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 Abstract-- This paper explores the view 

that the SAN network infrastructure can be an 
active computational entity capable of 
supporting certain classes of data intensive 
computations effectively during 
communication. The performance is achieved 
via the use of Field Programmable Gate 
Arrays (FPGAs) in the network interfaces 
(NIs).  This paper describes the programming 
model and the design of a prototype 
hardware/software implementation using 
commercial FPGA devices coupled with 
Myrinet. An active messages style of 
programming is used to support application-
transparent, dynamic reconfiguration of the 
FPGA hardware to accommodate different 
computations over time. Performance 
evaluation of this implementation quantifies 
the overheads and sources of performance 
improvement. 

I. INTRODUCTION 
Traditionally System Area Networks (SANs) 

have been focused on the cost-effective delivery 
of bandwidth and latency to cluster computing 
applications. In recent years we have seen the 
inclusion of embedded microprocessors in 
network interfaces (NIs) and as a result the 
migration of communication functionality to 
these interfaces. In addition to off-loading the 
host CPU these intelligent network interfaces 
have supported an active message style of 
communication for a variety of remote and local 
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communication services.  However, in this model 
the SAN still largely remains a data transport 
entity.  

The goal of the Active System Area 
Network (ASAN) project at Georgia Tech is to 
examine ways in which computation can be 
“tightly” integrated with communication. A very 
simple yet motivating example is the process of 
computing checksums on packets. In most 
systems this computation is not performed in 
place but rather during the transfer of packet data 
from one point in the system to another, for 
example, during transfer from the NI to the wire. 
Functions such as data encryption and data 
compression also naturally fit this model.  Many 
SAN applications transfer large sets or streams of 
data between endpoints. Algorithmic 
transformations on such data sets can often be 
formulated as pipelined or streaming 
computations. Such streaming computations can 
be performed during the transfer of data to and 
from the network in the NI. Many network related 
services such as firewalls, intrusion detection, or 
denial of service policies can also be formulated 
as computations on streams and can be effectively 
performed close to the wire. Our goal is to study 
and implement a model of computation where 
such stream oriented computations can be 
integrated with communications and performed 
“in transit”, i.e., with minimal impact on latency. 
The use of such enhanced NIs produce system 
area networks that we refer to as Active SANs 
since computations can be performed on the host 
CPUs or in the NIs during transmission. 

 
The challenges in constructing active SANs 

are the following.  
 

• The availability of sufficient computing 
power in the network: Embedded CPUs will 
be overwhelmed by data intensive 
computations. We address this with the 



placement of field programmable gate 
arrays (FPGAs) in or near the network 
interface (NI) as a host for hardware 
implementations of data intensive, 
streaming computations. 

• Programming model: The challenge is a 
programming model that enables users to 
develop applications that can effectively 
make use of this capability. We are 
constructing a connection-oriented model of 
communication where computations can be 
associated with connections and 
dynamically placed in the NI.  

• Dynamic customization: The hardware 
implementations that are “placed” or 
“programmed” into the interface must be 
changed over short periods of time. A 
methodology and support infrastructure is 
necessary for application-specific, or even 
connection-specific customizations to be 
created in a demand-driven manner. The 
interface must support run-time 
reconfiguration of the FPGAs. 

 
Proof of concept for this work is established 

by constructing a test bench using commercially 
available network and FPGA components. The 
most general system model permits FPGAs and 
CPUs to be distributed throughout the cluster and 
be utilized as a pool of resources.  This paper 
focuses on all aspects concerned with the 
construction of a single active connection. 
Composition of these connections to utilize 
network wide resources can be achieved by 
extending the infrastructure described in this 
paper. 

II. RELATED WORK 
Multiple research projects have explored the 

use of FPGAs in network environments. A 
significant portion of this work comes from the 
field of active networks [1] where routers perform 
computations on in-transit messages. In [2] 
researchers utilized FPGAs to provide selectable 
error correction services in an ATM network with 
lossy links. Researchers at Washington 
University extended this work with a prototype 
ATM router that features an FPGA at each router 
port [3]. This work additionally discusses a 

potential API and framework for user-defined 
hardware modules. Another reconfigurable router 
is prototyped in [4], with stream-based 
computations performed on IP packets. 

