

Configurable Computing: Practical Use of

Field Programmable Gate Arrays

By

Craig D. Ulmer

School of Electrical and Computer Engineering

Georgia Institute of Technology

Atlanta, Georgia 30332-0250

January 5, 1999

Submitted to the Qualifying Examination Committee

In Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy in Electrical Engineering

Qualifying Exam Committee:

Dr. Ian Akyildiz, Chair

Dr. Vijay Madisetti

Dr. David Schimmel

Dr. Sudhakar Yalamanchili, Advisor

Dr. Ellen Zegura

 i

Contents

1. Introduction 1

2. Configurable Computing 2

3. FPGA Architectures 3

 3.1 Current Generation Architectures 3
 3.1.1 General Description 3
 3.1.2 Commercial FPGAs: XC4000, FLEX, and ORCA 2 5

 3.2 Emerging Architectures 6

 3.3 Consequences of FPGA Architectures 7

4. Strengths and Weaknesses of FPGA-assisted Designs 9

 4.1 Strengths 9

 4.2 Weaknesses 12

 4.3 Suitable Applications 13

 4.4 Unsuitable Applications 14

5. Design Methodologies 14

6. Custom Computing Performance Measurements 16

7. Design Examples 16

 7.1 Data Streaming and Partial Evaluation: Cryptography 16

 7.2 Data Parallelism: Digital Signal Processing 18

 7.3 Custom Logic: Packet Scheduling 19

8. Obstacles and Future Enhancements 20

9. Conclusions 21

10. References 23

 1

1. Introduction

Since early conceptualizations of programmable logic, researchers have envisioned a

prominent computational role for configurable hardware. In as early as 1960, Estrin proposed

supplementing general-purpose CPUs with specialized hardware units that could be configured to

emulate logic functions [1,2]. Unfortunately, technology for such programmable logic was

insufficient until the invention of the Field Programmable Gate Array (FPGA) in 1985. Initially

these devices were limited by a low number of logic gates the array could emulate. To

compensate for this deficiency, researchers turned to building large multi-FPGA based systems

known as Configurable Computing Machines (CCMs) [3,4]. While working with these machines

could be a complicated process, early CCM teams reported significant speedups for their

hardware-assisted programs. These systems are interesting because the reconfigurable nature of

the FPGAs allows the CCM hardware to be reused as needed by different algorithms. However,

the high cost and large size of these machines prohibits them from general use.

Recent advances in FPGA technology provide an opportunity to bring the high

performance of CCMs to low cost, general use systems. The two dominant advances making this

possible are improvements in FPGA gate density and speed, and the commercial availability of

FPGA boards for easy system integration. These boards are a cost-effective means of

configurable computing, allowing designs to leverage a middle ground between software-only

and dedicated ASIC hardware approaches. Additionally, FPGA-assisted designs may use

reconfigurable hardware techniques to enhance performance in ways that are not possible in any

other technology.

While configurable computing offers a powerful method of high-performance

calculation, the field is relatively new and lacking guarantees of speedup. In order for this

technology to be effective, designers must be aware of the underlying hardware features as well

as evolving design methodologies. The intent of this report is to summarize work in the

configurable computing domain and expose key points of high-performance FPGA-assisted

design and use. A primary concern is practicality, with the expectation that configurable hardware

should be commercially available and of low cost. This report is organized into seven sections

addressing specific topics of FPGA-assisted design. The first three sections describe the potential

 2

use and architecture of FPGAs, specifically highlighting applications that are well suited to the

technology. The next two sections provide details of system design and comparison. These details

are followed by an examination of three successful applications. Finally, a discussion of obstacles

in the technology is provided with suggestions for future enhancement.

2. Configurable Computing

Complex algorithms may be implemented in software, hardware, or a combination of

both. Software approaches use general-purpose CPUs, sequencing discrete CPU operations such

as multiply or add to realize an algorithm’s functionality. While these devices are highly

programmable, the overhead for decoding and executing instructions detracts from computational

performance. At the other extreme of algorithmic implementation is custom hardware known as

ASICs. While these circuits provide optimal computational performance for a given application,

the chip cannot be adjusted after fabrication and is therefore only suitable for a single application.

An example between the differences in hardware and software implementations can be found

with the evaluation of the logic function F = 4a2 + 3b. Figure 1a illustrates a software program for

this function, sequencing several basic operations through the processor until the function is

evaluated. Figure 1b shows the same operation for a hardware-based design, with dedicated

computation units providing an answer in a single iteration [6].

X

X X

+

aa

4 b3
R0=a
R1=b
R0=R0*R0
R0=4*R0
R1=3*R1
R0=R0+R1

R0

R1

a

b

ALU

CPU Instructions

General-Purpose Computing Configurable Computing

Figure 1: Comparison of general-purpose and configurable computing for F = 4a2 + 3b

Configurable computing is a compromise between hardware and software. Field

Programmable Gate Arrays facilitate this tradeoff, allowing hardware configurations or images to

be loaded into the device. Once configured, FPGAs behave as though they are custom VLSI

 3

circuits defined by their configuration image. While approximately three times slower than

ASICs, performance improvements of FPGAs over CPUs can be significant. In [5,6], Dehon

provides both analytical and empirical comparisons of configurable and general-purpose

computing. DeHon’s analysis shows that FPGAs offers a much higher computational density per

unit area compared to general-purpose CPUs. The benefit of this computational substrate is that

the hardware may be reused by multiple applications. In this sense the FPGA can ideally provide

a “virtual ASIC” for any program that can benefit from hardware-assistance.

3. FPGA Architectures

Given that configurable computing may be beneficial to modern processing, it is

necessary to examine the differences between the theory and the physical implementations.

FPGA architectures represent the raw building blocks for which configurable computing works

with, and therefore the characteristics of the device must be understood before the benefits can be

applied to a system.

3.1 Current Generation Architectures

3.1.1 General Description

Current generation FPGA architectures generally consist of three main components: logic

blocks, I/O interface blocks, and a programmable interconnection network. Of these components,

the design and relationship between the logic blocks and the interconnection network best

characterize an FPGA. I/O interface blocks are peripheral logic built to interface the chip to

external circuitry, and therefore are not examined in this report. Figure 2 shows a generalized

view of the components found in FPGAs [7].

