegions = 1
meshIDs = 0
meshNames = 'Shell'
numCell = 280
region volume = 35.8475
region diameter = 19.8277
displ exposed diameter = 22.2711
region bb = [-64.1624, 19.009, -8.56745] - [-54. 5411, 30.8475, 5.49459]
displ exposed bb = [-66.4801, 1.4563e-07, -13.6168] - [-55.0189, 2.31026, 5.96411]
intersections with Shape (0:0) (TUNNEL,NONADJSIDES, MAJOR): (17) (5) (5) (5) (5)

Input details

Tear details

Per mesh summary

Figure 7: Partial output of the Tears tool for the situation shown in the
previous figure. Characteristic information for eac h tear is provided,
including size and location information.

5.3 ScrewBreaks
The ScrewBreaks tool was written for a specific application where the meshes included screws
which held other meshes together. It is of interest to determine when a screw broke or how close
a screw was to breaking. This calculation involves using the segmenting capabilities in the
Threshold and Dead Element modules to determine if a dead element region increases the
segments in the screw. Additionally the shape related functions are used to determine if the dead
element region results in a side erosion of a screw which would also constitute breakage, through
loss of contact of the remaining screw material with its neighboring meshes, though it does not
result in a greater segmentation of the mesh. Finally, a closeness to breaking estimate is
calculated by comparing the resultant surface area obtained by projecting the dead element
regions onto the base of the screw to the absolute surface area of the base of the screw. While
this is not particularly rigorous, it does roughly reflect how close the dead element region is to
cutting through the screw. The screw base is determined by functions available in the Shape
module. Bounding box capabilities are used in the printout in order to provide information to
allow the user to distinguish the screw.

34

An example figure and selected output are below. The data set used is the “gen_screws.ex2”
dataset in the data directory of the FCLib release. In this case the dataset consists of screws only,
one in the first mesh, and two in the second. The screw in the first mesh breaks, in the second the
screws erode. The breakage characterizations are identified in the output, along with the
Breakage Ratio (BR) at each step and the bounding boxes for each screw. The first figure in this
subsection shows the state of screws at Step 5, while the second figure shows the final state.

Figure 8: Timestep 5: The screws are partially dama ged. The Breakage
Ratio (BR) is calculated by projecting the damaged areas onto the screw
base (uppermost in picture)

Figure 9: Final State: All screws are broken. The l eftmost screw is severed.
The middle and right screws are broken by surface e rosion. While erosion
does not result in a complete segmentation of the s crews, nonetheless, the
erosion results in a loss of contact of the remaini ng screw material with
any of its neighboring meshes.

35

Screw characterizations for dataset '../data/gen_screws.ex2'
Mesh 0: 'screw-tear' has 1 screws
Screw bounding boxes at Step 0:
 Screw 0: [-10, -9, -9.98308] - [10, 3, 9.98308]
Mesh screw-tear Screw 0 Step 0 BR = 0.00 (0.00/ 112.58)
Mesh screw-tear Screw 0 Step 1 BR = 0.19 (21.49/ 112.58)
…
Mesh screw-tear Screw 0 Step 7 BR = 0.87 (98.19/ 112.58)
Mesh screw-tear Screw 0 Step 8 First broken
Mesh screw-tear Broken/Total screws: 1/1
Mesh 1: 'screws-erode' has 2 screws
Screw bounding boxes at Step 0:
 Screw 0: [20, -9, -9.98308] - [40, 3, 9.98308]
 Screw 1: [50, -9, -9.98308] - [70, 3, 9.98308]
Mesh screws-erode Screw 0 Step 0 BR = 0.00 (0.00/ 112.58)
…
Mesh screws-erode Screw 0 Step 5 BR = 0.67 (75.71/ 112.58)
Mesh screws-erode Screw 1 Step 5 BR = 0.54 (60.53/ 112.58)
Mesh screws-erode Screw 0 Step 6 BR = 0.76 (85.74/ 112.58)
Mesh screws-erode Screw 1 Step 6 BR = 0.54 (60.53/ 112.58)
Mesh screws-erode Screw 0 Step 7 BR = 0.86 (96.88/ 112.58)
Mesh screws-erode Screw 1 Step 7 First broken, side eroded
Mesh screws-erode Screw 0 Step 8 First broken, side eroded
Mesh screws-erode Screw 1 Step 8 *** still broken ***
Mesh screws-erode Broken/Total screws: 2/2
All 2 Mesh(es) Broken/Total screws: 3/3