 
While router-based active networking 

follows the same fundamental concepts as those 
presented in this paper, there are at least two 
major differences. First, active networking 
projects typically operate assuming a LAN 
context and seek to increase performance or 
available services for traditional network 
protocols. Our work is instead oriented on 
improving cluster computer performance for 
SANs. Second, router-based processing is a 
different design space than NI-based processing. 
The operating environment significantly 
influences the construction of key operations such 
as dynamic reconfiguration. In NI-based FPGA 
processing the host-CPU of a node is a natural 
candidate for managing reconfiguration. In 
router-based architectures an external host or on-
board CPU must be utilized to manage 
configurations. 

 
Another group of related research projects 

deal with FPGA-NI interactions in the local host. 
In [5] researchers place FPGA, DSP, and ATM 
cards in a host to enhance node performance. This 
work describes the utilization of resources but 
does not focus on using accelerator hardware 
beyond the local context. Perhaps the most 
relevant research work is the adaptive computing 
systems project  [6] at Virginia Tech. This work 
builds a custom computing machine (CCM) from 
a cluster equipped with various FPGA and 
network equipment. An API is defined that 
allows host applications to utilize a series of 
FPGAs distributed throughout the cluster through 
calls to the message passing interface (MPI) 
communication library [7]. While this API creates 
a usable hardware abstraction, we note that 
messages are relayed through the host’s MPI 
library before delivery to end FPGAs.  Our focus 
is on making the FPGA a part of the NI and 
support an abstraction of the network as 
computational entity wherein peripheral devices 
have access to the same capabilities as the host 
CPUs. 

 



III. RECONFIGURABLE HARDWARE 
Reconfigurable hardware is a programmable 

logic device (PLD). An example of such a device 
is   a Field Programmable Gate Array (FPGA). 
These devices come with a large array of 
configurable logic blocks (Xilinx terminology) 
and an extensive configurable routing framework 
for interconnecting logic blocks. Each logic block 
contains memories and flip-flops. The memories 
are configured as look-up tables to implement the 
truth tables corresponding to small blocks of 
combinational logic while the flip-flops are used 
to configure the sequential components of the 
design. Design tools take gate-level designs and 
map these circuits to the chip. By configuring the 
contents of the look-up tables and appropriately 
configuring the interconnect, the gate-level circuit 
is realized. It is apparent that these configurations 
can be changed to implement a variety of 
hardware designs. While the clock speeds do not 
compare to those that can be achieved with 
application-specific integrated circuits (ASICs), 
one can obtain very high speed implementations 
of functions relative to that which is feasible with 
software implementations.  

 
While industrial work with reconfigurable 

hardware has primarily utilized the technology 
for verification of and sometimes a replacement 
for ASICs, researchers have explored the use of 
FPGAs as a means of improving computational 
performance in scientific and multimedia 
applications. The appeal of this technology for 
researchers is that an FPGA can be dynamically 
configured with customized computational 
circuits that provide hardware acceleration for 
end applications. Unlike single-purpose ASICs, 
FPGAs can be reconfigured and re-used for a 
number of diverse computational tasks. 

 
In the last decade a number of research 

projects have provided details as to what types of 
applications can benefit from the use of FPGAs. 
Suitable applications often contain a combination 
of four characteristics. First, computations based 
on non-standard (e.g., a non-power of two) or 
variable bit-widths often perform well because an 
implementation in FPGA hardware can be 
tailored to the bit-width. For example, an FPGA 

circuit can be configured with a 17-bit adder or a 
256 bit rotating register. Second, FPGA circuits 
can be customized to meet the conditions of use. 
For example, in partial evaluation a priori 
information such as data constants is used to 
reduce circuitry for a computation, thereby 
increasing its speed. Finally, the large amount of 
programmable logic available in an FPGA 
provides a substrate where numerous 
computational engines can operate concurrently 
in a single FPGA.  Although typically more 
expensive and slower than custom ASICs, the 
FPGAs can make up ground in their ability to be 
reconfigured across applications as opposed to 
the single functionality of ASICs.  

