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Abstract 
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1. INTRODUCTION 
 

One very common strategy for doing data analysis in spatial-
temporal datasets is to focus on regions of the dataset where 
interesting things are happening. If we define a feature as a 
coherent region that persists over time, this data analysis 
strategy becomes feature-based data analysis. The entire 
process of finding features, analyzing features, and using the 
results is called feature characterization.  

Although feature-based data analysis is common, the feature 
characterization process is not very well supported. Most users 
manually identify and analyze features, a process which is 
tedious and prone to errors. Additionally, when tools are created 
they are usually one-off solutions that are difficult to reapply to 
new problems.  

The goal of Sandia's Feature Characterization project (FCDMF) is to provide general resources 
for the creation and use of feature characterizations. The codebase developed by the FCDMF 
project is the Feature Characterization Library, called FCLib, which is a toolkit for creating 
characterizations and characterization applications. The philosophy of FCLib is to automate as 
many of the tedious parts of doing characterizations as possible, while remaining flexible enough 
to create a wide range of characterizations.  

1.1 Obtaining FCLib 
FCLib was developed as an open-source project. The FCLib homepage is 
https://fclib.ca.sandia.gov. The FCLIb code and related documentation can be found there. The 
FCLib development team can be reached at fclib-help@sandia.gov. 

1.2 Features of FCLib 
FCLib consists of a library of routines and a small number of command-line tools. The library 
routines can be roughly divided into the following categories:  

• Data Representation and Access: FCLib provides its own internal data structures for 
representing finite element structures (e.g., mesh, elements) and associated data (e.g., 
variables, subsets). Rather than requiring the user to manipulate the data structures 
directly, FCLib provides higher-level functions which enable read/write capabilities to 
data, such as the mesh’s coordinate values, or a variable’s data values. 

• Characterization Building Blocks: FCLib provides a number of higher-level data access 
or interpretation functions that can be used for building characterizations. For example, 
FCLib provides functions that locate elements in a mesh that share edges or faces with a 
given set of elements. These functions can be used as building blocks in a higher-level 
characterization that requires an ordered traversal of the mesh. 

• Feature Tracking: FCLib provides facilities for managing and tracking features in a 
generalized manner. For example, the user can define a new feature algorithm using 
FCLib’s data manipulation and characterization building blocks, and then use FCLib’s 
feature processing functions to track and plot the feature as it evolves through time.  
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• Characterizations: Finally, FCLib supports a variety of characterizations. For example, 
the library can determine minimum and maximum values of a variable in a feature.  

The categories necessarily overlap as one analyst's characterization will be another analyst's 
building block. The command-line tools include a few examples of generic and custom 
characterization applications built with FCLib.  

The biggest feature of the library is that it is built to be feature aware--that is, to understand and 
operate on features. Another important feature of the library is its simplified interface. The API 
was written to support multiple levels of users--from those who will use the built-in "check-box" 
characterizations (so called because of our prototype development of a GUI that allows users to 
"check" the characterizations that they want) to more advanced users who wish to build their 
own characterizations.  

FCLib is coded in C and operates on unstructured mesh data.  

1.3 Data Representation and Access 
One of the fundamental benefits of FCLib is that it organizes simulation data and analysis 
functions in a manner that allows tedious, low-level data manipulation tasks to be hidden from 
the end user. In order to make use of this programming environment, data is organized into the 
categories below. Note that some categories can be considered as “owning” another category, 
e.g., sequences are owned by the dataset, subsets are owned by the meshes. 

• Dataset: A dataset is a single file that exists on disk. FCLib currently supports multiple 
file formats for reading and writing data. A dataset contains one or more meshes, zero or 
more sequences, and zero or more variables. Datasets do not contain subsets. 

• Sequence: Datasets that house multiple timesteps employ a sequence to specify when 
each timestep took place. 

• Mesh: A mesh represents the physical structure of one or more objects in a dataset. A 
mesh’s structure is defined by the coordinates and connectivity of its vertices. A mesh is 
comprised of one or more elements. These elements do not necessarily have to be 
contiguous in space (e.g., a single mesh in one of the bolt examples contains multiple 
bolts that are located at different spatial locations). Element faces and edges are inferred 
from the coordinates and their connectivity. Meshes contain zero or more variables and 
zero or more subsets. Meshes do not own sequences, but can instead reference the 
dataset’s sequences. 

• Variable and Sequence Variable: A variable can be defined on a dataset or on a mesh as 
a whole (in essence, global variables from the perspective of the meshes), or, for a single 
mesh, can hold data values for each vertex, edge, face, or element. A single data value 
may have one or more components. A sequence variable is an array of variables for a 
given time sequence. All variables in a sequence variable must reference the same mesh. 

• Subset and Sequence Subset: A subset provides a means of identifying individual 
locations in a mesh or variable that are of interest. A subset may contain anywhere from 
zero to all of the members of the object it describes. A sequence subset is comprised of 
one or more subsets that are associated with a sequence.  

FCLib’s hierarchy of data objects may be at odds with that of a file format from which data is 
read. For example, Exodus defines its vertices at the global level, rather than the mesh level, and 
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thus there are implications in such a translation (this particular issue is covered in more detail in 
Section 3.3). While users do not strictly need to make use of the hierarchy of data objects FCLib 
provides, there are a number of built-in functions to allow users to understand the hierarchy and 
to locate descendants and parents in the hierarchy. For example, the fc_dump tool reads in an 
input file, creates the corresponding FCLib data structures, and then writes out the information as 
FCLib represents it in its hierarchy. In the writeout, then, sequence information is written out at a 
dataset level, and then on a mesh by mesh basis the program examines the mesh’s coordinates 
and connectivities, and all of the mesh’s variables, sequence variables, subsets, and sequence 
subsets and generates an information summary. In a similar manner it is possible to examine an 
item and then use parent references to ascend the hierarchy. 

1.4 Characterizations and Characterization Building  Blocks 
FCLib provides a number of built-in, generic characterizations and characterization building 
blocks that enable users to implement analysis functions rapidly. The following is a list of 
example characterizations that are available in FCLib. These characterizations are organized by 
the type of data that they process. 

• Mesh topology based (mesh entities are vertices, edges, faces, or elements):  
• Get mesh entity children (e.g., get vertices that make up an element).  
• Get mesh entity parents (e.g., get elements that contain a vertex).  
• Get mesh entity neighbors.  
• Skin (e.g., get the entities that make up the outer layer of a set of mesh entities).  
• Segment (separate a set of mesh entities into separate connected components).  

• Mesh coordinates based:  
• Edge lengths, surface area, and region volumes.  
• Bounding boxes.  
• Centroid, variable-weighted centroid.  
• Get mesh entities within a box or sphere.  
• Kernel smooth variable.  

• Variable based:  
• Variable math (e.g., add two variables to get a third).  
• Threshold (e.g. get set of entities that pass threshold criteria).  
• Statistics (min, max, mean, standard deviation)  

• Time based:  
• Feature tracking  
• Entity variable history 
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1.5 Feature Tracking 
One of the more powerful capabilities of FCLib is that it provides a general framework for 
feature tracking. Feature tracking refers to the process of identifying a region of interest (ROI) in 
a dataset and then monitoring its evolution as time progresses in the dataset. This section 
provides a brief discussion of how FCLib’s feature tracking works. A detailed example of how 
this capability was used in a can crush analysis problem is provided in Section 5.4. 

