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FOREWORD 

Approximately five years ago, Dr. Yalamanchili asked me if I would be interested in 

working with NASA to develop the computational systems for the next generation of spaceborne 

vehicles. The Remote Exploration and Engineering (REE) project at NASA had just finished a 

report concluding that future unmanned exploration vehicles would have to operate autonomously 

in order to be successful. These systems would have to capture large amounts of scientific data, 

process it locally, and transmit the most significant information back to Earth. In order to reduce 

development costs, NASA was interested in employing cluster computers in the spaceborne 

vehicles to perform these computational evaluations. My contribution to this effort would be to 

construct communication software that allows data to flow in a reliable and efficient manner 

between the hardware components of the system. Being that cluster computers are normally 

tucked away in the unwanted closets of a research building, it was appealing to think that we 

would be setting a few free, to be clusters in the sky. Aware of how this sounded similar to a Star 

Trek movie, I jumped at the opportunity. 

After three years of work, we had constructed a functional communication library that 

achieved the goals of the research project. In addition to implementing the functionality 

commonly found in other communication libraries, our software allowed an intelligent server 

adaptor card to interact directly with the network interface. Plus, it had a cool name: GRIM (to 

which my advisor is still rolls his eyes). After the initial release of GRIM, we began investigating 

how the software could be improved to support other peripheral devices. As this work evolved, 

we realized that we were really providing a new form of cluster architecture. We refer to these 

clusters as resource-rich cluster computers, which are the focus of this dissertation. 
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As fate would have it, a number of researchers m industry were working on similar 

problems for commercial network servers. Their effort resulted in the InfiniBand I/O standard. 

Being that multimillion-dollar companies backed InfiniBand, we were initially concerned that we 

would be swept away by this monumental effort. However, we continued on with our work, 

following in the do-it-yourself style that has been the basis of the cluster computing movement. 

Our effort was rewarded earlier this year, when an InfiniBand evangelist stated in a keynote 

speech that the true threat to InfiniBand was from grassroots efforts taking place in commodity 

networks such as Gigabit Ethernet. Being that GRIM is designed to be applicable to any network 

substrate with intelligent network interface cards (including Gigabit Ethernet), we recognize this 

as a small victory and an indication that our effort has been worthwhile. 

There are many organizations and people that have had a significant and positive impact 

on this research. This work was financially supported through a fellowship from NASA's Jet 

Propulsion Laboratory as well as through grants from the National Science Foundation. The 

cluster computer hardware utilized in this research was funded through large donations by the 

Intel Corporation. This work certainly would not have been feasible without these contributions, 

and we gratefully acknowledge the financial support of these organizations. 

There are a number of professors that have had a significant influence on this work. First 

and foremost, this work would not have been possible without the assistance of my advisor, Dr. 

Sudhakar Yalamanchili. Sudha has been a constant source of encouragement and guidance over 

the years. Our weekly meetings always motivated me to push a little harder, and to construct new 

functionality that was beyond our original goals. Sudha helped transform a large amount of my 

text into actual (and concise) English. He did this in a kind way, often suggesting that he only had 

to make "a few minor changes" to something that I knew was poorly written. I am grateful for all 

the help and counseling Sudha has given me over the years. I will truly miss our whiteboard-

centered meetings, where everything needed a block diagram no matter how irrelevant it was. 
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Dr. Kenneth Mackenzie also provided a great deal of assistance in this work. Ken's keen 

eye for detail motivated me to take a closer look into the low-level performance characteristics of 

the hardware. Ken continually surprised me by answering my questions with real performance 

measurements from programs he cooked up on the spot. Without his obsession for optimality, 

GRIM would never have reached its current level of performance. Ken was kind enough to allow 

me to use his cluster, even when he knew that I have a tendency to disorganize or break things. 

Most importantly, Ken instantly saw the soul of my work and enlisted me in the crusade to turn 

modern, boring computer architecture on its head. I can only hope that Ken will continue the 

good fight, and not get tied down by the bureaucracy. 

Other professors had a significant impact on this work. Dr. Leon Alkalai provided 

encouragement and summer internships at NASA JPL, Leon supplied me with valuable view of 

the internals of JPL's work, and helped open my eyes to solving larger problems than what my 

degree had prepared me for. Dr. Jose Duato also assisted me in this work over the years. While 

only briefly mentioned in this dissertation, the discussions of deadlock freedom in irregular 

network topologies that took place with Jose, Sudha, and myself are part of the work that I 

enjoyed the most in graduate school. 