 
Modern commercial FPGA architectures 

emulate up to 8 million logic gates in a single 
chip with clock speeds reaching up to 400 MHz 
[8]. In practice, emerging FPGAs can be expected 
to house multi-million gate designs running at 
clock speeds operating in excess of 100 MHz.  
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Figure 1: Emerging FPGA Architecture 

 
As illustrated in Figure 1, emerging 

commercial FPGA architectures are 
supplementing traditional programmable logic 
with multiple hardware units for increased design 
flexibility and computational power. The most 
attractive feature in these new architectures for 
the SAN community is the inclusion of high-
speed transceivers. Upcoming versions of 
Xilinx’s Virtex II architecture [9] will contain 
multiple 3.125 Gbps transceivers for use with 



networks such as InfiniBand [10], 10-Gbps 
Ethernet, and OC-192c. A second feature of 
emerging FPGA architectures is the inclusion of 
powerful embedded processor cores. Altera’s 
Excalibur FPGA includes a dedicated 32-bit 200 
MHz ARM core [11]. Likewise Xilinx plans 
include future Virtex II architectures that contain 
multiple PowerPC cores. Finally, modern FPGA 
architectures contain dedicated hardware such as 
internal SRAM memory and high-speed 
multiplier array cores to accelerate FPGA 
computational performance. 

 
Given the recent advances in commercial 

FPGA architectures, it is reasonable to expect that 
future high-performance network interface cards 
can be constructed using a single FPGA chip that 
features reconfigurable hardware, multi-gigabit-
per-second transceivers, and a dedicated 
embedded processor. A hypothetical future 
FPGA-based NI card is illustrated in Figure 2, 
and is comprised of three components. First, input 
and output message queues are utilized to buffer 
messages between endpoints and the network in 
times of heavy traffic. Second, a network 
interface is implemented through a combination 
of reconfigurable hardware and software for the 
FPGA’s embedded processor. Third, the 
remaining reconfigurable hardware space is 
utilized to house multiple computational circuits 
for processing in-transit messages. 
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Figure 2: Future Host with FPGA-Based NI  

IV. PROGRAMMING MODEL 
The basic programming model is an 

extension of connection-oriented communication 
between host CPUs in a SAN cluster. We extend 
this model by enabling the association of a 
function with each connection. This function is 
applied to the data stream in transit and is 
implemented in the FPGA. In general, functions 
can be associated with the data stream at the 
sender or receiver. The connection abstraction is 
not strictly necessary - functions can be simply 
applied to the data in transit. However there are 
some practical advantages in doing so. The notion 
of the state of a connection can be extended to 
include the FPGA configuration. Setting up and 
removing connections can be expensive 
operations as is the relative time required for 
configuring and reconfiguring of the FPGA 

 
A function applied to a data stream is 

implemented as a user-defined circuit in the 
FPGA. Questions now arise as to how user-
defined circuits are addressed and manipulated 
and whether they can be composed within and 
across nodes. Also of interest is when and how 
user defined circuits are placed in the FPGA. The 
remainder of this section addresses the current 
design to support such operations.  

A. Active Message Style Programming 
The programming model of this architecture 

is similar to that of active messages [12]. Each 
message injected into the network has both a 
destination identifier and parameters specifying 
how the message should be processed by the 
destination. Each user-defined computational 
circuit loaded in the FPGA has a unique identifier 
that is globally known to all endpoints in the 
cluster. An endpoint can therefore perform a 
desired computation in either an FPGA or 
endpoint by injecting a properly formatted 
message into the network. Should an FPGA 
receive a message requiring a user-defined circuit 
that is not present in the FPGA, an exception is 
raised and the host CPU intervenes to reconfigure 
the FPGA.  
 