The first task in feature tracking is identifying one ore more ROIs that have meaning to the end 
user. In FCLib this task is performed through the use of characterization functions that are either 
built-in or supplied by the user. These functions quantify whether data points are significant or 
not in a particular analysis. For example, a user might employ a characterization function that (1) 
locates all points in the mesh where a stress value exceeds a specific tolerance and then (2) uses 
FCLib’s segmentation functions to group nearby points into distinct ROIs. A collection of related 
ROI is called a feature. Multiple features (e.g., features for different time steps) are then stored in 
a FeatureGroup container.  

The second task in feature tracking involves analyzing a set of features in order to derive 
relationship information about the features. FCLib provides functions for comparing and tracking 
differences between ROI based on their overlap. The most common operation is to use the 
tracking capability to monitor how a collection of features evolve over multiple timesteps. By 
changing the manner in which overlap is calculated between ROI, users can adjust the 
granularity at which parent-child relationships are extracted.  

Feature graphs that depict the evolution of ROI can be written out and plotted graphically with 
graphviz.   
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2. GENERAL USE 
While FCLib provides a large number of functions for data analysis, it is relatively 
straightforward to make use of the library and develop point tools for application-specific 
analysis. The library is written in C and requires that a small number of libraries be linked in at 
compile time with a user’s application. The FCLib software distribution provides a number of 
tutorial examples that walk the user through the process of building analysis applications. API 
information for the library is documented through doxygen-generated HTML pages that are 
constructed when the library is built. Finally, as an open source project, the user is free to inspect 
both the point tools and the actual library calls in order to fully explore the library. 

The library itself is arranged as a set of modules. This section provides an overview of each of 
these modules in order to illuminate the structure and capabilities of FCLib. 

2.1 Data Types 
The data types module in FCLib defines a number of enumerated types that help make the API 
flexible and more readable. In addition to performing general library management control (e.g., 
verbosity, return codes, etc.), these enumerated types allow a single function to be utilized with a 
variety of data types. Specific examples of these enumerations include the following: 

• Element Type: A variety of fundamental element types are supported in FCLib, including 
points, lines, triangles, quadrilaterals, tetrahedra, pyramids, prism, hexahedra, and 
arbitrary shapes.  

• Data Type: Data values in nearly all functions can be composed of many different 
numerical representations, such as floating point or integer. 

• Math Type: Data values can be scalar, vector, or tensor. 

• Association Type: This type is used to define how data values are associated with a 
mesh. For example, a variable may associate data values with each vertex, edge, face, or 
element in a mesh, or for as a single data value for a mesh or dataset. 

Many of the function calls in FCLib require flags using the above data types in order to be 
precise about the operation that is to be performed. While at first glance this appears to make the 
interface complex, it reduces the total number of functions required by the API and fosters better 
reuse within the library. 

2.2 Simple Data Objects 
The simple data objects module provides a basic set of data management functions that are used 
throughout the library and are generic enough for general use. The majority of these functions 
are containers for storing and accessing data objects. Internally, FCLib houses container items in 
sorted order. This organization makes it possible to locate items rapidly. Values are sorted as they 
are inserted into their containers. 

2.3 Data Interface 
The routines in the data interface module section are the primary interface between the 
computational routines in the Feature Characterization library and the actual data. As outlined in 
Section 1.3, the five major data object types are datasets, sequences, meshes, variables, and 
subsets. 
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2.3.1 Dataset 
A dataset serves as a container for all data relating to a simulation. Dataset objects can be created 
from files using FileIO operations (Section 2.3.6) or explicitly by the user without having to 
write the results out to a file. Moving data between datasets is also possible.  

2.3.2 Sequence 
A sequence is a set of values, typically time, over which a variable or subset can be defined, one 
such entity at each step in the sequence. FCLib can have multiple sequences, although Exodus 
supports only one. The sequence is associated with the entire dataset. The values of a sequence 
are called its “coordinates” while the number of values of a sequence is its number of “steps”.  

In addition to functions for creating, destroying, and accessing sequence data and meta data, 
some functions exist for manipulating sequences. The latter functions include capabilities to shift 
and scale a sequence and to convert a sequence (or sequences) with irregular spacing into a 
regularly spaced sequence(s). These capabilities are intended to be used in conjunction with 
functions in the Series module which provides sequence-based analyses. 

2.3.3 Mesh 
A mesh provides basic geometry information about a structure in a dataset. Meshes are defined 
by two sets of values: (1) a list of coordinates for all vertices in the mesh and (2) a connectivity 
map which specifies the vertices that make up each element in the mesh. While all of a mesh’s 
elements must be the same order, it is not necessary for elements to form a contiguous region in 
space. The face and edge information is then built from the coordinates and connectivities. The 
mesh interface provides a number of commands for querying the mesh structure, including 
higher-level operations that extract face and edge information about the mesh. 

2.3.4 Subset 
A subset is a set of ids over a mesh. It is associated with some subentity of a mesh, such as 
vertices, elements, faces, or edges. In addition to functions for creating, destroying, and 
accessing the subset data and meta data, functions exist for determining the intersections and 
complements of a subset(s). 

2.3.5 Variable 
A variable is data, such as temperature, over a mesh. It is associated with some subentity of a 
mesh such as vertices or elements. Internally, a sequence variable is an array of variable handles 
associated with a sequence, with one variable per step of the sequence. In this way functions that 
work on a single variable can also work on a single step of a sequence variable. Often a user's 
computations on a sequence variable thus consist of looping over a single variable function call, 
one for each timestep. Global variables also exist which are a single value owned by the dataset. 

In mapping onto the Exodus constructs, variables are Exodus attributes and sequence variables 
are Exodus results. Variables with vertex associations are Exodus nodal results (for sequence 
variables) and attributes (for non-sequence variables) which means that they are defined for all 
nodes (filled in with data value equal to 0 for any nodes in any element block that does not 
define that variable). Note that Exodus does not support multiple data types and everything gets 
converted to doubles, including chars. Exodus only stores single component variables and relies 
on naming conventions (endings x,y,z for vectors, xx,yy,xy for tensors) for the consumer. While 
the general Exodus file reader reads variable data in as single components (e.g., velocity_x), 
FCLib provides higher-level functions for handling multi-component data (e.g., velocity_x, 
velocity_y, and velocity_z are merged together into a single velocity variable with three 
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components). More information on FCLib’s handling of Exodus variable data can be found in 
Section 3.3. 

Variable data is lazily loaded, in the sense that a variable’s data is not loaded until the user 
specifically requests access to the data. While FCLib generally provides a clean copy of data to a 
user that can be read or written without side effects, there are additional functions that provide 
pointer access to the data without the overhead of copying it. These functions require the user 
treat the data as read only and should therefore be utilized with caution. 

 
Functions exist to: 

• create, copy, and delete variables, 
• get their meta data (e.g., association, number of components, data type, number of data 

points, and name), 
• get their big data (values) or pointers to such, 
• perform conversions (e.g., convert sequence variables to non-sequence variables, single-

component to multi-component, and one association to another).  
 
2.3.6 FileIO 
The File IO functionality consists of an interface defined in a generic wrapper, with specific 
implementations defined in separate files. The specific implementations should generally not be 
used directly. At this time FCLib defines specific implementations for two different file types:  
Exodus and LS-Dyna. 