 4

LUT D-FF

LUT D-FF

Cin

Cout

LB LB

LB LB

LB LB

LB

LB

LB

PSM

PSM

PSM

PSM

LB LB LB

LB LB LB

LB LB LB

(a) Logic Block (b) Bus Interconnect (c) Switch Interconnect
Figure 2: Basic FPGA Components

The core building block of an FPGA is the programmable logic block (LB). This block

implements the actual logic functions for configurable computing, and a general representation is

given in figure 2a. In this model, the logic block uses three stages: function generation, internal

routing, and memory. The logic block is loaded at configuration time with information that

determines how each of these stages is to behave. The function generation stage is implemented

with an array of programmable lookup tables (LUTs). LUTs typically have between three and

five inputs, with four inputs frequently being cited as the best compromise between LUT access

time and the average desired function delay [8]. The programmable routing stage follows the

function generators and allows function results to be supplied to the logic block’s final stage with

minimal delays. Finally, the logic block uses D-flip-flops to implement bit storage within the

logic block. The flip-flops are beneficial for distributed memory in configured designs, including

their use as registers between pipeline stages.

Logic blocks in FPGAs are flexible enough to implement at least three distinct modes of

operation: combinational logic, arithmetic or ripple modes, and dedicated memory storage. In the

combinational logic mode, the LUTs are loaded at configuration time with truth tables necessary

to implement a logic function that is dependent on LUT inputs. Early FPGAs with this mode were

found to be insufficient for complex operations such as adders, comparators, and multipliers [9].

The arithmetic or ripple mode was thus added to the logic block, using dedicated carry gates to

rapidly propagate signals from a logic block to its neighbors. The final mode of memory storage

allows the LUTs to be configured as RAM or ROM units. This mode increases the amount of

usable internal memory within the device and is particularly useful for embedding memory

elements throughout a design.

 5

Interconnection of logic blocks in FPGAs consists of two approaches: bus-based or

switch-based. In either case interconnection wiring routes horizontally and vertically, with logic

blocks attaching to routing resources as programmed at configuration time. Bus-based routing is

the simpler of the two schemes, providing all logic blocks in a row or column equal access to a

horizontal or vertical routing resource as shown in figure 2b. As logic block array dimensions

increase, the number of logic block taps connected to the wire greatly affects the line’s parasitics

and thus the wire’s speed. To combat this hazard, FPGA architects turn to switched

interconnection as illustrated in figure 2c. In these networks, buses are limited to specific

distances, typically of length one, two, four, and global. Programmable switch matrices (PSMs)

distributed throughout the FPGA allow routes to be established as the combination of multiple

length wires. While the switch matrices induce their own delays, the number of taps on a

particular wire segment is greatly reduced, compared to bus-based designs [10]. However, this

isolation of parasitics comes at a cost of increased complexity for software tools responsible for

the placement and routing of logic in the FPGA [11].

3.1.2 Commercial FPGAs: XC4000, FLEX, and ORCA 2

The majority of published work on FPGAs centers around the Xilinx XC4000 series

architecture [10]. This family employs large, complex logic blocks combined with a switch based

interconnection network. The logic block of the XC4000, as seen in figure 3a, is unique in that it

can be configured to use either one or two stages of LUTs per logic block: a 3-input LUT follows

the initial twin 4-input LUTs. This arrangement indicates that Xilinx intends for logic blocks to

implement complex logic functions, reducing the amount of traffic using the interconnection

network. The fast carry-ripple logic between adjacent logic blocks allows for one fast 2-bit full

adder per logic block. Non-carry signals route through a programmable switch matrix shown in

figure 2c, with single, double, quadruple, or global distance wire lengths.

 6

Lo
ca

l I
nt

er
co

nn
ec

t

D-FFCascade4-LUT

Carry LB

LB

LB

LB

LAB

4-LUT

4-LUT

4-LUT

4-LUT

D-FF

D-FF

D-FF

D-FF

O
ut

pu
t M

at
rix4-LUT

G

4-LUT
F

3-LUT
H

D-FF

D-FF

(a) Xilinx XC4000 CLB (b) Altera FLEX (c) Lucent Orca-2
Figure 3: Simplified Views of Commercial FPGA Logic Blocks

Altera holds the largest share of the programmable logic device market [16] and offers a

competitive alternative to the XC4000 architecture. The FLEX family [11] of figure 3b

implements a simple logic block with only a 4-input LUT, cascade logic, and a D-flip-flop, but

then stacks several logic blocks together to form a Logic Array Block (LAB). Logic blocks within

the LAB are tightly coupled with both dedicated routing and fast carry-ripple connections. LABs

communicate with other LABs through a bus-based network. This communication strategy works

well in the FLEX architecture because local traffic is kept within a LAB, leaving long haul

communication to the bus based communication network.

The Lucent Orca 2 FPGA [12] architecture’s logic block represents a clever tradeoff

between the complexity of the XC4000 and the simplicity of the FLEX. As depicted in figure 3c,

the Orca 2 architecture use four 4-input LUTs that may be configured to act as either quad 4-input

LUTs, twin 5-input LUTs, or as a single 6-input LUT. While this configuration places some

restrictions on the quad 4-input LUT mode, it allows for a high component utilization within each

logic block [20]. The Orca 2 implements fast carry-ripple logic, providing a 4-bit full adder per

logic block. While the Orca 2 uses bus-based communication, it targets 4-bit data widths,

implying high system-level functionality per logic block.

3.2 Emerging Architectures

The first implementations of these current generation architectures were fabricated as

early as 1994. The FPGA industry is currently on the verge of an architecture family transition,

with all three major FPGA companies announcing the release of their next generation architecture

chips. This section briefly describes features found in commercial chips released after 1994.

 7

The most influential commercial architecture since the release of the current generation

of FPGAs is undoubtedly the Xilinx XC6200 RPU [19]. Released in 1995 as an experimental

chip, the XC6200 addressed many of the requests from the configurable computing community.

The primary benefit of this device is that it allows users to configure portions of the device at a

time rather than forcing an entire unit reconfiguration. Partial reconfiguration is essential to

efficient configurable computing since it allows better real-time interaction with the device than

in previous architectures. A direct effect of the partial reconfiguration architecture in the XC6200

is an increased amount of routing structure. This routing structure is collectively known as the

FastMap interface and allows an external processor to directly read or write any register or logic

block in the device. The FastMap communication network reduces the complexity of moving data

into or out of the design and results in an overall tighter coupling with the host processor.

The upcoming generation of FPGAs expands upon the previous generation’s

architectures, and exhibits gains in foundry technology. While none of the upcoming architectures

are as dramatic as that of the XC6200, they all provide significant architecture enhancements.

These features include an increased logic block complexity, higher gate densities, improved high-

speed clock handling, dedicated multiply propagation support, and integration of dedicated RAM

into the chip. In addition to these properties, Xilinx’s Virtex [13] supports a fast partial

reconfiguration mode similar to the XC6200. Altera’s APEX [14] architecture offers a special

Content Addressable Memory (CAM) [17,18] mode for its RAM. Lucent’s Orca 3 [15]

technology focuses on a complex logic block, designed to implement higher level units without

causing low gate utilization for simple logic functions. While the preliminary datasheets for these

architectures show an increased awareness of system level functionality in course-grain FPGAs,

there is little experimental data available to impartially compare the architectures. Therefore, this

upcoming generation of FPGAs is not the dominant focus in this report.