B. Pipelined Model of Streaming Computations 
The model can be naturally extended to 

include coordinated computations across multiple 
cluster nodes. FPGA and NI resources in a cluster 
node   are utilized as pipeline stages in an overall 
computation with the SAN serving as a means of 
delivering data between stages. Figure 3 
illustrates such operation. In this example a host 
application injects a message into its own FPGA-
based NI. The message is received by the FPGA, 
processed, and forwarded to an FPGA-based NI 
in a neighboring node. This is repeated until the 
pipeline is complete and the message is ejected at 
its intended destination. 
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Figure 3: Pipelined Streaming Computations 

 
 

The streaming model of in-network 
computation requires mechanisms for forwarding 
data between pipeline stages. This task can be 
accomplished by dedicating a region of memory 
in each FPGA to serve as a forwarding directory, 
and by identifying all streaming messages as 
belonging to specific pipelines. When a message 
for a streaming computation arrives at an FPGA, 
the message’s pipeline identifier is used to 
retrieve routing information from the forwarding 
directory. This routing information specifies how 
the results of the message’s computation at the 
FPGA are to be forwarded to the next cluster 
endpoint in the pipeline. Users may establish new 
computational pipelines by adjusting values in the 
forwarding directories of each cluster resource to 
be utilized in the pipeline. An active message 
handler is included in the FPGA to specifically 
facilitate such updates. A resource may house 
multiple stages of the same pipeline in this 

system, and multiple pipelines may co-exist in the 
same resource.  

C. Dynamic Customization 
With a fixed area FPGA there is a fixed 

capacity for housing user-defined circuits. 
Mechanisms must be provided to allow the FPGA 
to be dynamically reconfigured on receipt of 
messages. This is the hardware analog of an 
active message handler that is invoked when a 
message is received.   

 
The FPGA is a shared resource that must be 

re-configured at different times. One means of 
solving this problem is through simple protection 
mechanisms. In this approach the host CPU   
manages the FPGA. An application must request 
that the FPGA be loaded with particular user-
defined circuits before any processing can take 
place, as well as transmit release information 
when the computations are finished. While 
adding both startup latency and the potential for 
resource deadlock, this approach is simple to 
implement and adequately provides a means of 
dynamically reconfiguring the FPGA. 

 
An alternative means of sharing access to 

cluster FPGAs is through demand driven 
management of FPGA resources. This approach 
follows the concepts of demand paging in virtual 
memory, where a resource is loaded as needed by 
applications. Should an FPGA receive a message 
that requires a user circuit that is not present, the 
FPGA flushes its runtime state information to on-
card SRAM and generates a function fault for the 
host. The host determines which FPGA 
configuration best resolves the function fault and 
then reconfigures the FPGA. When the new 
FPGA configuration begins operation it restores 
its state information from SRAM and begins 
processing the message that caused the function 
fault. Due to the high overhead of reconfiguring 
the FPGA, it is expected that user applications 
will employ resource scheduling or locking 
mechanisms as previously discussed in order to 
minimize the number of dynamic function faults. 

 
Dynamic fault management for the FPGA 

can be expanded through both traditional paging 
and FPGA-specific optimizations. An example of 



the latter is extensions to utilize partial 
reconfiguration, where a portion of the chip can 
be reconfigured with a user defined circuit as 
opposed to the entire FPGA. This would require a 
new generation of tools and is the subject of 
active research. Another solution is one wherein, 
the host could be adapted to extract messages that 
generate function faults and execute the function 
on the host rather than in the FPGA. 

D. Advantages 
An active SAN that allows processing to 

take place close to the network wire is beneficial 
for a number of reasons. First, the possibility that 
non-CPU cluster resources may be better suited to 
solving particular computational problems can 
result in improved performance simply through 
the use of accelerated hardware. Second, as with 
most co-processors, moving computations away 
from host CPUs potentially reduces the workload 
of the host CPU, allowing more computationally 
intensive tasks to take place. Third, placing high-
performance computational engines close to the 
network allows other devices in the cluster to 
make use of these resources. For example, data 
capture devices and intelligent storage devices are 
likely to be lacking the performance capabilities 
of modern workstation CPUs. Rather than relying 
on host intervention, these devices can utilize 
accelerators located within the network. 