Generic capabilities required in the FileIO module (with implementation in the specific 
implementation file) include the abilities to read and write the dataset from and to the appropriate 
file format, including the mesh coordinates and connectivities, sequence data, variable data, and 
subsets. Any file type-specific issues are handled in the specific implementations as well (e.g., 
Exodus Attributes). These implementations must employ data structures for holding any 
information that is specific to the file type. For example for subsets in Exodus, the Exodus file 
reader/writer must maintain Exodus SetId and Exodus Association values in order to correctly 
convert an Exodus set to and from the analogous FCLib representation. 

Some particular design issues related to FileIO for particular formats are discussed further in 
Section 3.3. 

2.4 Utilities 
Various convenience functions are provided in the utilities module. A set of floating point 
operations are included in the module to perform comparisons between different values when 
precision is an issue. Additionally, the utilities module provides miscellaneous convenience 
utilities, such as functions for decomposing file paths into individual components (e.g., directory 
name, base name, and extension). 

2.5 Geometric Relations 
The geometric relations module provides functions that compute relationships between the 
coordinates of mesh vertices. Functions exist for deriving specific geometric quantities such as 
diameters, centroids, areas, volumes, and normals of subsets and meshes. Additional functions 
provide more general geometric relationships, such as the Euclidean distance between two 
vertices, the angle between two vectors, and proximity measures between subsets and between 
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meshes. Location information can be obtained via bounding box functions and functions to 
determine if one item contains another (e.g., if an element contains a point or a bounding box 
contains an element). Additional miscellaneous functions manipulate bounding boxes, calculate 
mesh deformations, smooth variable values, and determine if and where a ray intersects with a 
triangle. Versions of most functions exist to calculate quantities based on either the original or 
the displaced coordinates. Many of these functions utilize FCLib’s internal data structures to 
produce results faster than what could be achieved by an end-user application. 

2.6 Topological Relations 
The topology relations module provides functions for computing relationships between elements 
and vertices of the mesh itself, with no consideration of the actual physical coordinates of the 
vertices. The topology functions thus include operations such as computing which elements 
share a vertex, which vertices are part of an element, which vertices are part of an element that 
shares a face with a given element, etc. 

This module also includes function to obtain membership relations (such as getting a mesh 
entity's parents or children), entity neighbors, and higher-level connectivity information 
(segmenting and array of entities based on their neighbor relationships). 

2.7 Variable Math 
The variable math module provides three sets of functions for performing mathematical 
operations on and between variables. In general these functions create variables which contain 
the desired result. There are versions of these functions for both normal variables and sequence 
variables.  All sensible operations between variables, sequence variables, and constants are 
supported. The functions all follow a particular naming convention that utilizes the placement of 
“operator” and “var” to indicate the order of the variables involved and the mathematical 
operator performed. The three sets of functions are as follows. 

• Built In: The first group of functions can be used to execute simple, built-in 
computations such as addition or multiplication on the individual components of the 
inputs. They preserve or promote type as necessary with the major expectation that the 
resultant values are always either integers or doubles. 

• User Supplied: The second group of functions allows the user to provide a pointer to a 
function that performs a computation on individual members of the inputs. These 
functions automatically perform data conversions (e.g., change a variable to a sequence 
variable) in order to make operations work. 

• Non-Standard: Additional functions perform operations that do not match the previous 
two function groups. These functions perform operations when there are fundamental 
differences between the inputs, such as the number of components in the inputs, or 
outputs, such as creating magnitude variables. 

The flexibility of the variable math module allows users to extend the library with new 
computational algorithms without having to understand all of the inner workings of the library. 

2.8 Statistics Routines 
The statistics routines module includes functions that involve simple statistics (min, max, std) 
over variables, sequence variables, subsets, and sequences. 
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2.9 Series Routines 
The series routines module consists of functions intended for sequence based analyses. These 
include capabilities that (1) compare two sequence variables by generating a characteristic value 
representing the comparison, (2) generate characteristic values of a single sequence variable, and 
(3) map a sequence variable into another sequence variable. Mapping functions include window 
averaging routines in both non-time-series and time-series versions. The former considers 
number of sequence steps involved in the window and the latter considers the sequence values to 
be time values and is then concerned with the time range of the sequence steps involved in the 
window. Additional functions exist to calculate derivatives, integrals, and interpolations of 
sequence variables. There are also functions for comparing sequence variables by determining 
distances and areas between their curves. Finally there is a least squares fit. 

2.10 Threshold 
The threshold modules consists of functions that, given a variable and criteria, return a subset 
consisting of the entities that satisfy that criteria (e.g., returns a subset of all elements whose 
temperature is greater than 100). 

2.11 Shape 
The shape module is intended to give information about shapes (shapes of meshes etc.). These 
may have a topological flavor to them, but since they are not hierarchical (e.g., children-parent), 
they are being located here rather than topological relations. This is meant to work in conjunction 
with the Element Death module (e.g., given some information about the shape of a mesh is there 
some information about a dead element region that would be of interest, such as the region 
cutting through the shape?). 

An FC_Shape is a structure that contains the number of sides of a shape, arrays of subsets of the 
faces making up each side, arrays of subsets of the element making up each side, and the 
adjacency matrix describing the relationship of the sides. 

The fundamental functions create shapes from meshes or subsets. In these functions, the user 
specifies an angle and the faces of the mesh or subset that are traversed such that if the normals 
of two adjacent faces differ by an angle greater than that of the specified angle, the two faces are 
considered to be on different sides. This methodology can only realistically be applied to simple 
shapes. There are additional functions to reshape an existing shape by using a new angle or to 
reshape it into a shape with fewer sides. This latter function is used to merge small, perhaps 
curved faces into a major side. 

Special functions exist for simple well-defined and well-used shapes like a screw and a thin 
shape. A thin shape is a shape that is in some dimension narrow and in a roughly perpendicular 
direction has a pair of large opposing sides that are the major sides that a user is interested in. 

Once the shape is determined, additional functions in this module are used to get areas of sides 
and side normals,  and characteristics based on the adjacency matrix, such as distance matrix, 
and shape ends (sides that are adjacent to only one other side) and opposing sides. This type of 
characterization is useful in determining if a dead element region cuts through a shape verses 
eroding away a part of side. 

2.12 Element Death 
In many simulations, changing mesh topology is approximated by allowing elements to "die". 
The mesh topology stays the same, but any elements that are labeled "dead" no longer participate 
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in the simulation. Dead elements can be used to model rips, tears and other changes in the mesh. 

The input of most of the routines in this module is a subset representing a dead element region, 
and is assumed to have the association type of FC_AT_ELEMENT. It is also assumed that the 
coordinates of vertices within a dead element region cannot be trusted (the vertices on the 
boundary of the dead element region may be o.k. if they are still on live elements). 

A dead element region does not have to be a single topological segment, but most of the results 
are more easily interpreted if this is true.  

Functions in the element death module are used to determine the effect of a dead element region 
on a mesh or FC_Shape. In particular, functions exist to determine the “exposed skin”, defined as 
the subset of the entities that would become exposed (become part of the mesh skin) if given 
elements were removed from the mesh and the “decayed skin”, defined as the subset which is the 
intersection of a dead element region and the skin. There are also segmenting functions to 
determine the segmenting of a mesh or subset as a result of a dead element region (e.g., does a 
dead element region break the mesh, erode the side of a mesh, etc.). Further there are 
characterizations of the size of the dead-element region. 

2.13 Feature Tracking 
The feature tracking module provides a general framework for studying how phenomena evolve 
over time in a dataset. Features can be identified at timesteps and then associated with one 
another through time, so that the user can study the evolution of a feature.  