3.3 Consequences of FPGA Architectures

A common misconception about FPGAs is that configuration images are implemented as

a ‘sea-of-gates’. An examination of the underlying hardware reveals that this conceptualization is

not the case. While FPGAs do serve as a regularly arranged gate array, there are architectural

factors that clearly separate FPGAs from custom ‘sea-of-gates’ designed VLSI hardware [21].

First, FPGAs implement functional logic with n-input lookup tables. Because of this

 8

implementation, the delay of a 1-bit NOT function is the same as the delay for an n-input

complex logic function. Therefore, the benefits of traditional VLSI logic equation reduction may

be lost to the granularity of the FPGA’s lookup tables. Second, the interconnection networks in

FPGAs induce costly delays for routing between logic blocks. This results in both nonlinear

delays between wired elements and a contradiction of the sea-of-gates assumption that wiring

nearly “comes for free.” Finally, architectural enhancements such as fast carry-ripple logic

generally outperform complex gate arrangements that inevitably must be mapped to LUTs. These

features make it difficult to assume that FPGA designs are best served with traditional VLSI

approaches.

One of the best examples of the nonlinearities involved in FPGA-based designs is found

in Xing and Yu’s analysis of adder implementations for the XC4000 [21]. This study compares

several binary integer addition techniques for a wide range of data widths. In particular the

authors examine carry-skip, carry-select, carry-look-ahead, and the XC4000 native carry-ripple

style adders. It should be noted that the XC4000 design specification [10] warns that “the

dedicated carry circuitry is so fast and efficient that conventional speed-up methods like carry

generate/propagate are meaningless at the 16-bit level.” The result of Xing and Yu’s study

confirms this warning: the most efficient adder in both speed and size for up to 48 bits is the

native carry-ripple adder. This conclusion yields two important insights about FPGAs. First,

VLSI architectures may not translate to efficient FPGA implementations. Second, minor

enhancements to an FPGA’s logic block can provide significant performance and density

improvement for designs utilizing such features.

Another common building block in configurable computing that is dependent on FPGA

architecture is integer multiplication. While the current generation of FPGA architectures do not

provide direct support for hardware multiplication, it is possible to make use of the fast carry-

ripple logic for speed improvements. Peterson and Hutchings present a comparison of

multiplication strategies for different FPGA architectures in [22]. This study examines bit-serial,

parallel-array, and constant parallel-array multipliers for the FLEX, XC4000, and CLAy FPGA

families. While occupying more chip resources, the parallel designs provide a 2-3 factor of

improvement over bit-serial or iterative implementations. Typical speeds for an 8-bit

multiplication range from 4-5MHz for bit-serial to 8-15MHz for parallel array designs. Efficient

 9

carry-ripple addition is specifically cited as a doubling of performance in their final

implementations. Do et al. extend this work in [23] by pipelining multipliers to achieve high peak

performance. While a single multiplication is achieved at a rate of roughly 5MHz, the overall 15-

stage pipeline supplies results at 75MHz. This approach exemplifies how data streaming greatly

improves the practicality of an FPGA, as well as how designs may capitalize on an FPGAs bulk

resource size to compensate for a lack of specific functional support.

Floating point operation on FPGAs is a continuing problem for which there is no

immediate architectural solution. The main problem with floating point arithmetic in FPGAs is

that there is no direct hardware support for such operations. As a result, floating point units in

configurable computing must be constructed from other building blocks such as integer

multipliers and adders. While building floating point designs for FPGAs is certainly possible [9,

25], the implementations exhibit a high resource cost. Ligon et al. [24] present multiple styles of

floating point units to examine the costs in terms of area and speed. While their final pipelined

design produces a 40 MFLOPS floating point adder, it occupies 40% of the total logic block

resources for an XC4020. Interestingly, the authors observe that pipelining the design accounted

for only a small increase in resource cost, with only a slight growth from the 36% logic block

utilization of the iterative approach. However, the authors conclude that the performance of the

FPGA in floating point arithmetic is far worse than commercial processors. Additionally, the high

resource cost for implementing these designs makes FPGA-based floating-point operations

impractical. Based on the preliminary data sheets for the upcoming generation of FPGAs, it is

expected that floating point operation in FPGAs will not be viable for some time.

4. Strengths and Weaknesses of FPGA-assisted Designs

For a fair evaluation of the role of FPGAs in practical computational scenarios, the

strengths and weaknesses of both the FPGAs and the manner in which they are utilized in a

system must be considered.

4.1 Strengths

System level benefits of FPGAs are largely captured in the reasoning behind configurable

logic, as described in section 2. However, designers must achieve high performance at the FPGA

level before the advantages of configurable computing can be utilized. Noting that gates emulated

 10

by FPGAs are slower than custom VLSI circuits, designers must use latency hiding techniques to

achieve high performance. Fortunately, the high densities of FPGAs make these techniques

possible, as well as competitive with dedicated hardware. There are three dominant strengths that

exploit the FPGAs characteristics: pipelining, parallelism, and partial evaluation

Pipelining is the hardware technique of segmenting a complex operation into distinct

stages so that multiple data values are computationally in-flight at the same time. Pipelining is

therefore a natural choice for FPGAs due to the discrete and regular qualities of FPGA logic

blocks. Memory found at the tail end of the logic blocks completes this image, utilizing the

storage as pipeline stage registers. Several groups [22-24] observe that pipelining an iterative

design in FPGAs generally comes with only minimal resource costs. As a result, pipelines allow

FPGAs to transform mediocre iterative designs into high-throughput realizations competitive with

alternate hardware. However, the most interesting feature for FPGA pipelining is the ability to

combine complex operations into a single deep pipeline. This approach is similar to systolic or

bit-serial strategies: data flows out of one pipeline into the next, without stalling for the collection

of an entire data value. While DSP architectures exhibit some aggregate operations such as the

Multiply-Accumulate (MAC), FPGAs have the ability to chain together any sequence of

operations as needed by an algorithm. These deep pipelines are difficult to abstract for general-

purpose CPUs, and therefore FPGAs offer computational potential found elsewhere only in

ASICs.

