
A Messaging Layer for Heterogeneous Endpoints in Resource Rich Clusters∗

Craig Ulmer and Sudhakar Yalamanchili

Critical Systems Laboratory
School of Electrical and Computer Engineering

Georgia Institute of Technology
Atlanta, GA, 30332-0250

Email: {ulmer, sudha}@ece.gatech.edu

∗ This work is supported in part by a grant from the National Science Foundation under grant ANI-9876573 and by a fellowship from the NASA Jet
Propulsion Laboratory’s Graduate Student Research Program under grant NGT5-50146.

Abstract

Resource rich clusters are an emerging category of
clusters of workstations where cluster nodes comprise of
modern CPUs as well as high-performance peripheral
devices such as intelligent I/O interfaces, active disks, and
capture devices that directly access the network. These
clusters target specific applications such as digital
libraries, web servers, and multimedia kiosks. We argue
that such clusters benefit from a re-examination of the
design of the message layer to retain high performance
communication while facilitating the interface to
endpoints for a variety of devices.

 This paper describes a message layer design which
includes optimistic flow control, the use of logical
channels, a push-style cut-through injection optimization,
and an API supporting cluster-wide active message
handler management. The goal is to support a number of
diverse cluster hardware configurations where
communication endpoints exist in a variety of locations
within a node. The current implementation has been
tested on a Myrinet cluster with communication endpoints
located in the host CPUs as well as Intel i960 based I2O
server cards.

1. Introduction and motivation

 The current generation of clusters of workstations
utilize high speed system area network (SAN) fabrics to
interconnect high performance workstations. Modern low
latency message layers utilize intelligent network
interfaces with communication endpoints located within
the host CPU memory and accessed from the user level
[1]. Network communication is still largely orchestrated

by the CPU with support from intelligent network
interfaces. However several trends have created a need
for a departure from this “CPU-centric” view of network
communication in clusters.
 Emerging network-based applications such as digital
libraries, web servers, and data warehousing & mining are
impacting cluster architectures through the inclusion of
powerful peripheral devices. For example, demands for
high performance web servers have resulted in
programmable I/O cards that directly control arrays of
disks and service network requests without host
intervention. In other applications, special purpose
hardware devices are being used to enhance media
processing and search engine capabilities. With the
migration of processing power to peripheral devices, the
CPU begins to become the bottleneck as all interactions
between peripherals and the network are funneled through
the CPU and up and down the memory and I/O
hierarchies.
 Emerging I/O standards such as Infiniband [2] discard
bus-based organizations of I/O devices in favor of a point-
to-point switched communication fabric to provide
concurrent paths from intelligent peripheral devices to
(potentially multiple) network interfaces. Communication
endpoints can now reside within these devices. Our goal
is to provide communication layers that support
customization for each peripheral device to maximize the
network performance of each device. We propose a
flexible API that permits devices (endpoints) to customize
their interactions with the network interface without host
CPU intervention or need for direct end-to-end
interactions with the destination device.
 Our approach is to provide a message layer that retains
the properties of first generation message layers, primarily
low latency, while structuring the design such that device-
specific and network-specific features are separated. The

mailto:sudha}@ece.gatech.edu
mailto:sudha}@ece.gatech.edu

effect is that of providing an application programming
interface to the low-level message layer that is extensible
in the sense that new devices can be added by addressing
device-specific functionality and a simple protocol for
communicating with the local network interface. This
paper describes an implementation for a Myrinet based
cluster with endpoints within the host CPU and an Intel
i960-based intelligent I/O (I2O) card. We conclude with
performance measurements that summarize the impact of
the proposed message layer design.

2. Background

 Communication in clusters is typically facilitated by
low latency, high bandwidth system area networks
(SANs). Commercial SANs such as Myrinet [3],
ServerNet [4], and Scalable Coherent Interface (SCI) [5]
have provided major leaps in performance over traditional
LAN hardware. A number of custom message layer
packages have been written for these SANs to provide
low-overhead communication among host CPUs in a
cluster [1]. While this “CPU-centric” approach is ideal for
clusters that perform all computations at the host level, it
can suffer from substantial overheads in providing
communication for endpoints located outside of the host
CPU.
 Thus as clusters evolve we observe that node
architectures are becoming increasingly heterogeneous,
where powerful peripheral devices may themselves serve
as sources and sinks of data. Examples include the
following.