A Region of Interest (ROI) is internally represented as a C structure with a subset that exists at a 
single timestep comprised of the entities that make up the ROI. As of this writing, a Feature is a 
C structure with an array of these subsets, one for each timestep. In future work, the array may 
be replaced by use of the SeqSubset (whose creation postdates the creation of the Feature 
Tracking data structures). Feature information is then accessed via the FeatureGroup which is a 
container for the results of the Feature Tracking as a whole. 

This module contains the functionality by which ROI are matched up into a single Feature 
spanning time. It provides the machinery by which one ROI is determined to “overlap” another 
sufficiently to be deemed to be a single feature. Functions that determine the ROI and define the 
overlap are to be provided by the user. However, a default function for overlap is provided that is 
based on geographical overlap.  
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3. FCLIB DESIGN NOTES 
In this section we discuss some design issues of FCLib. This is not meant to be a comprehensive 
design document, but rather a presentation of key points that will help improve understanding of 
the library’s characteristics. In particular we present design issues developers must be aware of 
when modifying the internals of the library and when exchanging data with different file formats. 

3.1 Entity and Data Terminology 
The library manages multiple datasets and each dataset can have multiple meshes. A sequence is 
the coordinates of a parameter space orthogonal to the space of the mesh. The most common type 
of sequence would be the time values of a time series. A subset is a set of mesh subentities (e.g. 
vertices or elements). A variable is a function, such as temperature, over a mesh. It is associated 
with some subentity of a mesh such as vertices or elements. A sequence variable is actually an 
array of variable handles associated with a sequence, with one variable per step of the sequence. 
Similarly, a sequence subset is an array of subset handles associated with a sequence, with one 
subset per step of the sequence.  

It is very important to note that the library makes a distinction between meta data and "big data", 
and that access to these is treated very differently. Big data are the really large arrays of data that 
we want to avoid duplicating or moving around. Currently, the coordinate arrays for the meshes 
and the sequences, and the data from the variables, are considered big data and everything else is 
meta data. 

When users ask for metadata they get copies of the data that can be manipulated freely. Users are 
responsible for freeing these copies. On the other hand, when users ask for big data, they receive 
a pointer to the data (the names of these routines typically end with ‘Ptr’). Users must treat this 
data as read only, and should never attempt to free the big data directly (memory is instead 
released by calling FCLib-specific functions). For performance reasons, big data is lazily loaded 
when possible (this is discussed in more detail in Section 3.3.1), or, when appropriate, built only 
when necessary (this is discussed for the mesh in Section 3.4.2) 

3.2 Data Management using Opaque Handles 
For robustness FCLib manages data through an “opaque handles” usage model. In opaque 
handles a library maintains and manipulates application data on behalf of the user. This data is 
referenced through a handle identifier that is different than the pointer to the actual data. This 
technique provides an object-oriented feel to the programming interface and discourages casual 
direct access to complex data structures that are managed by the library. As such, FCLib’s 
functions require users to reference objects through a small number of strongly-typed handles.  

Internally, FCLib utilizes a hierarchy to keep data organized and employs validation functions to 
catch instances where the user has supplied bad inputs to the library. Application data is stored in 
a “slot”. In order to handle multiplicity, similar object slots are stored in “tables” which are 
effectively arrays of slots. The handle that is supplied to a user for referencing an object provides 
all the index information necessary for the library to either locate a slot’s data or determine that 
the reference is invalid.  

3.3 Datasets: Managing File I/O 
At a fundamental level, FCLib is typically used to read in a data file, perform a characterization, 
and then write out results or an output data file. Given that a general design goal of FCLib is to 
make it a tool for performing analysis in different application domains, it was necessary to 
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engineer the file I/O interface in a way that multiple, diverse file formats could be supported. 
Additionally, the large size of the datasets involved in modern simulations motivated us to 
consider techniques where file operations were performed only when necessary. 

In order to accommodate these requirements, FCLib was constructed with a generic FileIO API 
that supports multiple format-specific interfaces. This API provides a consistent interface to the 
user and allows format-specific translation operations to take place behind the scenes without 
specific guidance by the user. This interface is built upon the concept of lazy loading and the 
separation of metadata from big data. 

  

3.3.1 Lazy Loading and Releasing of Big Data  
Data files often have large amounts of data that is not pertinent to the user's intended 
characterization. For this reason, one is encouraged to implement "lazy loading" wherever 
possible. That is, upon determining the existence of a variable in a data file, one can build the 
variable's data structure, but not read in the actual data values until that data is requested. For 
example, in the Exodus specific FileIO module, ExodusIO, sequence variable metadata and 
uniquely identifying Exodus variable identification are read in during the initial load, but the data 
field remains NULL. Upon request of a sequence variable, the data field is checked and, if 
NULL, only then is the actual data read in.  

Lazy loading also allows one to selectively release big data that exists in the data file in order to 
free up memory, since the data can always be reloaded from the file when necessary. This is 
similar to the concept of releasing built data, although there the data is initially built and then 
rebuilt rather than loaded in and re-loaded in from the file. In order to allow releasing and re-
loading of the data without loss of intermediate changes, changes to the data values from the 
file's data values are not allowed. The "committed" flag exists to keep track of such data 
structures. When a data item is loaded from a file and its metadata read in, the committed flag 
should be set to indicate if both the variable data exists on the disk (that is, is committed to the 
disk) and is able to be lazily loaded; it should be set to zero otherwise, and it is by default. 
Methods that allow changes to a data structure's values (e.g, adding subset members) must then 
explicitly check to see if the data structure is committed before performing the change. Functions 
that release structures release only the committed structures.  

Note that only lazily loadable data can have the committed flag set, since it is otherwise not 
reloadable. For example, in the Exodus module, data values for node sets, element sets, mesh 
variables and global sequence variables are currently read in during the load and are not lazily 
loadable. Thus their committed flag is not set and they will not be released upon a release call. A 
side effect of this is that these structures values are then allowed to change from their values in 
the file. You may prefer to think of the "committed" flag as a "reloadable" flag. If you want to 
change the values of a committed structure, you can make a new structure and copy the values of 
the original structure over to the new structure, and then alter the new item's values.  

3.3.2 Information about Supported File Formats 
In this section we highlight some issues in file formats that we use. This is not meant to be a 
comprehensive discussion of the file formats, but rather a calling out of some design issues and 
related limitations in the handling of representations of data to/from various file formats. 
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• Exodus: Exodus is a well-known file format used at Sandia FEM codes that stores data 
into a “meshes and variables” data model. Exodus is the preferred data format for 
working with FCLib because it is well documented and is currently supported by multiple 
applications. FCLib currently assumes that an Exodus dataset will be contained in a 
single Exodus file. While codes such as Sierra generate multiple Exodus files for a 
simulation (i.e., one file per processor node), results can be concatenated using a tool 
such as SierraConcat. Exodus is built on top of NetCDF, a generic database file format. 
However, NetCDF interfacing is handled entirely by the Exodus library. 

• LS-DYNA Input Decks: LS-DYNA is a commercial mechanics simulation code 
produced by LSTC. The LS-DYNA simulation tool reads input from a keyword file that 
contains all the mesh information required to run a simulation. FCLib currently supports 
the ability to read and write these keyword files. 