The second strength of FPGA design is the ability to implement a large degree of

computational parallelism. The number of independent computations that may be implemented in

an FPGA is limited only by the size of the chip and the ability to find such computations. Two

types of parallel exploitations are common: data parallelism and algorithmic parallelism. Data

parallelism occurs when regular processing may be performed over a large data set concurrently,

such as in image processing. Algorithmic or control parallelism is the act of allowing multiple

independent algorithmic tasks to operate concurrently. An example of algorithmic parallelism is

found in a network interface chip: send and receive threads are independent tasks and therefore

may be implemented as concurrent state machines in an FPGA. Finally, a combination of data

and algorithmic parallelism can yield high throughput devices with low speed parts as depicted in

figure 4. This hardware technique streams high-speed data values into and out of an array of low

 11

speed computational units. This method demonstrates how an FPGA can compete with other

dedicated hardware devices by trading device area for speed.

X

X

X

X

1x

4x 4x

Figure 4: High Performance with Low Speed Components

The third primary strength of FPGAs is the ability to use partial evaluation techniques to

minimize computation logic and delay. Partial evaluation is a technique used by compilers and

FPGAs to reduce a multivariable function to a less complicated expression based on information

known at compile time. Consider for example a multiplication unit. A general-purpose multiplier

must logically produce answers for all possible sets of inputs. However, if one of the multiplier’s

inputs is a constant then the unit produces only multiples of that constant. Using this information,

all paths leading to non-multiples of the constant may be eliminated and the logic equations for

the multiplier thus reduced. This technique is not feasible in general-purpose CPUs, but the

reconfigurable nature of the FPGA makes such optimizations possible. In Peterson and

Hutchings’ study of multiplication implementations for FPGAs [22], partially evaluated circuits

for constant multiplication are considered, and result in a factor of 2-3 improvement over the best

case general-form multiplier.

A key dependency of the above strengths is the ability for an FPGA to be configured to

perform as hardware relevant to a given application. The middle ground offered by configurable

computing between general-purpose CPUs and dedicated ASICs represents an emerging design

style dealing with “disposable hardware.”[1,2,5,6] In the simplest form, common applications

may utilize an FPGA as if the application is worthy of its own dedicated ASIC. A more

interesting application of configuration arises in the field of adaptive hardware. Researchers such

as Mangione-Smith see a great opportunity for the configurable nature of FPGAs not only to

provide high-speed computation, but also to give a means for reacting to a problem’s

computational progress [1]. An adaptive system potentially would provide multiple hardware

images optimized for specific cases of a given problem. System hardware would thus be

 12

responsible for swapping in different hardware configurations as a problem’s nature changes.

Applications such as target recognition currently implement crude versions of this strategy [1, 38,

39]. In [26], Rashid sees a more featured system, capable of generating its own hardware images

dynamically. Configuration manipulations therefore present a computational opportunity for

FPGAs unavailable in any other technology.

4.2 Weaknesses

The physical constraints of the FPGAs are a primary source of weakness for FPGA-

assisted calculations. In addition to the computational building block limitations described section

3.3, designs implemented in configurable logic are subject to factor of 3 slowdown in speed and a

factor of 10 degradation in density when compared to similar logic implementation in ASICs [8].

This degradation is a result of gates and interconnection being implemented through configurable

SRAM-based devices. Gate density is perhaps the most critical limitation in FPGA devices since

the size of the gate array determines how much logic can be implemented, and therefore restricts

the degree of achievable parallelism. A number of works specifically note the inability of FPGAs

to store large designs as a significant performance limit [9, 23, 24]. Realizing the importance of

this problem, the FPGA industry is continuously increasing gate capacity with each chip revision.

Along similar lines, it is well known that the limited routing resources of interconnection

networks prevent 100% utilization of an FPGA’s logic blocks. As a consequence the FPGA

industry is continually exploring the routing algorithms for synthesis tools as well as offering

additional routing resources for high-density devices.

Beyond the physical constraints of the FPGA architecture, there are a number of barriers

in current systems that prevent efficient use of FPGA-assisted processing. Without question, the

ultimate weakness of current systems is the lack of proximity of the FPGA to data. A number of

FPGA-based computation boards are available, but these boards all reside at the end of the PCI

bus or serial port. The computational flow in this arrangement is a costly path: computation starts

at the host CPU, migrates with data through the memory system, and finally moves through the

I/O bus into the FPGA card. This process is reversed once the FPGA finishes computation and

needs to move results back to the host CPU. Clearly these overheads make the practicality of

assisted computation questionable. Alternate proposals to create a more efficient computational

environment are discussed in section 8.

 13

Another challenge for FPGAs is the relatively long delay required for re-programming

the device. For the current generation chips entire configurations must be loaded into the device

at a time, creating an offline time on the order of a few milliseconds. This dead time can be

significant for applications where the cost of reconfiguring the device is comparable to the

amount of time to perform the operation. Therefore, various research groups propose operating

system management of the FPGA to perform better scheduling of FPGA utilizing applications

[27]. This work creates a “Virtual FPGA” and leverages existing OS research in managing slow

multi-user devices such as memory or disk. A number of hardware architectures to reduce

configuration time have been proposed and implemented, such as the XC6200 partially

reconfigurable RPU [19] and the Sanders corporation’s CSRC multi-context FPGA [48]. These

are discussed in section 8.

Designing configurations that efficiently utilize the FPGA can be accompanied by a

complicated development cost. Clearly, development for hardware-assisted devices is more costly

than software-only approaches due to the complexity of hardware-software co-design. Design

environments such as hardware description languages (HDLs) and hardware compilers create

abstractions of the hardware to provide simpler design flows and portability between target

architectures. Unfortunately a target architecture’s strengths may be masked by these

abstractions. The balance between high performance and ease of design for configurable

computing is a complicated issue, and is further discussed in section 5.

Strengths Weaknesses

Extreme parallelism potentials Poor floating point performance
Deep customized pipelining Limited resources
Partially evaluated circuits Poor data proximity
Disposable circuits Overall design complexity

Table 1: Summary of FPGA Strengths and Weaknesses

4.3 Suitable Applications

The strengths and weaknesses for FPGA-assisted computation are summarized in table 1.

From these points it is apparent that applications with the following qualities are more suitable for

FPGA assistance:

 14

• Highly parallel applications: The FPGAs capacity for parallel hardware is a great strength.

Therefore the most successful applications are the ones with large degrees of data or

algorithmic parallelism.

• Streamlined Data: To overcome the burdens of slow internal units, FPGAs often must

pipeline data to achieve satisfactory speeds. Applications performing regular operations on a

stream of data are a good fit for FPGA use.

• Prior knowledge circuits: Algorithms with constant data values or algorithm computation

reductions perform well in configurable devices.

• Complex Custom Logic: Applications with regular logic operations generally transfer well

to state machines in FPGAs. FPGA based evaluation of these operations is beneficial since

the FPGA can provide better custom logic implementations than a CPU, and can perform

these operations at the same time as other algorithm functions.