Figure 10: Partial output of the ScrewBreaks tool f or the situation shown in
the figures. Characteristic information for each sc rew is provided,
including breakage ratio (BR) and break type.

5.4 Feature Tracking
FClib was used to track and analyze the features corresponding to the crumpled regions of a can
being crushed. The Feature Graph shows how the features interacted over time. A selected
statistic (maximum stress) per feature over time is plotted. The big yellow feature at the top of
the can is formed first and obtained the highest maximum stress. Other features are color-
coordinated similarly. From this plot it can be seen that the maximum stress for a given feature
begins to level off commensurate with the formation of a new feature.

36

Figure 11: In the can crush example, features are l ocated and colored in the
right-most picture.

Maximum Stress of Features

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2

0 0.001 0.002 0.003
Time

Feature#0
Feature#1
Feature#2
Feature#3
Feature#4
Feature#5
Feature#6
Feature#7
Feature#8
Feature#9
Feature#10
Feature#11
Feature#12
Feature#13
Feature#14
Feature#15

Feature Graph

Figure 12: Maximum stress per feature over time for the can crush
example. A feature graph displays the progression o f different features in
the dataset as time progresses. Feature colors corr espond to those
illustrated in the crushed can picture.

37

5.5 Skeleton Extraction and Manipulation
Many scientific FEM datasets employ meshes that are incredibly detailed. Given the
sophistication of these meshes, it can be challenging for an analyst to be able to quickly analyze
and understand the results of a simulation due to the high level of detail contained in the model.
Additionally, meshing can make it challenging to compare one simulation run to another when
the same object is meshed differently. Therefore it is beneficial to be able to transform meshes
into simpler representations that are better suited for comparisons.

The skeleton extraction utilities in FCLib provide a basic set of tools for transforming mesh
structures into tree representations that can provide insight into the geometric changes to
structures in a simulation. The tools start by building a spanning tree representation of a mesh.
The full spanning tree by itself can be useful for comparing two identical meshes oriented
differently in one or more datasets. For example, scaling, translation, and rotation information
can be obtained by comparing the coordinates of the root node in the tree and its children.

While a spanning tree representation simplifies a mesh, it is often desirable to reduce the tree to a
more minimal form. The whittle tool in the skeleton extraction utilities provides multiple
algorithms for reducing tree structures. These algorithms provide tradeoffs between tree quality,
granularity of reduction, and the amount of time required to process data. The current algorithms
include the following.

• Minimum Descendents: The minimum descendents algorithm removes the node from

the graph that has the smallest number of descendents. While this algorithm is relatively
fast and produces a tree with an exact number of nodes, it favors long branches and nodes
close to the root of the tree.

• Minimum Segment Change: The minimum segment change examines all segments of
all branches in the tree and removes the node that would cause the least error in the tree’s
distance representation (segments that connect to the node are rerouted to connect the
node’s parent and children). This approach is time consuming but simplifies detailed
regions well.

• Minimum Angle Change: This algorithm examines all segments of all branches in the
tree and removes the node that bridges segments that are the most aligned (i.e., the
average angle the node is a part of is closest to 180°). The intention of this algorithm is to
remove nodes that have the least impact on the shape of the tree.