• LS-DYNA Results: An LS-DYNA simulation writes its output results to binary d3plot 
files. FCLib currently provides basic support for reading these files. However, it is 
important to note that the d3plot files are a proprietary format that is poorly documented. 
While we have made every attempt to be compatible with this format, we have 
discovered inconsistencies between the format specifications and output generated by 
LSTC’s simulation tools. FCLib produces warnings when known issues in the file format 
are discovered. 

• Sierra Input Decks: FCLib’s FileIO module also provides basic support for Sierra input 
deck. This module was used in the spotweld analysis tool and may not be current with 
more recent releases of Sierra.  

 

3.3.3 File Format Caveats 
Differences between FCLib’s internal data structures and those of the external file formats have 
led to some limitations and/or inconsistencies on representing externally supplied data. The 
following list summarizes some of the issues to be aware of when using FCLib in conjunction 
with different file formats, or in expanding FCLib to handle new file formats. 

Global vs Local Numbering 
Exodus and LS-DYNA have a global node array and element blocks refer to these global 
vertices. However, FCLib was designed to be able to look at single meshes, and, to support this, 
it stores and renumbers the nodes local to each mesh. Nodes used in multiple meshes are thus 
duplicated and they will not be numbered the same (as each other or as the original numbering). 
Therefore the Exodus (or LS-DYNA) numbering and the FCLib numbering will be different and 
thus one cannot reliably compare numbers written out by FCLib with numbers in the original 
files. This also means that one can't compare against numbers from other tools, say Ensight, 
which are using the original dataset.  

One option for handling this is to load up the dataset in FCLib, write it out with FCLib, and then 
use the rewritten dataset. After that, rewriting the dataset should not change the numbering if the 
meshes don't change. To accomplish this, one can use the fcconvert tool which was written to 
convert data from one file format to another, via FCLib’s internal data structures. In this case, 
one can choose both the original and the final formats to be the same. A related tool is the 
fcdump tool, which prints out FCLib’s internal representations of the input dataset. 
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Block and set name support 
Dyna2names.pl converts the LS-DYNA keywords file (.k file) to a .names file which FCLib 
parses rather than reading them from any LS-DYNA files directly. It supports element block 
names, sideset names, and nodeset names only. This is a historical artifact as FCLib created the 
.names file as a convention first for Exodus files before Exodus stored the names of element 
blocks. Since then, Exodus has provided name support and so the reading and writing of .names 
files has been removed from the ExodusIO module.  

Sequence support 
Exodus and LS-DYNA only support 1 sequence: time. FCLib thus discards all but the first 
sequence when writing Exodus files.  

Data types 
Exodus does not support multiple data types. Therefore, all data values are stored as double-
precision floating point values (including characters).  

Multicomponent variables 
Exodus only stores single component variables and relies on naming conventions (endings x,y,z 
for vectors, xx,yy,xy for tensors) for the consumer. The Exodus reader reads in all variables as 
single component variables. Our other readers package vectors into multicomponent variables.  
All the FCLib routines are intended to handle multicomponent variables. FCLib provides 
functions to automatically discover and merge a group of similarly-named, single-component 
variables into a multicomponent variable.  

Exodus general data support issues 
There are some concepts that Exodus does not support, or previously did not support, but will be 
supporting in upcoming versions. This affects which external concepts can be created in an 
FCLib dataset, and which FCLib concepts may be subsequently dropped when the dataset is 
written out in a file format.  

• Edge and face support 
Exodus will be supporting explicit definitions of faces and edges and their relationships 
to each other and to elements. FCLib currently does not support this, but supports the 
older convention of sidesets. A sideset is a set of faces on a 3D mesh or edges on a 2D 
mesh, which are stored as a global element/local side ID pair.  

• Blocks and Subsets 
Similarly, Exodus will be supporting nearly all types of blocks and subsets, and attributes 
and results upon them. FCLib currently supports only element blocks. FCLib reads in and 
write out only node and element sets and sidesets (for faces and edges).  

• Sequence variables and non-sequence variables 
FCLib reads in and write out node and element attributes as non-sequence variables and 
node and element results as sequence variables. Note that for vertex associations, these 
are exodus nodal results (for sequence variables) and attributes (for non-sequence 
variables), which means that they are defined for all nodes (filled in with 0 for any nodes 
in any element block that does not define that variable).  
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FCLIB ATTRIBUTE TYPE NON_SEQ VAR SEQ VAR 
FC_AT_WHOLE_DATASET N Y 
FC_AT_WHOLE_MESH N (except DT_INT) N 
FC_AT_VERTEX Y Y 
FC_AT_EDGE Y N 
FC_AT_FACE N N 
FC_AT_ELEMENT N Y 

Table 1: FCLib variable concepts and Exodus Support . 
Letters indicate current support. Colors indicate p ossible 
support. 

 

Table 1 shows the mapping between FCLib variable concepts and those of Exodus. If Exodus 
concept is currently read in or written out it is indicated by "Y"; if not, by "N". Those FCLib vars 
that can eventually be supported as Exodus vars (results) are colored in green. Those that can be 
supported by using an Exodus concept other than variables are shown in yellow. Those that 
cannot be supported at all are shown in red. The remaining block (white) is described in more 
detail below.  

Exodus only has variable support for sequence variables. All of the FCLib sequence variables 
can be directly mapped into Exodus results, with the exception of FC_AT_WHOLE_MESH. 
These are shown in green and red, respectively. FCLib's FC_AT_WHOLE_DATASET is an 
Exodus global result.  

Exodus does not have support for the corresponding non-sequence variables, however some of 
these can be handled by other means. FCLib’s non sequence nodal and element variables 
correspond to Exodus’s nodal and element attributes. Non-sequence variables with association 
FC_AT_WHOLE_DATASET cannot be supported, because there is no global attribute in 
Exodus, and thus the relevant table cell is colored red.  

Non-sequence variables with association FC_AT_MESH cannot be supported with the exception 
of those of datatype FC_DT_INT. Support for this case is currently implemented by the Exodus 
"property".  

3.4 Mesh 
In this section we describe some design issues of the Mesh.  

3.4.1 Internal Types 
FC_ElementTypes describe the elements in a mesh. Given an FC_ElementType, the number of 
vertices, the number of edges, the number of faces, the topological dimension, and its 
corresponding FaceType are established (and there are calls to get these).  

FC_AssociationTypes are used to describe the association of items with a mesh or dataset. For 
example, a data field may be associated with the elements of a mesh (i.e., able to vary from 
element to element), or with an entire mesh, or with all meshes in a dataset. Variables and subsets 
have Association Types. Non-global variables and subsets cannot have Association Type 
FC_AT_WHOLE_DATASET. Global variables can only have association 
FC_AT_WHOLE_DATASET. This latter means that Global Variables can only be single values; 
one cannot have, for instance, a global variable that is a data field, varying from element to 
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element in a mesh, with the same across all meshes, defined only once as a global variable.  

3.4.2 Mesh Structure 
Generally you could specify a mesh by the coordinates of its vertices, the connectivities of the 
vertices, and the element-to-vertex mappings. Other things, such as faces and edges, are then 
implied. Thus the FCLib Mesh structure object consists of:  

• Metadata comprised of:  
• items such as the topological dimension of the mesh, the number of elements, etc.  
• ids for owned entities such as subsets, variables, etc.  