• Multiple Diverse Network Substrates: Clusters often
contain multiple communication interfaces for a
number of reasons. Ideally these interfaces
collaborate directly and can serve as bridges between
network substrates.

• Intelligent Storage Devices: Equipment such as the
I2O server adapter card [6] present massive storage
options to peripheral devices without host
intervention.

• Hardware Accelerators: Special-purpose co-
processor devices such as FPGA cards are available
for graphics acceleration, search engines, and media
transformation.

• I/O Devices: Additional I/O devices such as cameras,
video displays, and video capture devices are all
common among clusters with multimedia
applications.

 The presence of these peripheral devices leads to the
notion of resource rich clusters (Figure 1) where
communication may be initiated not only in host CPUs,

but also in peripheral devices. We argue that design trade-
offs for message layers executing on a host CPU are not
effective when communication endpoints are in peripheral
devices.

SAN NI

Host

Ethernet

Node Node

Node

System Area
Network

I2O

Cluster

SAN NI

Host

Video Capture

FPGA

Node Node

Node Node

Node

LAN
Gateway

Figure 1: Resource Rich Cluster

3. Middleware for resource rich clusters

For resource rich clusters we find it necessary to re-
examine the functionality of message layers to support
communication originating and terminating at the
peripheral devices with varying capabilities and
resources. While it is possible to manage peripheral
device endpoints explicitly at the host level, doing so
comes at the cost of multiple traversals across the I/O and
memory hierarchy. Moving away from this CPU-centric
model of managing communication in favor of multiple
endpoints per node produces a number of conceptual
challenges:

• End-to-End Flow Control: Peer devices within a
node generally do not have the same magnitude of
memory and compute resources as the host CPU.
Therefore the overheads of interacting with the NI
become quite important. We argue that end-to-end
flow control should be moved to the NI, thus
reducing the responsibilities of the endpoint and
simplifying endpoint operation. The implementation
of an optimistic flow control protocol for this purpose
is discussed in an earlier paper [7].

• Multiple, Concurrent Writers: The presence of
multiple communication endpoints in a node creates
the problem of multiple writers to the SAN interface.
Synchronization among writing endpoints must be
lightweight.

• Receive Processing: It is important for an endpoint to
be able to specify a well-defined set of methods for
processing incoming messages since operations
performed on reception are specific to the receiving
device. While host level endpoints can have a variety
of mechanisms to process incoming messages, other
devices such as cameras and disks generally have
specific operations that are performed on received
messages. Customization becomes important. This

work builds on prior work in active messages [8] to
construct an environment for the global registration
and addressing of handlers customized for devices.

• Simple Standardized Endpoint Interface: In order for
diverse peripheral devices to be able to communicate
with a host’s NI, a standard interface must be
developed that can operate on a variety of cards.
Since there is a wide range of capabilities for
peripheral cards, it is important to design this
interface so that it can be implemented on even the
simplest of cards.

• Optimizations: This paper describes optimizations for
NI-level cut-through that are controlled at the
producer (rather than on the NI [18]). The result is
very low latency for the first byte of the message to
get to the wire. High performance demands of some
endpoints can make use of such devices.

 The majority of message layers are implemented in a
CPU-centric fashion and would require substantial
modifications to enable the features described above. BIP
[9], GM [10], and FM 2.0 [11] provide excellent host-
level performance. These layers are optimized for
performance and implement a large portion of their
functionality on the host CPU, which may not be portable
to peripheral device endpoints. Other message layers
such as AM II [12] and VIA [13] are attractive since they
allow multiple applications to share the NI concurrently.
This feature is beneficial because it can potentially be
extended to support the sharing of the NI by peripheral
device endpoints. The issue here would be to extend or
replace the host-based context management schemes to
peripheral devices. Finally, we feel that message layers
such as LFC [14], PM [15], and FM 1.0 [16] are the best
candidates among existing layers since they employ forms
of NI based flow control and they implement network
management in the NI, reducing the functionality required
at endpoints. We believe that pushing as much network
functionality as performance goals will permit into the
network interfaces will facilitate implementation
extensible message layers. Additionally, both LFC and
PM provide multiple data queues in the NI that could be
adapted for concurrent endpoint use. Doing so would
require re-implementation of the communication
endpoints for portability.