I am fortunate to have been surrounded by many high-quality researchers and co-workers 

as a graduate student at Georgia Tech. Early on, Darrell Stogner, Santiago Abraham, and Phivu 

Nguyen provided me with a drive to investigate new technical material. Emily Crawford 

performed the initial backbreaking work with the Myrinet hardware that served as a starting point 

for my work. Ivan Ganev meticulously answered my kernel questions, no matter how silly they 

were. His shaved head also took Ken's attention away from my infrequent, self-induced buzz 

cuts. William Norton, Damon Love, and John Lockhart supplied me with a constant stream of 

desirable distractions, and served as a reality check for my work. I frequently harassed these 

people with painful implementation problems ("I just shifted all of a host's physical memory by 

1024 bytes"). Thanks for frequently coming out to the Original Pancake House to listen and 
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provide useful suggestions ("Try not to do that"). Finally, Amer Abufadel has been a constant 

source of knowledge and help. In addition to answering my DSP questions, Amer and I went 

through many of the graduate student anxieties at the same time. 

This work would not have been possible without the support of my family. My brother, 

Dr. Todd Ulmer, constantly pressed me to push on and finish. He also wrote a wonderful 

"forward" in his own dissertation that has made it impossible for me to write a halfway decent 

one myself. In any case, when I was young, Todd teased me by throwing my favorite toy, a little 

red plastic hammer, out the widow of our dad's moving car. While I will hold that over his head 

forever, he should know he is a good older brother and I thank him for all the help he has given 

me in school. I would also like to thank my parents for their love and support over the years. 

Even though they never quite understood what exactly it was I was working on, they always 

encouraged me to try harder. Hopefully, this dissertation unravels the mystery of my work a little 

bit. 

Finally, I must thank my wife, Amy Pomerance, for her love and support. Amy patiently 

waited for me to finish, never letting on that she did not believe me when I kept telling her that it 

would "only be about a year now". While all of this work seemed to take forever, being with you 

during this time made it all fine. Thanks for everything. 

CRAIG ULMER 

NOVEMBER 2002 
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SUMMARY 

Cluster computing is an alternative approach to supercomputing where a large number of 

commodity workstations are utilized as the processing elements in a multiprocessor system. 

These workstations are interconnected by high-performance system area network hardware and 

specially designed "message layer" communication software. In the current generation of cluster 

computers, researchers have optimized message layers for communication between the host CPUs 

in the cluster in order to provide scalable computing performance. However, the recent 

development of a number of high-performance peripheral devices challenges the notion that 

message layers should be designed in such a CPU-centric manner. Modern peripheral devices 

feature powerful embedded processing and storage capabilities that can be leveraged to boost the 

performance of distributed applications. These peripherals function as sources and sinks of 

application data, and in some cases, as computational accelerators for offloading host-CPU tasks. 

Figure 1: The architecture of emerging resource-rich cluster computers. 

As Moore's Law continues its relentless trend, there will continue to be a migration of 

computing power to peripheral devices. Future clusters will not appear anything like the clusters 

of today. They will be rich in connectivity and computing power that is deeply embedded in the 

distributed components of the cluster. We refer to this new generation of systems as resource-rich 

cluster computers (Figure 1). These systems differ from traditional clusters in that application 
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processing takes place in both the host CPUs and the peripheral devices. While the 

semiconductor industry continues to alter the economies of scale, the system software that 

productively enables resource-rich clusters is sorely lagging. Specifically, current generation 

message layers are ill equipped to service the needs of resource-rich clusters, as they are not 

designed to utilize peripheral devices as globally accessible resources in a cluster. 

This thesis focuses on the challenge of designing extensible message layers for this new 

generation of resource-rich clusters. We are specifically concerned with making peripheral 

devices available as globally accessible resources in the context of a programming model that 

permits applications to effectively and efficiently exploit the capabilities afforded by resource-

rich clusters. The key contributions of this thesis fall into two categories. The first includes design 

concepts and programming abstractions for structuring messages layers to integrate powerful 

peripheral devices into a globally accessible pool of resources. The second class of contributions 

is engineering solutions to the challenging problems of effectively and efficiently realizing these 

design concepts in a manner that tracks the evolution of technology, that is, the continued 

migration of computing power to distributed resources. 
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CHAPTER I 

INTRODUCTION 

1.1 Background 

After years of escalating supercomputer costs, researchers in the early 1990's began 

investing alternative means by which parallel-processing systems for scientific and military 

applications could be constructed in a more economical fashion. This work resulted in the field of 

cluster computing, where a large number of commodity workstations are utilized as the 

processing elements in a multiprocessor system. These workstations are interconnected by a high-

performance communication network and function as part of a single, parallel-processing 

machine. While cluster computers typically lack the peak performance levels of traditional 

supercomputers, they provide excellent cost-to-performance ratios that have attracted the 

attention of many users. 

The enabling technology for cluster computers is communication software that is referred 

to as the cluster's message layer. This software provides a set of message-passing programming 

abstractions that are utilized to transport data between communication endpoints in the cluster. 

Early research in cluster computers revealed that end application performance is often sensitive to 

the latency and bandwidth characteristics of a message layer's implementation. Therefore, a 

significant amount of research in the late 1990's focused on improving the host-to-host 

communication performance of a cluster's message layer. This effort has resulted in message 

layers that are highly optimized for efficiently transferring data between a cluster's host CPUs. 
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1.2 Resource-Rich Cluster Computers 

While current generation message layers have been suitable for a number of parallel 

applications, the recent development of a number of high-performance peripheral devices 

challenges the notion that message layers should be designed in such a CPU-centric manner. 