V. DESIGN 
A prototype ASAN NI is constructed using 

commercial FPGA and NI cards. We have 
adapted our SAN communication library [15] to 
use this NI in implementing the programming 
model described in Section IV. While this 
implementation differs from the higher 
performance single-chip solutions described 
earlier, it suffices to develop the programming 
infrastructure and study the major elements of 
this programming model and implementation. 

A. Prototype Hardware 
For the FPGA portion of the prototype the 

ASAN NI uses the Celoxica RC-1000 [13]. This 
card features a Xilinx Virtex-1000 FPGA, 8 MB 
of on-card SRAM, and PCI Mezzanine Card 
(PMC) sockets for connecting two daughter 

cards. The SAN hardware for the prototype is 
Myricom’s Myrinet [14]. This SAN features 
gigabit links, a switched network fabric, and a NI 
with on-card memory and processor. A LANai 
4.3 version of the Myrinet NI card in the PMC 
form factor was available at Georgia Tech, 
allowing the NI card to be directly attached to the 
RC-1000 FPGA card. Figure 4 illustrates the 
overall architecture of our FPGA-enhanced NI 
card and the major hardware components of the 
individual cards. 
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Figure 4: Celoxica RC-1000 and Myrinet 

Peripheral Devices 
 

The Celoxica memory is divided into four 2 
MB banks of SRAM that can be simultaneously 
accessed by the FPGA. Each memory bank is 
single ported and provides 32-bit data. A CPLD 
on the RC-1000 card implements arbitration 
between the FPGA and the CPU host for shared 
access to the single ported SRAM banks. 
Exclusive ownership of an SRAM bank is granted 
to either the FPGA or the CPU based on the 
earliest received request. PCI and PMC 
transactions are managed for this card through a 
commodity PCI chip. While this chip can perform 
PCI DMA transactions, DMA operations cannot 
be initiated directly by the FPGA. 
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Figure 5: Host with FPGA and NI Cards 

 
The operational model of this prototype is   

illustrated in Figure 5.  Data flow in this active 
SAN is divided into two contexts: intra-nodal and 
inter-nodal communications. First, the SAN 
communication library provides communication 
between endpoints located in the same node. 
Since devices in this context are local, this style 
of communication can be accomplished using 
queues and PCI transactions. Each endpoint 
maintains a set of incoming and outgoing queues 
for all other endpoints in the local host, allowing 
transfers between two local endpoints to proceed 
without assistance from the local CPU. The 
second form of communication is between host 
computers. This task is managed entirely by the 
network interfaces of the SAN through a reliable 
and ordered link delivery protocol [15]. 
 

B. SAN Communication Library 
The SAN communication library is the 

General-purpose Reliable In-order Message layer 
(GRIM) [15]. GRIM is an experimental SAN 
messaging layer utilized at Georgia Tech that is 
tailored to the sharing of SAN NIs between host 
CPUs and a range of intelligent peripheral 
devices. A key feature of the software is that all 
device independent communication functions 
reside in the NI. This design simplifies the 
amount of work any endpoint must perform to 
use the network. Peripheral devices interact 
directly with the NI, moving data to and from 
inbound and outbound message queues with 
minimal host intervention. For example, GRIM 
has been used to integrate the Brooktree BT848 
video capture card [16] and Cyclone System’s 

I2O server adapter card (featuring dual Ethernet 
and ultra-wide SCSI ports) [17] into a SAN 
environment. Messages are transmitted reliably 
and in-order between NIs through a NI-based 
flow control protocol. Host-to-Host latencies are 
approximately 13 µs with bandwidths in excess 
of 100 MB/s. The current version of GRIM 
operates with the LANai 4 or LANai 9 versions 
of the Myrinet NI, and can be adapted to work 
with other network cards that feature a 
programmable processor and on-card memory.  

 
Other high performance message layers 

could be utilized in the active SAN environment. 
GM [18], VIA [19], and LFC [20] all employ NI-
based flow control and contain primitives that 
permit multiple endpoints in a host to share the 
NI. While non-trivial it is certainly possible to 
extend host-CPU based message layers to operate 
with PCI devices, as demonstrated in the 
adaptation of GM for use with a SCSI controller 
[21]. In addition to the advantage of familiarity, 
we utilized GRIM for this work because i) its 
underlying mechanics were already adapted to 
work with PCI devices and ii) functionality for 
auto-configuring PCI-based endpoints was 
already available. 
  