 Modifying existing message layers is a non-trivial
exercise when the design goals are different from the
design goals governing their original implementation.
Further, experience in the community has established that
performance is very sensitive to the implementations
within the network interfaces given the speed and power
of the processors, available memory, bus architectures,
and support for data movement. Thus we chose to build
on the reported experiences of these message layers and

incorporate the relevant concepts in a new
implementation designed to meet the goals described
earlier in this section. This paper describes the
functionality of the design, aspects of our implementation,
and some preliminary performance results.

4. GRIM: General-purpose Reliable
In-order Messages

 GRIM is an extensible framework for user-level
messaging that is designed to facilitate the addition of
multiple communication endpoints within a cluster node.
Extension refers to ability to easily extend the
functionality of the message layer to accommodate new
endpoint features. Conceptually GRIM is designed with
three specific characteristics to meet the needs of
heterogeneous clusters: NI managed flow control [7],
logical channels, and an active message style of packet
reception.

4.1. Optimistic NI-based flow control

 GRIM uses an optimistic NI-based flow control
scheme to manage the reliable transmission of messages
between NIs as illustrated in Figure 2. As a result the
communication endpoints are simplified since message
injection need only check if there is buffer space on the
local NI while handling messages ejected to the endpoint
by the NI. End-to-end buffer management is performed in
the NI, or rather “in the network”. We have observed that
the increased functionality of the NI does not substantially
reduce the general message layer performance and can in
fact improve the gap [17] and peak point-to-point
bandwidth. These effects are due to the fact that the
optimistic flow control mechanism dynamically allocates
buffer space as needed rather than statically pre-allocating
buffer space to destination nodes as is commonly found in
credit-based flow control schemes. The optimistic flow
control method implemented in GRIM is described in [7].
This paper describes the remaining features of GRIM.

Host A

Data Message

ACK/NACK

Endpoint

Endpoint
Network Interface

Endpoint

Endpoint
Network Interface

Host B
Figure 2: NI-based Flow Control

4.2. Logical channels

 The use of logical channels is a simple but effective
means for providing injection synchronization among a
node’s endpoints as shown in Figure 3. Rather than view
the entire NI as a shared resource among endpoints,
independent logical channels can be allocated at the NI
and assigned to specific endpoints. Since a given endpoint
has exclusive ownership of a set of NI logical channels,
the endpoint can inject messages into these queues
without contention hazards with other endpoints.
Ownership of logical channels is assigned at start time by
the host based on the node’s specified configuration.

NI Scheduler

Physical
Link

Network Interface

Endpoint A

Endpoint B Host

Figure 3: Endpoint Ownership of Outbound
Logical Channels

 While logical channels are predominantly used for
injection synchronization, they can also be used for
providing Quality of Service (QoS) via packet scheduling.
Endpoints can be configured to control more than a single
logical channel so that independent traffic streams are
injected into different queues. The number of logical
channels that can be implemented practically in the NI
depends on the amount of buffer space in the NI and the
amount of time the NI can afford to spend searching for
new packets. Currently logical channels are multiplexed
onto the network through a round-robin scheduler.
 The organization of inbound queues (messages from
the network) in the NI is affected by the manner in which
incoming messages are processed as they are received
from the wire. One method of organization is to assign
specific inbound queues to each endpoint. Messages
therefore are sorted as they arrive off of the wire and
isolation is provided between messages destined for
different endpoints. Unfortunately this method may add a
great deal of complexity to flow control mechanisms
since a message can travel from any of the sender’s
outbound queues to any of the receiver’s inbound queues.
This adds to the work performed by the NI which includes
ensuring that messages are received in-order into the
inbound message queue.

 An alternative to sorting messages at the point of
arrival is to organize messages at the point at which they
are ejected from the receiving NI. In this method
messages are received into an inbound queue that directly
corresponds to the queue from which the message was
transmitted. This simplifies flow control overhead since
the receiving NI can determine in-order delivery by
comparing the message’s sequence number to an expected
value for the sender’s outbound queue. This approach is
similar to the concept of virtual networks where each NI
queue represents an independent network plane. Given
that messages are placed in inbound NI queues only if a
cut-through path to the endpoint is not available, head-of-
line blocking is likely to take place only at times of high
loads.