• Big Data which is provided by the file defining the mesh:  
• the coordinate array  
• element to vertex connectivity information  

• Big Data which is built when needed: 
• things such as the edge, face, and neighbor info 

 
This distinction in the types of Big Data is important for at least the following reasons, which 
will be discussed in more detail below: 

• You must be careful when writing functions that add data to the mesh (such as those 
involved in writing new readers) to be sure that in case additional data needs to be built, 
that it will be built properly. The FCLib Mesh API is set up to ensure that the right 
building will occur and if you bypass this to add things into the mesh structure directly 
you may bypass this building.  

• Access to and write out of the built data may behave differently than that of other data in 
order to not waste space on things that may not be needed. Some interfaces to that data 
are optimized so that things are not rebuilt, and some things that are built are not written 
out should you want to write to a file, because they can just be built again.  

3.4.3 Built Data for Meshes 
The built data for a mesh consists of three types:  

• downward connectivities - these refer to parent-to-child type relationships, such as: given 
a face, what are all its vertices, or given an element, what are the IDs of its edges? These 
are stored as fixed length (size determined by the topology) integer arrays. In downward 
connectivities the order of the child items (for a given parent) is important.  

• upward connectivities - these refer to child-to-parent type relationships, such as: given a 
face, what are its parent element IDs? Since the number of these can vary per child, for 
each type of relationship there is an array that contains the number of parents for each 
particular child and an additional doubly indexed array that contains the actual ID. In 
upward connectivities, the ordering of the parent items (for a given child) is arbitrary.  

• neighbors - these are peer relationships, such as the element IDs of the neighbors of a 
given element. The definition of these varies depending on the level of connectivity 
desired - for instance, the number of neighboring elements connected by a face vs. the 
number of neighboring elements connected by a vertex. As in the upward connectivities, 
these vary for each item, and therefore both an array of the number of neighbors for each 
case and a doubly indexed array containing the actual ids is kept.  

Once upon a time, a number of different relationships for items were kept together in structures, 
however this was dropped in favor of the arrays primarily because it allows the writing of a 
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smaller set of operations that only need to work on arrays and thus can be passed any of a 
number of the different array options.  

3.4.4 Building Mesh Data  
There are five helper functions that cause this building when needed:  

• _fc_buildEdgeConns 
• _fc_buildFaceConns 
• _fc_buildParents 
• _fc_buildMeshVertexNeighborsViaEdge  
• _fc_buildMeshElementNeighborsViaEntity 

Higher level functions that need this information will call these helper functions that will build 
this data as needed. Details of these functions are beyond the scope of this document, but more 
detail can be found within documentation in the FCLib release. These will additionally make any 
other information that it is convenient to create simultaneously.  

3.4.5 Releasing the Mesh 
ReleaseMesh will release as much of the big and built data as it can. The big data released will 
be that data that was lazily loaded. The built data includes parent and neighbor data and the edge 
and face information. Therefore, if you want to keep only part of the data (if, for instance you are 
running low on space), you actually have to release all the data and then rebuild only the part you 
want. In the future, we would like to support releasing data on a finer granularity. 
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4. LIBRARY TESTING 
A key challenge in developing and maintaining a software library is verifying that updates to the 
library do not (1) affect the correctness of the software (negatively) or (2) cause applications that 
depend on the library to break. Given that FCLib has been deployed at a number of computing 
installations around Sandia, we decided that it was important to implement a testing 
infrastructure that allowed us to produce high-quality releases. This testing infrastructure is 
comprised of three components: unit tests, regression tests, and software quality analysis tests. 

4.1 Unit Tests 
The unit testing facility builds a special test program that performs numerous operations with 
FCLib’s functions. Each module is tested with a large number of inputs. First, each function call 
is tested with bad inputs to verify that the function catches the input error and returns the proper 
error code. Second, a number of good inputs are passed to each function to verify that the proper 
output results are produced. The expected results are encapsulated in the testing software. As 
such, the unit test program provides a great deal of assurance that the software is operating 
properly, and helps verify that changes to the library do not break its existing functionality. 

4.2 Regression Tests 
The regression testing facility is responsible for running FCLib’s point tools with multiple 
datasets and comparing the output results to known-good results. These regression tests validate 
that the tools still produce the same results when changes are made to the library. The regression 
tests were especially useful when installing FCLib on multiple platforms because they are 
agnostic about the inner workings of the platform: ultimately all that matters is whether the 
output results were produced properly. This testing proved to be especially useful when porting 
FCLib to different platforms because it helped identify floating-point precision issues in 
particular systems. 

4.3 Software Quality Analysis Testing 
During the development process for FCLib, we utilized multiple design analysis tools to help 
improve the software quality of the library. First, we employed valgrind to help identify memory 
leaks and programming errors in both the library and the point tools. The valgrind tool replaces 
C’s memory management routines with profiling routines that track every block of memory that 
is allocated during runtime. When the program ends, valgrind reports a summary of all the blocks 
that were not properly freed by the program. As such we utilized valgrind on our nightly unit 
tests to identify leaks. To our knowledge, there are no memory leaks in the current release. 
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Figure 1: Code coverage estimates for FCLib's modul es. 

 

Second, we utilized the GNU profiling and coverage tools (i.e., gcov) to give an estimate of how 
thoroughly our tests were testing the library. In general, most of the modules in the library are 
covered at greater than 70% (i.e., 70% of the source code is tested). We examined the coverage 
results and determined that many of the untested portions of the library are either non-critical 
operations (e.g., printing warnings) or in redundant error checks (e.g., a function calls another 
function and both do checking on input data).  

4.4 Nightly Testing and Documentation 
While developing FCLib we utilized a stand-alone workstation to automate the testing process. 
This workstation used a cron job script to do the following operations: 

• Download the latest version of the FCLib from the subversion repository 
• Compile all of the software to a local directory 
• Generate the doxygen web documentation and post the pages to a web server 
• Run the unit and regression tests 
• Run valgrind on the unit test to local memory leaks 
• Log the results to a web page and email a copy to members of the development team 
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5.  EXAMPLE TOOLS AND CAPABILITIES 
In this section we describe some of the tools built with FCLib that demonstrate some of the more 
interesting capabilities and characterizations utilizing FCLib. Note that the FCLib distribution 
also includes a number of simpler tools that are not discussed here. These tools are quite useful 
in day-to-day analysis (e.g., normalizing values, bounding regions that contain 
maximum/minimum values of interest, quantizing statistics, etc.). 

5.1 Gaplines 
The gaplines toolset discovers and characterizes gaps that occur between meshes as a result of 
deformation of the meshes involved. The tool first determines which meshes are initially abutting 
(by examining the initial proximity of the vertices in the meshes) and then creates lines (initially 
of zero length) between their surfaces. As the meshes deform, the line lengths are updated. If 
they lengthen, a gap is signified. This tool makes extensive use of the Statistics, 
GeometricRelations, and Shape modules. 

 

 

 

 

 
Figure 2: An item before deformation. Note that the  green plate is flush with 
the read container. 
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Figure 3: The item in the previous figure after def ormation. The damage 
results a gap between the red container and its gre en outer plate which 
were initially in contact. The internals of the red  container are visible 
through the resulting gap. 

 

 
Figure 4: The Gaplines tool determines gaps that oc cur between meshes as 
a result of deformation. Gaplines are shown that re sult from the situation in 
the previous figure. 
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Dataset: 'd3plot'

Meshes: 'Shell' and 'Cover Plate'

Displ: 'displacement'

Min Dist: 0.1

Number of gap lines found = 12482

Number of sets of sides involved = 2

Stats for set 1 ('Shell_shape0_side18-Cover Plate_s hape0_side2'):

numGapline = 10628

Step   |      |    Gap Length          .