4.4 Unsuitable Applications

Conversely, the following forms of applications typically have poor implementations in

FPGA-based configurable computing:

• Sequential programs: Programs with tight loops are difficult to parallelize for any target

architecture. Therefore, general-purpose CPUs perform significantly better than FPGAs in

sequential applications.

• Large floating point calculations: The high resource cost for FPGA based floating point

computation makes applications with floating point operations difficult to justify in FPGA

consideration.

• Non-localizable data: FPGA performance is significantly reduced when data must flow up

and down the memory subsystem. Applications that frequently pass large data sets between

the host and FPGA are challenging in current FPGA-assisted systems.

5. Design Methodologies

One of the dominant factors inhibiting the widespread use of configurable computing

comes from the complexity of hardware-software co-design. The process of analyzing an

algorithm and developing an FPGA-assisted design is substantially more complicated than

software-only approaches, and has no guarantee of performance enhancement [28]. Software

 15

engineering practices such as code reuse, iterative design, and automated tool assistance are

important for successful design, and captured in the field of rapid prototyping. Due to the depth of

the rapid prototyping domain, this report is limited to two primary design methodologies: tool-

assisted manual design and custom compilation.

The majority of configurable computing is currently implemented by custom manual

design. This technique centers on an engineer examining an algorithm, determining the most

complicated operations that could benefit from hardware, and hand designing an FPGA image to

execute the computations. While this is admittedly a very slow and complicated design

procedure, it often produces the highest performance results, which in the end may be reused by

other designs. Typical hardware/software co-design practices use hardware description languages

(HDLs) such as VHDL and Verilog to write a software simulation of the device. The HDL source

code is then run through complex synthesis tools to generate gate-level descriptions for the

circuits. After running the gate-level descriptions through an FPGA specific place and route tool,

designs are ready for use in FPGAs. The final step involves the interfacing of host level programs

to the loaded FPGA [28, 41]. With hardware and software tasks designed and built, the overall

process iterates until a design is fully tested and meets timing specifications.

While the manual design methodology presents high-performance custom hardware, it

suffers from a high overhead of analysis, device design, and system testing. A number of research

efforts [29,30] realize that the complexity of this design process makes it impractical for general

use. These groups propose an alternative approach of placing the burden of analysis and design

on the compiler. Specifically these groups use an analysis tool that takes a given C program and

compiles it into a hardware gate description. This work capitalizes on compiler technology such

as loop unrolling and maps data operations into predefined logic block macros. While appealing

in the sense of automated hardware generation, these approaches suffer from the problems

inherent in all parallelizing compilers: C is a sequential language and as such it is difficult to

extract high-performance parallelism. Typical speedup for these programs in FPGA

implementations is reported at roughly 2x [2].

 16

6. Custom Computing Performance Measurements

Evaluating the performance of FPGA-based designs can be difficult. To better understand

a design’s weaknesses, performance is ideally measured at both the FPGA and system levels. In

terms of actual FPGA performance, it is desirable to apply the design to multiple FPGA target

architectures as illustrated in [22]. To facilitate a more generic comparison of FPGA

architectures, the MIT Reconfigurable Architecture Workstation (RAW) project provides a

benchmarking suite of traditional FPGA applications in [31]. However, the authors of [2] suggest

that generic benchmarking suites for FPGAs expose little practical information. Since these suites

use generic designs, special features of individual FPGA architectures cannot be leveraged in the

tests. With the assumption that performance of FPGA designs overrides ease of implementation,

the best method of FPGA level comparison is with designs hand crafted to take advantage of a

target architecture’s features. Therefore, benchmark comparisons can only give approximations of

the hardware’s performance.

The ultimate performance evaluation of an FPGA-based design is in system level

speedup over software-only approaches. Should the overall system speedup fail to be substantial

enough to justify the added system complexity, then clearly the FPGA-assisted design should be

avoided. Additional factors may play a role in the assessment of an FPGA-assisted design’s

worth. First, a design with only a low performance enhancement may be more meaningful if the

application is frequently used. Second, a design’s hardware resource requirements such as a gate

count or additional memory dictate the dimensions and expense for the FPGA board’s hardware.

FPGA literature can be misleading in that hardware requirements necessary for peak performance

are often downplayed. Finally the side effects of FPGA hardware on the overall system must be

considered in a design’s evaluation. For example, while an FPGA board may offload computation

from the CPU, it may also increase bus traffic in the region where the FPGA resides.

7. Design Examples

7.1 Data Streaming and Partial Evaluation: Cryptography

Data encryption and decryption is an application for which FPGAs have recently received

a large amount of public attention. Recent estimates predict that previously secure cryptography

 17

may be vulnerable to a dedicated network of FPGAs or custom ASICs. With dedicated hardware,

brute force key search attacks on encrypted messages may crack messages in time periods of

weeks or months instead of years or centuries. The strength of encryption generally relies on two

algorithmic details. First the keyspace from which a particular key is chosen to encrypt a message

must be large enough that incrementally guessing all possible keys takes a considerable length of

time. Second, the encryption process must be complicated enough that it cannot be trivially

performed by general-purpose CPUs. The combination of these two factors leads to lengthy

searches in the case of brute force attacks. Unfortunately this complexity also limits the speed at

which data streams may be encrypted. Therefore, the interest in FPGAs or ASICs is to improve

the speed in which encryption and decryption of a data stream can occur.

The encryption and decryption processes are typically not considered as targets for

common use of FPGAs because commercially available chips can rapidly perform the

calculation. However, in [32] Leonard and Mangione-Smith present a stream oriented

cryptography implementation offering improvements in the raw encoding/decoding speeds for the

DES algorithm. The basis for this work is the assumption that a session key is used to

encode/decode data changes infrequently for a given data stream, and is therefore ripe for partial

evaluation techniques in an FPGA. The authors therefore build and compare an FPGA circuit

with particular session keys hard-wired into the design. This key-specific circuit is able to achieve

a 45% reduction in FPGA logic blocks and a 35% improvement in bandwidth. This work is

important because it demonstrates how partial evaluation can provide substantial speed

improvements for complex operations that are generally not possible in other forms of CPU or

ASIC implementation.