• Octal: The octal algorithm attempts to remove nodes in a way that preserves spatial
representations. Starting at the root node in the graph, the algorithm selects up to N nodes
to keep in each of the eight Cartesian directions from the node (e.g., in the +X,+Y,+Z
direction, +X,+Y,-Z direction, … -X,-Y,-Z direction). While this approach may preserve
branches that disappear in the other algorithms, it does not provide the user with any
granularity in the number of nodes in the final graph.

38

Figure 13: The skeleton utilities transform a mesh into a spanning tree
structure.

Figure 14: Spanning tree structures can be reduced to simplify the
representation into a form that is easier to manage .

39

5.6 Region Subsetter/Reassembler
Crucial scientific information from simulations is lost in getting high-fidelity data to the post-
processing analysis. Currently, analysis is done in a post processing fashion, using data files
written out at frequencies determined by checkpointing considerations. However, such
frequencies are inadequate to enable high fidelity analysis. In response, we have begun initial
investigations into possibilities for providing higher fidelity analysis through in situ processing
of the data (locating the analysis within the application). We anticipate that the resultant impact
on application runtime can be mitigated by decreased size and frequency of I/O by outputting
only the regions of interest in the simulation. The intent of this work then is to explore the
impact, in both analysis accuracy and application runtime, of bringing the analysis to the data,
through in situ concurrent processing.

Our initial scoping of the problem involved creating the capability to dump out on a per timestep
basis only the regions of interest, and the necessary information to reconstitute the regions of
interest in the context of the entire problem. Initial investigations show that the output of regions
of interest from an actual ALEGRA simulation result in a substantial reduction in file size.

Capabilities here required the development of the RegionSubsetter tool, which as an example
application, writes out only regions satisfying a prescribed threshold. The writeout involves
dumping the segmented regions, and the variable data on those regions, out to a file as individual
meshes (which we call “subset meshes” since they are new meshes, born of a subset on the
original mesh). In addition, the subset meshes would have an additional new variable which
consists of the vertex and/or element id mappings between the original mesh and the newly
formed subset mesh. This mapping, as well as a well-known naming convention for the subset
meshes and the relevant timestep would be used for reassembly of the subset meshes later. This
is done via a companion code, Reassembler, which given an original mesh geometry,
reconstitutes the subset meshes onto the original geometry for viewing in tools such as Ensight.

Figure 15: In this subsetter example, a large shock wave dataset is reduced
to a minimal form that contains only elements that are significant to an
analysis.

40

6. SUMMARY AND FUTURE WORK
FCLib is a powerful library that enables analysts to rapidly prototype data analysis operations. In
addition to serving as a neutral interface into multiple file formats, FCLib is organized in a
logical manner that allows users to interrogate data in a structured manner. The example
applications demonstrate that FCLib can be used to develop command line tools that perform
significant data analysis and characterization operations.

Currently, the access mode for FCLib capabilities is via command line interface. We have
explored both a GUI interface and an XML interface, with specific emphasis on processing some
of the well-defined and more commonly-desired characterizations, such as thresholding and
simple mathematical processing.

Based on our experience with implementing FCLib, we see multiple areas where data analysis
tools will need to be improved in the near future. The largest obstacle is balancing analysis
performance with data set size. The transition to petascale-class science will result in datasets
that are an order of magnitude larger or more than today’s. Observing that processor performance
is greatly outpacing disk performance, it is clear that tomorrow’s data analysis applications will
need to focus on efficient means of managing data in an out-of-core manner. While FCLib
employs lazy loading to minimize disk access, future analysis tools will require more
sophisticated data management facilities that either perform on-demand paging or employ
parallel architectures for overcoming disk access overhead. These systems will likely require
improvements to the programming environment in order to make them accessible for practical
usage.

41

7. DISTRIBUTION

1 MS-9159 Philip Kegelmeyer 08962 (electronic copy)
1 MS-9152 Ann Gentile 08963 (electronic copy)
1 MS-9152 Craig Ulmer 08963 (electronic copy)
1 MS-0899 Technical Library 08944 (electronic)

42