ID     Value  |  num |    min        max        mea n      stdev

0 0.000000  10628   0.000000   0.028636   0.003368   0.005055

...

12 0.003000  10628   0.002291   6.851685   1.527860   1.449041

Step      |      |    Normal Component of Gap Lengt h      .

ID     Value  |  num |    min        max        mea n      stdev

...

12 0.003000  10628   0.002291   6.851685   1.527860    1.449041

Step      |      |    Tangent Component of Gap Leng th     .

ID     Value  |  num |    min        max        mea n      stdev

...

12 0.003000  10628   0.000764   2.306140   0.911504   0.52459

Input details

Stats reported for each side and overall

Result Summary

Resolved with 
respect to face 
normals

Gap length stats

 
Figure 5: Partial output of the Gaplines tool for t he situation shown in the 
figures. Characteristic information for each gap is  provided, including size 
and location information. 

 

5.2 Tears 
The Tears tool is used for characterizing tears, which are defined as volumes of dead elements. In 
order to accommodate uncertainties in dead elements regions and tears that cross meshes, this 
tool will optionally combine tears within a given proximity to one another.  

Characterizations of tears include determination of the number of dead elements in a tear, the 
volume of the tear, and a characteristic tear length, defined as the largest distance between any 
two vertices that define the surface of the dead region.  

In addition, for simple shapes, characterization of the types, subtypes, and classes of tear are 
given, defined as:   

Tear types: 
• BREAK– breaks the shape into more than one pieces 
• TUNNEL – intersects the shape in more than one place 
• PIT – intersects the shape in a single place.  

Subtypes: 

• SINGLESIDE– intersects only a single side, but may be multiple time 
• NONADJSIDE – intersects at least two non-adjacent sides 
• ADJSIDES – intersects only adjacent sides (but may be in multiple places); 

Class: 
• MAJOR – intersects at least one major side fulfilling the thin shape assumption  
• MINOR – intersects no major sides 
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These capabilities utilize the Statistics, Threshold, BoundingBox, DeadElement, and Shape 
capabilities of FCLib. 

 

 

 

 

Tear 0
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Tear 3

Tear 4

Tear 2
Tear 22

Tear 14

Tear 0
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Tear 4

Tear 2
Tear 22

Tear 14
 

Figure 6: Tears resulting from the situation descri bed regarding the gaps 
tool. The Tears tool discovers and characterizes te ars, including 
determining bounding boxes for the tears (shown in figure). 
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Tear characterizations for dataset 'd3plot'
Tears criteria: 'elem_death' <= 0
Time step index: 12
5 mesh(es)
Mesh 0: 'Shell' has 18 dead element region(s)
Mesh 1: 'Plate' has 26 dead element region(s)
Mesh 2: 'Cover Plate' has 0 dead element region(s)
Mesh 3: 'Horseshoe Plate' has 0 dead element region (s)
Mesh 4: 'Screws' has 6 dead element region(s)
Combining of dead elem regions not requested
Found 50 tears
Sorting tears by region diameter (largest first) .. .
Tear 0:
numDeadElementRegions = 1
meshIDs = 0
meshNames = 'Shell'
numCell = 280
region volume = 35.8475
region diameter  = 19.8277
displ exposed diameter = 22.2711
region bb  = [ -64.1624, 19.009, -8.56745 ] - [ -54. 5411, 30.8475, 5.49459 ]
displ exposed bb = [ -66.4801, 1.4563e-07, -13.6168  ] - [ -55.0189, 2.31026, 5.96411 ]
intersections with Shape (0:0) (TUNNEL,NONADJSIDES, MAJOR): ( 17) ( 5) ( 5) ( 5) ( 5) 

Input details

Tear details

Per mesh summary

 
Figure 7: Partial output of the Tears tool for the situation shown in the 
previous figure. Characteristic information for eac h tear is provided, 
including size and location information. 

 
5.3 ScrewBreaks 
The ScrewBreaks tool was written for a specific application where the meshes included screws 
which held other meshes together. It is of interest to determine when a screw broke or how close 
a screw was to breaking. This calculation involves using the segmenting capabilities in the 
Threshold and Dead Element modules to determine if a dead element region increases the 
segments in the screw. Additionally the shape related functions are used to determine if the dead 
element region results in a side erosion of a screw which would also constitute breakage, through 
loss of contact of the remaining screw material with its neighboring meshes, though it does not 
result in a greater segmentation of the mesh. Finally, a closeness to breaking estimate is 
calculated by comparing the resultant surface area obtained by projecting the dead element 
regions onto the base of the screw to the absolute surface area of the base of the screw. While 
this is not particularly rigorous, it does roughly reflect how close the dead element region is to 
cutting through the screw. The screw base is determined by functions available in the Shape 
module. Bounding box capabilities are used in the printout in order to provide information to 
allow the user to distinguish the screw. 
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An example figure and selected output are below. The data set used is the “gen_screws.ex2” 
dataset in the data directory of the FCLib release. In this case the dataset consists of screws only, 
one in the first mesh, and two in the second. The screw in the first mesh breaks, in the second the 
screws erode. The breakage characterizations are identified in the output, along with the 
Breakage Ratio (BR) at each step and the bounding boxes for each screw. The first figure in this 
subsection shows the state of screws at Step 5, while the second figure shows the final state. 

 

 

 

 
Figure 8: Timestep 5: The screws are partially dama ged. The Breakage 
Ratio (BR) is calculated by projecting the damaged areas onto the screw 
base (uppermost in picture) 

 

 

 

 

 
Figure 9: Final State: All screws are broken. The l eftmost screw is severed. 
The middle and right screws are broken by surface e rosion. While erosion 
does not result in a complete segmentation of the s crews, nonetheless, the 
erosion results in a loss of contact of the remaini ng screw material with 
any of its neighboring meshes. 
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Screw characterizations for dataset '../data/gen_screws.ex2' 
Mesh 0: 'screw-tear' has 1 screws 
Screw bounding boxes at Step 0: 
  Screw 0: [ -10, -9, -9.98308 ] - [ 10, 3, 9.98308 ] 
Mesh screw-tear           Screw 0   Step 0   BR =  0.00 (   0.00/ 112.58) 
Mesh screw-tear           Screw 0   Step 1   BR =  0.19 (  21.49/ 112.58) 
… 
Mesh screw-tear           Screw 0   Step 7   BR =  0.87 (  98.19/ 112.58) 
Mesh screw-tear           Screw 0   Step 8   First broken 
Mesh screw-tear           Broken/Total screws: 1/1 
Mesh 1: 'screws-erode' has 2 screws 
Screw bounding boxes at Step 0: 
  Screw 0: [ 20, -9, -9.98308 ] - [ 40, 3, 9.98308 ] 
  Screw 1: [ 50, -9, -9.98308 ] - [ 70, 3, 9.98308 ] 
Mesh screws-erode         Screw 0   Step 0   BR =  0.00 (   0.00/ 112.58) 
… 
Mesh screws-erode         Screw 0   Step 5   BR =  0.67 (  75.71/ 112.58) 
Mesh screws-erode         Screw 1   Step 5   BR =  0.54 (  60.53/ 112.58) 
Mesh screws-erode         Screw 0   Step 6   BR =  0.76 (  85.74/ 112.58) 
Mesh screws-erode         Screw 1   Step 6   BR =  0.54 (  60.53/ 112.58) 
Mesh screws-erode         Screw 0   Step 7   BR =  0.86 (  96.88/ 112.58) 
Mesh screws-erode         Screw 1   Step 7   First broken, side eroded 
Mesh screws-erode         Screw 0   Step 8   First broken, side eroded 
Mesh screws-erode         Screw 1   Step 8   *** still broken *** 
Mesh screws-erode         Broken/Total screws: 2/2 
All 2 Mesh(es)            Broken/Total screws: 3/3 
 

Figure 10: Partial output of the ScrewBreaks tool f or the situation shown in 
the figures. Characteristic information for each sc rew is provided, 
including breakage ratio (BR) and break type. 