4.3. Active message style packet handling

 The GRIM message layer uses an active message style
interface [8] for receiving messages. Active messages was
first proposed as a means of reducing latency in parallel
systems. In this scheme a message contains both data and
information describing how the message should be
handled at the destination endpoint. The active message
paradigm leads to a flexible and powerful mechanism for
handling messages in high performance clusters and is
particularly well matched to messaging in clusters with
diverse communication endpoints. In particular for I/O
card-based endpoints it is often possible to abstract the
card’s capabilities as a set of functions. For example, an
Ethernet card may be capable of transforming Myrinet
formatted messages into Ethernet style packets to
accomplish network bridging. By identifying this
capability as a handler function for the Ethernet card,
other endpoints can reference the handler to make use of
the SAN/LAN bridge.
 Observing that endpoints in a node can be diverse, it is
important to construct an active message style interface in
a manner that is usable by distinct types of endpoints. In
our implementation function handlers are associated with
both an integer identifier and a string name. In this
interface a number of predefined handlers are available
for all endpoints and user programs can dynamically
define new handlers as needed. Dynamically installed
handlers in GRIM are centrally registered and managed
by a single cluster node in order to maintain a single
global listing of all cluster handlers.

5. Implementation

 In addition to host-level endpoints, we have
implemented a GRIM interface for the Cyclone IQ960-RP
I2O server adapter card. This implementation provides a

perspective on the communications required, including
card-to-host and host-to-host transactions.

5.1. Message management

 There are three types of messages used in GRIM:
short, bulk, and memory. Short messages are 28 bytes
long and include a logical channel id, a function handler
id, and four integers that are passed to the receiving
function handler. Bulk messages contain the same header
information as short messages, but also include up to 48
KBytes of data as a payload. To handle MTU limits of the
network hardware, bulk messages are fragmented and
reassembled via predefined active message handlers.
Memory messages effectively perform a block copy
operation between the source and destination node
memories and do not invoke message handlers.
 Messages in GRIM are managed by queues at both the
endpoint and NI levels. Queues consist of three items: a
finite ring buffer for the message headers, a region of
memory to which bulk payloads are appended, and a set
of status registers for maintaining the queue. Breaking the
queue into separate header and payload regions permits a
large number of short messages to be stored rapidly while
allowing bulk message memory allocations to be
managed on-demand. The NI allocation of queues is
depicted in Figure 4. The NI uses a finite number of
outbound message queues to which all logical channels
are directly mapped.

Status
Registers

Message Headers Bulk Payload

Message Queue

Physical
Interface

Endpoint
Interface Inbound Cut-through

Inbound Queues

Outbound Queues

Network Interface

Figure 4: Network Interface Buffer Organization

5.2. Injection issues
 In general, message injections in middleware are
implemented using either push or pull style operations:

• Push: Endpoints are responsible for moving all data

from the endpoint’s address space into the NI’s.
Since the endpoint explicitly moves message data, it
is a unidirectional operation that completes when all
bytes are injected.

• Pull: Endpoints provide pointers to the NI so that the
NI can use local DMA engines to pull data from the
endpoint’s address space to the NI’s. Once the pull
operation is complete the endpoint is notified so that
it can release locks held on the injected message.

 Pull style messaging is typical of high-performance
middleware since the NI can concurrently pull data from
the endpoint and push data to the wire. Because the DMA
transactions are managed entirely by the NI, it is possible
to implement and precisely control a high-throughput
pipeline [18]. In contrast, while simpler to implement, the
push style of operation can be limited in terms of
performance. CPUs that push messages into the NI must
use programmed I/O (PIO) which by itself has limited
performance (5-40 MB/s). However, middleware
developers [1] reported that the write-combining features
of the Pentium Pro architecture could be used to increase
PIO performance (up to 125 Mbytes/s). Given the
potentially high injection rare and the inherent
simplifications in endpoints resulting in the use of a push
style protocol, we chose to implement GRIM using a push
philosophy. To avoid consistency hazards, write-
combining was enabled only for the regions of the NI that
hold the bulk data queues.
 The main performance challenge in using a push-based
scheme is minimizing the amount of time between when
an endpoint starts injecting a message and the time when
the message reaches the wire. As shown in Figure 5(a), a
simple store-and-forward operation can be used where the
endpoint injects the entire message before the NI begins
transmission.