C. Architectural Organization 
To effectively utilize the FPGA we must 

have simple effective abstractions of the 
hardware. The abstractions used in the ASAN 
project are illustrated in Figure 6. Computations 
are performed in the User Area – a portion of the 
chip reserved as a canvas for configuring user-
defined circuits. This is currently approximately 
75% of the Virtex-1000 chip and is designed to 
house up to eight user-defined circuits. The 
remaining space is the FPGA control block, 
which manages the data flow and interfaces 
between user-defined circuits and the on-card 
SRAM. This unit manages incoming and 
outgoing message queues for interactions with the 
communication library, and maintains an 
interface for scratchpad memory. Scratchpad 
memory is a region of the RC-1000’s on-card 
memory that is allocated for use exclusively by 
user-defined circuits. The scratchpad allows up to 



4 MB of data to be stored close to the FPGA for 
improved computational performance. The 
forwarding directory is stored in SRAM bank 0 
and consists of 256 entries for pipeline stage 
forwarding. 
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Figure 6: FPGA Organization 

 
FPGA configurations are written in VHDL, 

simulated in Active-HDL, synthesized with 
Synplicity’s SynplifyPro, and placed and routed 
with the Xilinx Foundation tools. While 
automated, the process of synthesizing, placing, 
and routing can take from thirty minutes to 
several hours depending on the complexity of the 
user-defined circuits. Multiple example cores 
were constructed and are described below along 
with estimates of the amount of resources 
required for each core as a percentage of a Virtex-
1000 FPGA. 
 

• DES [22] (6%): A wrapper for the Free-
DES [23] core was constructed allowing 
both encryption and decryption of 32-bit 
blocks with a 56-bit key. 

• RC6 [24] (13%): This RC6 encryption/ 
decryption engine operates with up to 1024 
rounds (R), at 32-bit width (W), with key 
lengths (B) up to 1024 bytes. 

• MD5 [25] (26%): A message digest 
function that generates a 128-bit identifier 
for a data stream. 

• ALU Operations (5%): A set of 32-bit 
integer operators including add, subtract, 
multiply, min, max, and logical operators. 

These test functions illustrate that the 
Virtex-1000 contains enough programmable logic 
to implement complex algorithmic functionality. 
Newly available Virtex II chips are approaching 
an order of magnitude increase in area over the 
Virtex-1000 while the research community has 
begun to consider designs on the order of tens of 
millions of gates.  
 

D. Application Programming Interface 
User cores must be independently 

constructed in a manner that can be used by 
applications. Similarly applications must know 
how to reference and use any of a set of user-
defined circuits. This functionality is achieved via 
the definition of a standardized interface. 
Functionality common across user-defined 
circuits should be moved into this interface, for 
example, the movement of data to/from memory. 
This interface must also allow multiple 
computational circuits to co-exist and provide 
mechanisms by which users can encapsulate input 
data for the circuits in a message.   

 
We have defined and implemented an 

application programming interface (API) that 
meets these requirements. The API design 
engenders three specific features in user-defined 
circuits. First, each core must be uniquely 
identified. This identifier is equivalent to the 
active message handler identifier of the GRIM 
library and is utilized by the interface to 
determine which computational circuit in the 
FPGA processes a message. This identifier can be 
supplemented with a sub-operator identifier that 
allows a single circuit to perform multiple related 
functions. Second, a computational circuit may 
asynchronously read from up to two vector data 
sets and write a single vector output. Both the 
addresses and lengths of each vector are specified 
in the message header and are linearly read or 
written by the interface as required by the 
computational circuit. Finally, each message 
processed by the FPGA contains a forwarding 
identifier. This identifier is utilized to determine 
what actions should be taken with the generated 
results. Results may simply be stored in 
scratchpad memory, “recycled” in the same 