While speed benefits for stream-based encryption/decryption are important, the primary

interest in FPGAs for cryptography is high-speed key breaking. Due to the complexity of the

encryption process, hardware support to pipeline the operation and minimize key evaluation times

is critical. An ASIC implementation of a key breaking circuit would be ideal, but is of little

common use to non-cryptographic breaking agencies. Therefore the FPGA is the architecture of

choice for ad-hoc evaluation of cryptographic strength. A general key breaking system consists of

three main components: a key generator, an encryption unit, and a comparison unit. Although a

key generator can be a simple counter, alternate approaches choose less complex but unique key

 18

generators for high speed [33]. The encryption unit may be pipelined depending on the

complexity of the algorithm, and generally provides the critical delay for the system. Performance

of key breaking circuits for FPGAs is impressive: studies show that a single DES key-breaking

circuit can test 1.02Mkeys per second with a system clock of 17MHz [34]. By comparison,

software implementations can check at least 50Kkeys per second. Accepting the parallel nature of

the operation, multiple key breaking circuits may be placed in a single FPGA, as well as in

multiple FPGA based systems.

7.2 Data Parallelism: Digital Signal Processing

FPGAs are a natural choice for digital signal processing (DSP) due to the large degree of

parallelism commonly found in this domain’s algorithms. However it is not necessarily true that

all DSP operations are well suited for FPGAs. For example, the fast Fourier transform (FFT)

algorithm is a common DSP building block employing a regular and parallel computation

structure. Unfortunately the FFT requires complex value multiplications that are best served with

floating point precision. FPGA implementations generally resort to iterative approaches (reducing

parallelism), fixed-point precision (reducing resolution), or require large multi-FPGA systems

(reducing practicality)[22,35]. It is therefore difficult for low-cost FPGA systems to be

competitive with specialized DSP processors in FFT computation. There are many other DSP

applications that do transfer well to FPGA-assisted processing. Such computations include the

discrete cosine transform (DCT) for JPEG and MPEG image compression [36,37], target

detection in image processing [38,39], and signal filtering [5,22].

While examples of FPGA-based DSP operations are abundant, Mangione-Smith observes

in [40] that “no companies are known to use reconfigurable computing for a competitive

advantage.” Singh and Slous accept this challenge in [41] and explore how a commercially

available Xilinx XC6200 RPU board can be used to assist real world DSP applications. This work

demonstrates how an FPGA-based PCI board can supplement computations for the popular

Adobe Photoshop image processing software. Adobe provides software extensions to Photoshop

that allow users to write custom filter operations in standard C. Singh and Slous use this software

interface to allow Photoshop to directly interact with the FPGA for hardware based filter

operations. The software driver extracts image data from Photoshop, transfers the data to memory

on the FPGA card, and then triggers the FPGA to begin computations such as colorspace

 19

conversion or 1D/2D convolution. Once computation is complete, the results are transferred back

to Photoshop’s environment. The conclusions drawn by this work strongly reflect the strengths

and weaknesses of current FPGA-assisted systems. While data is processed at a high rate of up to

20Mpixels per second at the FPGA, system data transfers to the card slow the perceived operation

to 0.22Mpixels per second. For comparison the authors cite that the on-card FPGA performance

is approximately ten times greater than that of a dedicated 4-processor Power PC Genesis MP600

graphics workstation.

7.3 Custom Logic: Packet Scheduling

A potential environment suitable for FPGAs is emerging in high-speed data

communication networks. With the increased bandwidth of Gigabit ATM and Ethernet, switch

and network interface cards face increased throughput requirements as well as more demanding

Quality of Service (QoS) needs. Some developers see the FPGA as a tool for implementing

custom network processing logic that directly interacts with high-speed link transceivers [42].

These implementations can be expanded to provide hardware support for QoS oriented packet

scheduling. Current schedulers analyze a list of queued packets’ statistics and recompute

priorities to make intelligent scheduling decisions. In a real-time context this work is non-trivial

for CPUs, and may be better suited for FPGAs that can compute priorities in parallel.

Additionally, the reconfigurable aspect of FPGAs allows researchers to experiment with complex

scheduling algorithms at previously infeasible speeds.

The Illinois Pulsar-based Optical INTerconnect (iPOINT) project seeks to enhance QoS

features of the Washington University Gigabit ATM switch through an FPGA card inserted at

each switch port [43]. At the lowest levels, these FPGA cards implement an ATM port’s standard

responsibilities such as VPI/VCI translation, packet header CRC checks, and physical interface

management. Recent work in the iPOINT project extends these duties to include multicast

support and an elaborate input queue management algorithm known as 3-Dimensional Queuing

(3DQ) [44]. The 3DQ design is significant for at least two reasons. First, it improves the service

performance of the switch by prioritizing input queue packets based on a combination of virtual

circuit ID, destination port, and a packet’s global priority level. Second, this hardware

implementation built with 1997 technology performs these QoS decisions at a speed sufficient to

satisfy OC-12 data rates (622Mbps). Observing that other scheduling algorithms constantly

 20

update queued packets’ priorities, FPGAs may prove to be ideal companions for an upcoming

generation of high-performance queuing systems.

8. Obstacles and Future Enhancements

As seen in sections 4.2 and 7.2, the primary obstacle for practical use of FPGA-assisted

computation is the positioning of the FPGA in the overall system. Performance of the FPGA

significantly degrades as the distance of the FPGA from the host CPU and memory subsystem

increases. Various proposals suggest methods of decreasing this distance to provide a tighter

coupling with the host processor. The first and most practical method is to move FPGA

processing boards off the PCI bus and into the high-speed AGP slot in PCs [41]. This upgrade

gives the boards a high-speed bus as well as better access to the host’s memory subsystem

without radical system modifications. The second and more elaborate method addresses the I/O

limitations of the actual FPGA chip. In [45] the authors propose adding a high-speed VLSI

communication core such as RAMBUS to an FPGA chip. Such a core allows FPGAs to overcome

physical pin limitations by multiplexing an FPGA design’s data lines onto a high-speed link. This

modification is drastic since it calls for FPGA architecture changes as well as an integration of the

FPGA directly into the host memory subsystem. The third and most radical approach to improved

coupling is to embed the FPGA as a unit inside the CPU [46]. Observing the inclusion of MMX

in the x86 architecture, researchers are hopeful that industry will see the embedding of FPGAs in

processors as useful in the times of Gigascale design. Such implementations represent a

fulfillment of Estrin’s 1960 proposal for variable structure processing in CPUs.

The ability to rapidly reconfigure an FPGA is essential to configurable computing and a

limitation of current-generation architectures. Two methods of improving this problem include

partial reconfiguration and context switching FPGAs. Partial reconfiguration devices such as the

XC6200 and Virtex families allow portions of the device to be read or written at a time without

disturbing the entire device. This style is conducive to “Virtual FPGA” management operating

systems that swap hardware images into and out of the FPGA as needed by application. Partial

reconfiguration is a natural extension of previous FPGA research and is expected to give the

upcoming Virtex family an edge in the configurable computing community.