(b) Cut-Through

(a) Store-and-Forward

Message 1

Message 1

Message 2

Message 3NI Message 2

Message 3Host

Message 1 Message 2 Message 3

Message 1 Message 2 Message 3
NI

Host

Figure 5: Timing for Message Injections

 However, a better approach is to allow injected
messages to “cut-through” the NI to the wire as shown in
Figure 5(b). In this case a small (32-byte) segment of the
message is first pushed to the NI. While the NI transmits
the initial segment to the link a larger data set is pushed
into the card. The transfer of successively larger data
segments to the NI is overlapped with transfer from the
NI to the link. At the end of each segment injection, the
endpoint updates status registers on the NI to specify how
much of the entire message has been pushed into the NI.
The NI can therefore begin transmission of the message
as soon as the first segment is available. The time to get
the first byte of a message to the wire is substantially
reduced.
 This approach is advantageous because it maintains the
simplicity of push-based mechanisms while obtaining the
performance of pull-based operations. By making use of
host-level architectural support such as write combining,
it is possible to obtain transmission bandwidths in excess
of 106 Mbytes/s for bulk message.

5.3. Message ejection

 The GRIM middleware was implemented to perform
message ejection from the NI in a variety of styles to meet
the needs of endpoints for multiple devices. Wherever
possible cut-through memory transfers are used to reduce
receiving latencies. For the case where an endpoint is
unable to accept a new message, messages are stored in
the NI’s inbound queues as depicted in Figure 4. Both
short and bulk messages are pushed into queues that are in
the endpoint’s address space. For host-level programs this
is the pinned memory provided by the MyriAPI driver.
The GRIM middleware implements a zero-copy transfer
to user space for memory transfer style messages. This
operation required the modification of the MyriAPI driver
and provides a significant improvement in message
reception performance.

5.4. GRIM API and operation

 The GRIM API is a small set of commands necessary
for implementing a message-passing library. The API has
three categories of functions: library initialization and
configuration querying, active message handler
maintenance, and general-purpose message passing. The
initialization function grim_enable() enables the GRIM
library for a host and initializes all of the node’s endpoints
as specified by the application’s configuration. Once
enabled, endpoints can use the general-purpose message
functions grim_send_{short, bulk, memory}() to transmit
messages to cluster endpoints. The polling function
grim_poll() is used to extract and execute active messages
in an endpoint’s inbound queue.

 The active message handler maintenance functions of
the API allow programs to dynamically register handler
functions as required. Endpoints first register handlers
locally with the grim_registerHandler() function. This list
of functions is later published to the global context when
a grim_synchHandlers() call is made. This function
transmits the local handler list to a central node in the
cluster that is responsible for merging handler lists and
relaying changes to all nodes. Finally, endpoints query a
local copy of the global handlers list with the
grim_getHandlerByName() function to translate a string
identifier to the integer associated with the handler.
 As a specific example we implemented a small set of
functions for the I2O card endpoint, including a ping/pong
handler for timing and a simple bridge function to use the
card’s Ethernet capabilities. By abstracting the card’s
functionality into a set of handler functions, we could
easily extend the capabilities of the cluster to make use of
the card’s features. The extension was facilitated by the
fact that end-to-end flow control is handled within the
Myrinet NI and the I2O handlers need only locally
synchronize with the Myrinet card. Currently we are also
studying an extension to a companion FPGA card’s
resources that is suitable for GRIM. In this sense we
address a problem that is similar to that being addressed at
Virginia Tech in the use of FPGA cards as a collective
resource via Myrinet [19].

5.5. Adding peripheral device endpoints

 An important feature of GRIM is the ability to extend
the functionality of the message layer to include support
for new peripheral device endpoints. This was
accomplished by defining both standard data structures
for endpoint queue maintenance as well as specific data
transactions that signify a message layer event. While
adding support for a new device is non-trivial, the general
process is outlined as follows.
 First, a set of specific handler functions must be
defined for the endpoint device that sufficiently
encapsulates its capabilities. Next, the device’s physical
interface with the host system must be considered.
Properties such as the card’s memory, DMA engines,
address translation requirements, and processing
capabilities must be translated to a form in which
endpoint software can be written. Equipped with this
information, a designer adds card specific initialization
calls to the GRIM library that instruct the node’s other
endpoints how to interact with the card. Finally endpoint
software is written for the card that monitors its data
queues and reacts to incoming messages.