FPGA for further processing, or forwarded to 
another endpoint in the cluster. 
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Figure 7: Interface for User-defined 
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Figure 7 is a simplified representation of the 
interface between user-defined circuits and the 
FPGA control block. Input vectors for the circuits 
are supplied from vector ports A and B, and 
results are stored through port C. In addition to 
multiple user-defined circuits all FPGA 
configurations contain a built-in computational 
circuit. This unit provides a series of linear 32-bit 
ALU operations for vector inputs such as add, 
multiply, AND, OR, XOR, min, and max. 
Additionally this unit contains a no-operation 
function that allows an input vector to be 
streamed from port A or Port B to port C without 
modification, allowing memory copies in the 
scratchpad. 
 

E. FPGA-NI Synchronization 
In the prototype the FPGA and NI reside on 

separate PCI cards. Therefore it is necessary to 
provide synchronization and transport between 
these cards. We note that this effort is 
considerably more complex than would be the 
case for a NI card constructed entirely using an 
FPGA such as the Excalibur that provides 
reconfigurable hardware and a NI in a single chip. 
Two card-specific characteristics of the Celoxica 
RC-1000 must be addressed in supporting the 
FPGA card using the GRIM communication 
library. First the on-card memory is a shared 

resource that requires arbitration. This differs 
from other peripheral devices where on-card 
memory can be accessed at any time, with 
contention resolved in a dedicated memory 
controller. Second, the RC-1000 does not have a 
general-purpose processor for which existing 
communication software can be ported. Instead 
the communication software must be constructed 
as a portion of the hardware loaded into the 
FPGA. 

 
Addressing the first challenge of sharing 

access to RC-1000 memory is resolved through 
the use of both an allocation scheme and 
arbitration mechanisms. As a first step in 
reducing contention, we placed incoming and 
outgoing message queues for the FPGA in SRAM 
banks 0 and 3 respectively, and allocate SRAM 
banks 1 and 2 for exclusive use by the FPGA as a 
scratchpad. Additionally, access to the banks 
housing the message queues is requested only 
when messages are injected or ejected. Other 
entities in the host (i.e., the host CPU and the 
Myrinet NI) acquire access to FPGA SRAM 
banks by writing a request to and polling from the 
FPGA card’s PCI registers. The difficulty in 
arbitrating for access to RC-1000 memory is that 
the card contains only a single PCI register for 
filing memory requests. This creates a race 
conditions when multiple communication 
endpoints concurrently attempt arbitration that 
could result in access to a memory bank being 
removed falsely. We resolve this issue by 
creating an entity that is responsible for 
combining all host and PCI device requests for 
FPGA memory. We assigned this task to the 
Myrinet NI, since the NI is near the FPGA card 
on the PCI bus and since the NI already runs in a 
tight loop that can be modified to poll for new 
memory bank requests. 

 
The second challenge for integrating the 

RC-1000 FPGA card into the GRIM library is 
adapting the communication library software to 
function with FPGA hardware. In our approach 
the FPGA control block is designed to manage 
the incoming and outgoing memory queues. This 
hardware periodically obtains access to the 
memory banks and examines the queue pointers 
to observe changes in queue capacity. Additional 



hardware is necessary to parse incoming message 
headers, format outgoing messages, and to route 
data between user circuits and the scratchpad 
memory banks.  
 

VI. PERFORMANCE EVALUATION 
The FPGA-enhanced NI described in the 

previous section was utilized in a cluster based on 
550 MHz Pentium III processors loaded with the 
Linux 2.4 operating system. 

A. FPGA Interactions 
Measurements were performed on the 

prototype to uncover the low-level costs of 
interactions with the RC-1000 FPGA card. First 
we examined the amount of time required for a 
host process to acquire and release individual 
memory banks on the RC-1000 without the 
explicit synchronization discussed in the previous 
section. Using programmed I/O the host required 
13 µs to acquire and 2 µs to release memory 
banks. Next we measured the amount of time 
required for the host to perform the same 
operations, but this time using the Myrinet NI for 
centralized arbitration. This increased the time to 
20 µs to acquire and 8 µs to release memory 
banks. We then measured arbitration from the NI 
perspective. We observed that the NI could 
acquire memory in 8 µs and release in 5 µs 
largely due to its proximity to the FPGA card. 
These communication penalties are incurred for 
each message transferred with the FPGA card. 