 21

A more sophisticated style of dealing with rapid FPGA reconfiguration is though multi-

context FPGAs. In these devices additional memory is placed in each logic block to store a fixed

number of configurations. These configuration arrays allow multiple hardware image planes, or

contexts, to be loaded into the FPGA at once. Contexts are given time slices for which they can

perform computation with the FPGA hardware, giving the appearance of several “virtual FPGAs”

operating at once. Sanders of Lockheed Martin has fabricated a multi-context FPGA known as

the Context Switching Reconfigurable Computing (CSRC) chip to perform high-speed signal

processing [48]. Xilinx has also designed a multi-context implementation of the XC4000, though

it has not been fabricated [47]. Aggressive views of multi-context FPGAs would suggest allowing

context switching at a finer granularity than at the entire plane level. These implementations

could better use hardware, realizing that delay through units in a configuration plane is not equal.

For example, if a fast unit of a plane completes before a slower unit, the area of the chip that

completes calculations early could context switch to another image plane. Thus, hardware is

reused in an extremely efficient manner. Unfortunately the overwhelming complexity of multi-

context designs is a limitation. Likewise, the device is restricted to a fixed number of contexts.

However, these devices provide a number of research opportunities in configurable computing, as

well as self-modifying hardware.

9. Conclusions

Due to the limitations of the previous generation of hardware, configurable computing is

largely still in its infancy. Recent work and enhancements in upcoming FPGA hardware provides

an opportunity for configurable computing to mature into a technology suitable for practical use

in the near future. For widespread acceptance, FPGA users must understand a number of issues

associated with configurable computing. First and foremost, designers must know the

characteristics of both the target FPGA architectures and their system-level integration.

Knowledge of the hardware is critical since performance can be masked by system deficiencies.

Second, users must understand the types of applications suitable for configurable computing.

Architecture features of current FPGA based systems indicate that successful applications use

data streams, parallelism, regular computation, constant data values, or custom logic. Conversely,

failed FPGA designs often have tight algorithmic loops, floating point precision, or non-

 22

localizable data, and are better suited for general-purpose CPUs and ASICs. Third, while FPGA

designs have demonstrated high performance, users must be aware that performance often comes

at a cost of a lengthy design process. Design tools being developed today may simplify this

process, but the reported performance of automated designs is worse than manual

implementations.

The release of the next generation of hardware offers a great deal of promise for the

configurable computing community. These devices provide higher gate densities, improved

arithmetic support, and methods of fast re-programming ideal for configurable computing. While

system integration still remains challenging, the number of proposals addressing the problem

suggests that adding FPGAs to general use systems is both worthwhile and practical. Ultimately,

such innovations will lead to the computational role for programmable logic envisioned by

pioneers such as Estrin.

 23

10. References

[1] J. Villasenor and W Mangione-Smith, “Configurable Computing”, in Scientific American, June 1997
Available at http://www.sciam.com/0697issue/0697/villasenor.html

[2] W. Mangione-Smith and B. Hutchings, “Configurable Computing: The Road Ahead,” in

Reconfigurable Architectures Workshop, 1997

[3] M. Gokhale et al., “SPLASH: A Reconfigurable Linear Logic Array,” in Proceedings of the

International Conference on Parallel Processing, August 1990

[4] W. Culbertson, R. Amerson, R. Carter, P. Kuekes, and G. Snider, “Defect Tolerance on Teramac

Custom Computer,” in Proceedings of the 1997 IEEE Symposium on FPGA's for Custom Computing
Machines

[5] A. DeHon, “Comparing Computing Machines,” in Proceedings of SPIE Vol. 3526, 1998

[6] A. DeHon, “Why Configurable Computing? The Computational Density Advantage of Configurable

Architectures,” at http://www.cs.berkeley.edu/~amd/CS294F98/papers/whycc.ps.Z

[7] S. Brown and J. Rose, “Architecture of FPGAs and CPLDs: A Tutorial,” IEEE Design and Test of

Computers, Vol. 13, No. 2, pp. 42-57, 1996

[8] V. Betz and J. Rose, “How Much Logic Should Go in an FPGA Logic Block?” in IEEE Design &Test

of Computers, January-March 1998

[9] B. Fagin and C. Renard, “Field Programmable Gate Arrays and Floating Point Arithmetic,” in IEEE

Transactions on VLSI Systems, September 1994, pp. 365-367

[10] Xilinx Corporation, “XC4000E and XC4000X Series Field Programmable Gate Array Product

Specification”, November 1997

[11] Altera Corporation, “FLEX 8000 Programmable Logic Device Family Data Sheet,” 1998

[12] Lucent Technologies Corporation, “ORCA OR2CxxA (5.0 V) and OR2TxxA (3.3 V) Series Field-

Programmable Gate Arrays Product Brief”, December 1997

[13] Xilinx Corporation, “Virtex 2.5 V Field Programmable Gate Arrays Product Specification,” November

1998

[14] Altera Corporation, “APEX 20K Programmable Logic Device Family Advance Information Brief”,

October 1998

[15] Lucent Technologies Corporation, “ORCA Series 3 Field-Programmable Gate Arrays Preliminary

Data Sheet”, August 1998

[16] Electronic Buyer's News, 30-March-98, at http://www.optimagic.com/market.html

[17] A. Stansfield and I. Page, “The Design of a New FPGA Architecture” available at

ftp://ftp.comlab.ox.ac.uk/pub/Documents/techpapers/Ian.Page/cam95.ps

[18] MUSIC Semiconductors, “MUSIC Semiconductors CAM Tutorial,” available at http://www.music-

ic.com/cam.html

http://www.sciam.com/0697issue/0697/villasenor.html
http://www.optimagic.com/market.html
http://www.music-ic.com/cam.html
http://www.music-ic.com/cam.html

 24

[19] Xilinx Corporation, “XC6200 Field Programmable Gate Arrays”, Data Book, April 1997

[20] J. Cong and S. Xu, “Delay-Optimal Technology Mapping for FPGAs with Heterogeneous LUTs,” in

Proceedings. of 35th Design Automation Conference, Jun. 1998, pp. 704-707

[21] S. Xing and W. Yu, “FPGA Adders: Performance Evaluation and Optimal Design,” in IEEE Design &

Test of Computers, January-March 1998, pp. 24-29

[22] R. Petersen and B. Hutchings, “An Assessment of the Suitability of FPGA-Based Systems for use in

Digital Signal Processing,” in Proceedings of the 5th Annual Workshop on Field-Programmable Logic
and Applications (FPL ’95), August 1995

[23] R. Do, H. Kropp, M. Schwiegershausen, and P. Pirsch, “Implementations of Pipelined Multipliers on