6. Performance and evaluation

 GRIM was developed and tested for x86 machines
running Red Hat Linux 6.1. Performance numbers
reported in this paper come from a pair of Pentium III
based machines with directly connected M2M-PCI32
Myrinet SAN cards. Our experiences with a larger 16-
node Myrinet cluster suggest additional Myrinet switch
hardware does not noticeably degrade (and can in fact
improve) performance. These Myrinet cards use the older
33-MHz LANai 4 chipset and are equipped with one
megabyte of memory.
 To test the interface to multiple endpoints we included
the Cyclone IQ960-RP I2O development card as an
example of a card-based endpoint that occupies another
slot on the PCI bus. The Cyclone card features an i960
processor, 4 megabytes of RAM, dual Ultra-SCSI ports,
and dual 100Mbps Ethernet. Firmware for the card was
written using VxWorks and an in-house Linux driver.

6.1. Short message performance

 The performance of GRIM in the context of short
messages was reported in [7] but is reproduced here for
completeness. Using round-trip timing measurements we
observed host-to-host latencies for short messages to be
13 µs. The overhead for a host to inject a message was
very low, approximately 1 µs. Due to the dynamic usage
of NI buffer space through NI-based flow control, the
minimum gap between successive short messages is
negligible for bursts less than 200 messages in number.
For message bursts larger than 200, GRIM’s minimum
gap slowly grows to a steady state value of 20 µs for
bursts larger than 1,000 messages.

Host-to-Host Latency

0

5

10

15

20

25

30

35

1 6 11 16 21 26 31
NI Logical Channels

A
ve

ra
ge

 L
at

en
cy

 (u
s)

Figure 6: Latency for NI Logical Channels

 As a means for evaluating the effects of logical
channels, we examined the host-to-host latency
performance of short messages while varying the number
of NI logical channels. As shown in Figure 6, small
numbers of logical channels implemented in the NI do not
significantly impede performance. As the number of
logical channels increases, the NI must spend more time
searching for queues with pending jobs. This meets our
expectation that large numbers of NI logical channels are
impractical because they come at the cost of general
performance. However, a small number of logical
channels proves to be both useful and at low cost to
performance.

6.2. Large message performance

 Host–to-host round-trip timing measurements were
also used to analyze the large message performance of
GRIM. The tests were run on both store-and-forward and
cut-through injection versions of GRIM to observe the
effects of injection mechanisms and are presented in
Figure 7. Cut-through does in fact obtain a much higher
peak bandwidth performance (106 MBytes/s) over the
store-and-forward method (74 MBytes/s).

Host-to-Host Bandwidth

0

20

40

60

80

100

120

0 100,000 200,000 300,000 400,000 500,000 600,000 700,000 800,000 900,000 1,000,00
0

Message Size

M
B

/s

Cut-Through Send
Store And Forward Send

Figure 7: Bandwidth Performance

6.3. Myrinet to I2O performance

 Performance for communication with the I2O
development board was comparable to host-level
performance. In our tests we transmitted messages from a
host to reach a remote host’s I2O board using the Myrinet

NI. The one way latency for Host-Myrinet-Myrinet-I2O
was observed at 21 µs. Specific characteristics of the I2O
board affect performance. The DMA engines on the I2O
board are optimized for large multi-stage transactions and
as such are not optimal for short message bursts.
Additional card-specific hardware (such as chained
DMAs or doorbells) was not utilized in these tests to
preserve generality.

7. Conclusions

 Resource rich clusters are an emerging category of
computational platforms where cluster nodes have CPUs
as well as high-performance peripheral devices that
directly access the network. This paper proposed an
implementation for message layers that facilitated the
interface to a variety of such endpoint devices. The
approach is based on the use of active message style of
communication, coupled with NI-based flow control and
NI cut-through for low latency to the wire. We have
verified that this approach can be realized for an I2O
based card without significant degradation in general
performance.

Acknowledgements
 The authors gratefully acknowledge the assistance of
Ivan Ganev, Robert Goldman, and Emily Crawford for
their help with the linux drivers, the I2O card, and the
Myrinet card. We would also like to thank Bob Felderman
of Myricom for his invaluable assistance with Myrinet.
The authors would like to acknowledge the generous
support of NASA JPL under the NASA Graduate Student
Research Program and the Advanced Networking
Infrastructure program of National Science Foundation.