 
As a means of examining obtainable 

bandwidth we performed experiments involving 
the transfer of blocks of memory with the FPGA 
card using the PCI bus. First we examined 
movements between the host and the RC-1000. 
The maximum observed bandwidth for the card is 
85 MB/s. When moving a message-sized (4 KB) 
block of data, writes to the card occurred at 38 
MB/s and reads from the card occurred at 59 
MB/s. Next, we measured the bandwidth between 
the Myrinet and RC-1000 cards. For a 4 KB 
block of data, the Myrinet card’s reads and writes 
both took place at 126 MB/s. The maximum 
transfer rate between the Myrinet and Celoxica 
cards was observed at 130 MB/s.  

B. FPGA Operations 
A fundamental assumption in this work is 

that FPGAs can rapidly process in-transit 
messages. Therefore we examined the latency of 
the prototype system. In Table 1 we present the 
amount of time required to move an example 4 
KB message from either a host application or NI 
to a local FPGA and then back to the host 
application. FPGA timings are presented in both 
number of clocks required for operation as well 
as in seconds based on a conservative 20 MHz 
FPGA clock. These numbers assume that the 
computational unit loaded in the FPGA has a 
single cycle of latency. While we expect 
computational units will require multiple 
execution cycles, pipelined units pay this cost 
only at startup as the pipeline stages are filled. 

 
 
Active 
Unit Operation FPGA 

Clocks 
Time 
(µs) 

Acquire RAM 0 (20, 8) 
Inject Message (107, 32) 

(Host 
or 

NI) Release RAM 0 

 
- 
 (8, 5) 

Acquire RAM 0,3 8 0.40 
Fetch Header 7 0.35 

Fetch Forwarding 5 0.25 
Fetch Payload/Data 1024 51.2 
Computation/Store 

Latency 1 0.05 

Store Header 48 2.4 
Update Queue 

Pointers 3 0.15 

FPGA 

Release RAM 0,3 1 0.05 
Acquire RAM 3 20 
Perform DMA 69 Host 

Release RAM 3 

 
- 
 8 

Table 1: Operational Timing 
 

Several observations can be made from this 
table. First, even at a low clock rate the FPGA is 
able to rapidly process an entire message. The 
FPGA’s cycle counts can be utilized to estimate 
performance of a production-level system. 
Second, while the fetch, compute, and store 
operations of the FPGA can be efficiently 
overlapped in a pipelined fashion, the memory 
arbitration scheme for the card prevents the 



overlapping of message injection, computation, 
and ejection. Finally, the measurements acquired 
in the previous section can be applied to 
determine the latency of a remote operation. 
Given the high cost of arbitration, the low latency 
of SAN delivery (12 µs), and the fact that the NI 
can acquire FPGA memory much faster than the 
host, remote and local interactions with the FPGA 
card are roughly comparable. 
 

C. Reconfiguration  
The final area of performance examination 

is in reconfiguration. We measured the time 
required for the host to reconfigure the FPGA 
with a configuration available in host memory to 
be approximately 96 ms. Reconfiguration is a 
lengthy process due to the slow reconfiguration 
speed of the Virtex architecture and the large size 
of a configuration file. Other tasks required for 
dynamic reconfiguration in our prototype such as 
host notification and configuration startup costs 
are negligible.  

 

VII. CONCLUDING REMARKS 
Technology is constantly increasing the 

power, cost effectiveness, and flexibility of the 
available silicon. In this paper we have explored a 
model of computation where the SAN 
infrastructure is extended to perform data 
intensive computations during communication. 
By making the network a compute entity network 
attached media and storage devices can access 
this capability altering the flow of data and 
computation in a typical SAN cluster. The overall 
goal is the availability of a scalable 
communications and computation infrastructure 
for cluster-based data intensive computing.  
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