Xilinx FPGAs," in Proceedings of the 7th Annual Workshop on Field-Programmable Logic and
Applications (FPL ’97)

[24] W. Ligon III, S. McMillan, G. Monn, K. Schoonover, F. Stivers, and K. Underwood, “A Re-

Evaluation of the Practicality of Floating Point Operations on FPGAs,” in Proceedings of the IEEE
Symposium on FPGAs for Custom Computing Machines (FCCM 98), April 1998

[25] Y. Li and W. Chu, “Implementation of Single Precision Floating Point Square Root on FPGAs,” in

Proceedings of the IEEE Symposium on FPGAs for Custom Computing Machines (FCCM 97), 1997

[26] A. Rashid, J. Leonard, and W. Mangione-Smith, “Dynamic Circuit Generation for Solving Specific

Problem Instances of Boolean Satisfiability,” in Proceedings of the IEEE Symposium on FPGAs for
Custom Computing Machines (FCCM 98), 1998

[27] W. Fornaciari and V. Piuri, “Virtual FPGAs: some steps behind the physical barriers,” in Parallel and

Distributed Processing, Reconfigurable Architectures Workshop (RAW 98), 1998

[28] N. Narasimhan, V. Srinivasan, M. Vootukuru, J. Walrath, S. Govindarajan, and R. Vemuri, “Rapid

Prototyping of Reconfigurable Coprocessors,” in International Conference on Application-specific
Systems, Architectures and Processors, August 1996

[29] I. Page, “Parameterised Processor Generation,” International Workshop on FPGAs at Oxford,

September 1993

[30] A. Agarwal, S. Amarasinghe, R. Barua, M. Frank, W. Lee, V. Sarkar, D. Srikrishna, and M. Taylor,

“The RAW Compiler Project,” in Proceedings of the Second SUIF Compiler Workshop, 1997

[31] J. Babb et al., “The RAW Benchmark Suite: Computational Structures for General Purpose

Computing,” in Proceedings of the IEEE Symposium on FPGAs for Custom Computing Machines
(FCCM 97), 1997

[32] J. Leonard and W. Mangione-Smith, “A Case Study Partially Evaluated Hardware Circuits: Key

Specific DES,” in Proceedings of the 7th Annual Workshop on Field-Programmable Logic and
Applications (FPL ’97)

[33] I. Goldberg and D. Wagner, “Architectural considerations for cryptanaltic hardware.” CS252 Report,

May 1996, Available at http://www.cs.berkeley.edu/~iang/isaac/hardware/

[34] T. Kean and Ann Duncan, “DES Key Breaking, Encryption and Decryption on the XC6216,” in

Proceedings of the IEEE Symposium on FPGAs for Custom Computing Machine, 1998

[35] Altera Corporation, “Implementing fft with On-Chip RAM in FLEX 10K Devices,” Application Note

84, February 1998

http://www.cs.berkeley.edu/~iang/isaac/hardware/

 25

[36] G. Aggarwal and D. Gajski, “Exploring DCT Implementations,” Technical Report UCI-ICS-98-10,

March 1998, Available at http://www.ics.uci.edu/pub/gaurav/tech_reports/

[37] B. Schoner, J. Villasenor, S. Molloy, and R. Jain, “Techniques for FPGA Implementation of Video

Compression Systems"” in FPGA’95 ACM/SIGDA International Symposium on Field Programmable
Gate Arrays 1995

[38] Myricom Corporation, “Scalable, Network-Connected, Reconfigurable, Hardware Accelerators for an

Automatic-Target-Recognition” Technical Report

[39] J. Leonard and A. Rashid, “Evaluating the Benefits of Hardware Context Switching for Automated

Target Recognition,” UCLA EE Dept. Technical Report TR98-1

[40] W. Mangione-Smith et al., “Seeking Solutions in Configurable Computing,” IEEE Computer,

December, Vol. 30, No. 12. December 1997

[41] S. Singh and R. Slous, “Accelerating Adobe Photoshop with Reconfigurable Logic,” in Proceedings of

the IEEE Symposium on FPGAs for Custom Computing Machines, 1998

[42] G. Glykopoulos, “Design and Implementation of a 1.2 Gbit/s ATM Cell Buffer using a Synchronous

DRAM chip,” University of Crete Technical Report FORTH-ICS/TR-221, July 1998, Available at
ftp://ftp.ics.forth.gr/tech-reports/1998/

[43] H. Duan, J. Lockwood, and S. Kang, “FPGA Prototype Queuing Module for High Performance ATM

Switching,” in Proceedings of the Seventh Annual IEEE International ASIC Conference, September,
1994

[44] H. Duan, J. Lockwood, S. Kang, and J. Will, “A High-performance OC-12/OC-48 Queue Design

Prototype for Input-Buffered ATM Switches,” in IEEE Infocom '97, April 1997

[45] N. Margolus, “An FPGA architecture for DRAM-based systolic computations,” in Proceedings of the

IEEE Symposium on FPGAs for Custom Computing Machines (FCCM 97), 1997

[46] J. Hauser and J. Wawrzynek, “Garp: A MIPS Processor with a Reconfigurable Coprocessor,” in

Proceedings of the IEEE Symposium on Field Programmable Gate Arrays for Custom Computing
Machines (FCCM 97), April 1997

[47] S. Trimberger, D. Carberry, A. Johnson, J. Wong, “A Time-Multiplexed FPGA,” in Proceedings of the

IEEE Symposium on FPGAs for Custom Computing Machines (FCCM 97), April 1997

[48] S. Scalera and J. Vazquez, “The Design and Implementation of a Context Switching FPGA,” in

Proceedings of the IEEE Symposium on FPGAs for Custom Computing Machines (FCCM 98), 1998

ftp://ftp.ics.forth.gr/tech-reports/1998/

	Contents
	1. Introduction
	2. Configurable Computing
	3. FPGA Architectures
	3.1 Current Generation Architectures
	3.1.1 General Description
	3.1.2 Commercial FPGAs: XC4000, FLEX, and ORCA 2

	3.2 Emerging Architectures
	3.3 Consequences of FPGA Architectures

	4. Strengths and Weaknesses of FPGA-assisted Designs
	4.1 Strengths
	4.2 Weaknesses
	4.3 Suitable Applications
	4.4 Unsuitable Applications

	5. Design Methodologies
	6. Custom Computing Performance Measurements
	7. Design Examples
	7.1 Data Streaming and Partial Evaluation: Cryptography
	7.2 Data Parallelism: Digital Signal Processing
	7.3 Custom Logic: Packet Scheduling

	8. Obstacles and Future Enhancements
	9. Conclusions
	10. References

		2000-12-17T18:08:13-0500
	Atlanta
	Craig Ulmer
	I am the author of this document