References

[1] R. Bhoedjang, T. Ruhl, and H. Bal. User-Level Network

Interface Protocols. IEEE Computer, Vol.31, No.11,
P53-60, 1998.

[2] Infiniband Trade Association Website
http://www.sysio.org/home.html

[3] N. Boden, D. Cohen, R. Felderman, A. Kulawik, C.
Seitz, J. Seizovic, and W. Su. Myrinet: A Gigabit-per-
second Local Area Network. IEEE Micro, Vol.15, No.1
1995.

[4] R. Horst and D. Garcia. Servernet SAN I/O Architecture.
In Hot Interconnects Symposium V, August 21-23 1997

[5] Scalable Coherent Interconnect, IEEE Standard
15961992, 1992

[6] Cyclone Microsystems Website:
http://www.cyclone.com

[7] C. Ulmer and S. Yalamanchili, An Extensible Message

Layer for High-Performance Clusters. In Proceedings of
PDPTA 2000, June 2000.

[8] T. von Eicken, D. Culler, S. Goldstein, and K. Schauser.
Active Messages: A Mechanism for Integrated
Communication and Computation. Proceedings of the
19th Annual International Symposium on Computer
Architecture (ISCA). May 1992.

[9] L. Prylli and B. Tourancheau, BIP: A New Protocol
designed for High-Performance Networking on Myrinet.
In Proceedings of PC-NOW IPPS/SPDP98, 1998.

[10] Myricom, Inc. The GM message layer,
http://www.myri.com

[11] S. Pakin, V. Karamcheti, and A. Chien. Fast Messages
(FM): Efficient, portable communication for workstation
clusters and massively-parallel processors. IEEE
Parallel and Distributed Technology, 1997.

[12] B. Chun, A. Mainwaring, and D. Culler. Virtual Network
Transport Protocols for Myrinet, In Hot
Interconnects'97, Stanford, CA, April 1997.

[13] P. Buonadonna, A. Geweke, and D. Culler. An
Implementation and Analysis of the Virtual Interface
Architecture, in Proceedings of Supercomputing '98.
Orlando, FL, November 1998.

[14] H. Bal, R. Bhoedjang, R. Hofman, C. Jacobs, K.
Langendoen, and K. Verstoep. Performance of a
High-Level Parallel Language on a High-Speed
Network. Journal of Parallel and Distributed Computing,
40(1):49-64, February 1997.

[15] H. Tezuka, F. O'Carroll, A. Hori, and Y. Ishikawa.
Pin-down Cache: A Virtual Memory Management
Technique for Zero-copy Communication. In 12th Int.
Parallel Processing Symposium, pages 308-314,
Orlando, FL, March 1998.

[16] S. Pakin, M. Lauria, and A. Chien. High Performanc
Messaging on Workstations: Illinois Fast Messages
(FM) for Myrinet in Supercomputing ’95, 1995

[17] D. Culler, R. Karp, D. Patterson, A. Sahay, K. Schauser,
E. Santos, R. Subramonian, and T. von Eicken, LogP:
Towards a Realistic Model of Parallel Computation,
Proceedings of the Fourth ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, May
1993.

[18] K. Yocum, D. Anderson, J. Chase, A. Gallatin, and A.
Lebeck. Cut-Through Delivery in Trapeze: An Exercise
in Low Latency Messaging. IEEE Symposium on High-
Performance Distributed Computing (HPDC), Portland
OR, August 1997.

[19] M. Jones, L. Scharf, J. Scott, C. Twaddle, M. Yaconis,
K. Yao, P. Athanas, and B. Schott. Implementing an API
for Distributed Adaptive Computing Systems. FCCM 99

	Introduction and motivation
	Background
	Middleware for resource rich clusters
	GRIM: General-purpose Reliable In-order Messages
	Optimistic NI-based flow control
	Logical channels
	Active message style packet handling

	Implementation
	Message management
	Injection issues
	Message ejection
	GRIM API and operation
	Adding peripheral device endpoints

	Performance and evaluation
	Short message performance
	Large message performance
	Myrinet to I2O performance

	Conclusions

		2000-12-17T17:58:42-0500
	Atlanta
	Craig Ulmer
	I am the author of this document