 

 

5.4 Feature Tracking 
FClib was used to track and analyze the features corresponding to the crumpled regions of a can 
being crushed. The Feature Graph shows how the features interacted over time. A selected 
statistic (maximum stress) per feature over time is plotted. The big yellow feature at the top of 
the can is formed first and obtained the highest maximum stress. Other features are color-
coordinated similarly. From this plot it can be seen that the maximum stress for a given feature 
begins to level off commensurate with the formation of a new feature. 
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Figure 11: In the can crush example, features are l ocated and colored in the 
right-most picture. 
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Figure 12: Maximum stress per feature over time for  the can crush 
example. A feature graph displays the progression o f different features in 
the dataset as time progresses. Feature colors corr espond to those 
illustrated in the crushed can picture. 
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5.5 Skeleton Extraction and Manipulation 
Many scientific FEM datasets employ meshes that are incredibly detailed. Given the 
sophistication of these meshes, it can be challenging for an analyst to be able to quickly analyze 
and understand the results of a simulation due to the high level of detail contained in the model. 
Additionally, meshing can make it challenging to compare one simulation run to another when 
the same object is meshed differently. Therefore it is beneficial to be able to transform meshes 
into simpler representations that are better suited for comparisons. 

The skeleton extraction utilities in FCLib provide a basic set of tools for transforming mesh 
structures into tree representations that can provide insight into the geometric changes to 
structures in a simulation. The tools start by building a spanning tree representation of a mesh. 
The full spanning tree by itself can be useful for comparing two identical meshes oriented 
differently in one or more datasets. For example, scaling, translation, and rotation information 
can be obtained by comparing the coordinates of the root node in the tree and its children. 

While a spanning tree representation simplifies a mesh, it is often desirable to reduce the tree to a 
more minimal form. The whittle tool in the skeleton extraction utilities provides multiple 
algorithms for reducing tree structures. These algorithms provide tradeoffs between tree quality, 
granularity of reduction, and the amount of time required to process data. The current algorithms 
include the following. 

 
• Minimum Descendents: The minimum descendents algorithm removes the node from 

the graph that has the smallest number of descendents. While this algorithm is relatively 
fast and produces a tree with an exact number of nodes, it favors long branches and nodes 
close to the root of the tree. 

• Minimum Segment Change: The minimum segment change examines all segments of 
all branches in the tree and removes the node that would cause the least error in the tree’s 
distance representation (segments that connect to the node are rerouted to connect the 
node’s parent and children). This approach is time consuming but simplifies detailed 
regions well. 

• Minimum Angle Change: This algorithm examines all segments of all branches in the 
tree and removes the node that bridges segments that are the most aligned (i.e., the 
average angle the node is a part of is closest to 180°). The intention of this algorithm is to 
remove nodes that have the least impact on the shape of the tree. 

• Octal: The octal algorithm attempts to remove nodes in a way that preserves spatial 
representations. Starting at the root node in the graph, the algorithm selects up to N nodes 
to keep in each of the eight Cartesian directions from the node (e.g., in the +X,+Y,+Z 
direction, +X,+Y,-Z direction, … -X,-Y,-Z direction). While this approach may preserve 
branches that disappear in the other algorithms, it does not provide the user with any 
granularity in the number of nodes in the final graph. 
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Figure 13: The skeleton utilities transform a mesh into a spanning tree 
structure. 

 
 
 

 
Figure 14: Spanning tree structures can be reduced to simplify the 
representation into a form that is easier to manage . 
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5.6 Region Subsetter/Reassembler 
Crucial scientific information from simulations is lost in getting high-fidelity data to the post-
processing analysis. Currently, analysis is done in a post processing fashion, using data files 
written out at frequencies determined by checkpointing considerations. However, such 
frequencies are inadequate to enable high fidelity analysis.  In response, we have begun initial 
investigations into possibilities for providing higher fidelity analysis through in situ processing 
of the data (locating the analysis within the application).  We anticipate that the resultant impact 
on application runtime can be mitigated by decreased size and frequency of I/O by outputting 
only the regions of interest in the simulation. The intent of this work then is to explore the 
impact, in both analysis accuracy and application runtime, of bringing the analysis to the data, 
through in situ concurrent processing.  

Our initial scoping of the problem involved creating the capability to dump out on a per timestep 
basis only the regions of interest, and the necessary information to reconstitute the regions of 
interest in the context of the entire problem. Initial investigations show that the output of regions 
of interest from an actual ALEGRA simulation result in a substantial reduction in file size.  

Capabilities here required the development of the RegionSubsetter tool, which as an example 
application, writes out only regions satisfying a prescribed threshold. The writeout involves 
dumping the segmented regions, and the variable data on those regions, out to a file as individual 
meshes (which we call “subset meshes” since they are new meshes, born of a subset on the 
original mesh). In addition, the subset meshes would have an additional new variable which 
consists of the vertex and/or element id mappings between the original mesh and the newly 
formed subset mesh. This mapping, as well as a well-known naming convention for the subset 
meshes and the relevant timestep would be used for reassembly of the subset meshes later.  This 
is done via a companion code, Reassembler, which given an original mesh geometry, 
reconstitutes the subset meshes onto the original geometry for viewing in tools such as Ensight.  

 

 
Figure 15: In this subsetter example, a large shock wave dataset is reduced 
to a minimal form that contains only elements that are significant to an 
analysis. 
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6. SUMMARY AND FUTURE WORK 
FCLib is a powerful library that enables analysts to rapidly prototype data analysis operations. In 
addition to serving as a neutral interface into multiple file formats, FCLib is organized in a 
logical manner that allows users to interrogate data in a structured manner. The example 
applications demonstrate that FCLib can be used to develop command line tools that perform 
significant data analysis and characterization operations.  

Currently, the access mode for FCLib capabilities is via command line interface. We have 
explored both a GUI interface and an XML interface, with specific emphasis on processing some 
of the well-defined and more commonly-desired characterizations, such as thresholding and 
simple mathematical processing.  

Based on our experience with implementing FCLib, we see multiple areas where data analysis 
tools will need to be improved in the near future. The largest obstacle is balancing analysis 
performance with data set size. The transition to petascale-class science will result in datasets 
that are an order of magnitude larger or more than today’s. Observing that processor performance 
is greatly outpacing disk performance, it is clear that tomorrow’s data analysis applications will 
need to focus on efficient means of managing data in an out-of-core manner. While FCLib 
employs lazy loading to minimize disk access, future analysis tools will require more 
sophisticated data management facilities that either perform on-demand paging or employ 
parallel architectures for overcoming disk access overhead. These systems will likely require 
improvements to the programming environment in order to make them accessible for practical 
usage. 
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