Modern peripheral devices feature powerful embedded processing and storage capabilities that 

can be leverage to boost the performance of distributed applications. These peripherals function 

as sources and sinks of application data, and in some cases, as computational accelerators for 

offloading host-CPU tasks. 

As Moore's Law continues its relentless trend, there will continue to be a migration of 

computing power to peripheral devices. Future clusters will not appear anything like the clusters 

of today. They will be rich in connectivity and computing power that is deeply embedded in the 

distributed components of the cluster. We refer to this new generation of systems as resource-rich 

cluster computers. These systems differ from traditional clusters in that application processing 

takes place in both the host CPUs and the peripheral devices. While the semiconductor industry 

continues to alter the economies of scale, the system software that productively enables resource-

rich clusters is sorely lagging. Specifically, current generation message layers are ill equipped to 

service the needs of resource-rich clusters, as they are not designed to utilize peripheral devices as 

globally accessible resources in a cluster. 

This thesis focuses on the challenge of designing extensible message layers for this new 

generation of resource-rich clusters. We are specifically concerned with making peripheral 

devices available as globally accessible resources in the context of a programming model that 

permits applications to effectively and efficiently exploit the capabilities afforded by resource-

rich clusters. 
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1.3 Contributions 

The key contributions of this thesis fall into two categories. The first includes design 

concepts and programming abstractions for structuring message layers to integrate powerful 

peripheral devices into a globally accessible pool of resources. The second class of contributions 

is engineering solutions to the challenging problems of effectively realizing these design concepts 

in a manner that tracks the evolution of technology, that is, the continued migration of computing 

power to distributed resources. 

The specific contributions of the thesis are as follows. 

• We define a general framework for high-performance, extensible message layers in 

resource-rich cluster computers. This framework is structured around the following high-

level components. 

o A device independent communication core that executes within the network 

interface and employs i) reliable message delivery mechanisms, ii) a virtual 

network interface abstraction, iii) an active message programming interface, and 

iv) a memory transfer programming interface. This communication core is 

implemented in a message layer for commodity clusters called the General-

purpose Reliable In-order Message layer (GRIM). 

o Device dependent functionality is captured in the form of active message 

function handlers that are implemented within target peripheral devices. Services 

are provided for the global registration and management of device handlers. 

Thus, new devices can be integrated and made available for use throughout the 

cluster in a relatively seamless manner. 
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• The ability of the core message layer functionality to effectively and efficiently serve as 

the host for high-level communication functionality is demonstrated via the 

implementation of the following. 

o Multicast: A system for replicating multicast messages in the network interface is 

implemented as an extension to the core communication framework of the 

message layer. These extensions improve application performance by 

significantly reducing the workload of communication endpoints during multicast 

operations. 

o Sockets API Emulation: An implementation of a sockets API for the message 

layer allows legacy applications to leverage system area network hardware for 

significant improvements in communication performance. 

o Streaming Computations Framework: An API and services for pooling peripheral 

FPGA accelerators across multiple hosts into a unified computing resource 

allows operations to be performed on high-volume data streams. A unique aspect 

of this implementation is that device-specific handlers in this case are constructed 

in hardware, underscoring the generality and flexibility of the GRIM-based 

services and API. 

• The ability of the core message layer functionality to be effectively, efficiently, and 

easily integrated with a variety of peripheral devices is illustrated via the integration of 

four peripheral devices listed below in increasing degrees of functionality and power. 

o AGP Video Display Card: Extensions to the communication library allow 

distributed endpoints to graphically update remote video display cards in the 

cluster. 

o Brooktree Video Capture Card: The BT8x8 video capture card allows video data 

streams to be generated and distributed to endpoints in the cluster. 
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o I7O Server Adaptor: This server adaptor card provides intelligent management of 

both network and storage resources. 

o Celoxica RC-1000 FPGA Card: This field-programmable gate array (FPGA) card 

functions as a computational accelerator through the emulation of application-

specific circuits in reconfigurable hardware. 

This thesis has focused considerable effort on the engineering challenges of harnessing 

emerging and powerful peripherals and proposing solutions that are comparable with existing 

message layers in terms of performance. This thesis demonstrates that message layer design, 

driven by a system-level view and supported by engineering trade-offs that carefully distribute 

functionality, can provide effective solutions to harnessing the potential of resource-rich clusters. 

1.4 Organization of the Thesis 

The work presented in this thesis is organized as follows. 

• Chapter 2: A brief background of cluster computers is provided to summarize how 

clusters have emerged and evolved over the last decade. A fundamental description of 

traditional cluster hardware is presented, as well as brief descriptions of existing message 

layers for cluster computers. 

• Chapter 3: This chapter provides information about the environmental characteristics of 

resource-rich clusters. Based on these characteristics, fundamental message layer 

properties for these clusters are discussed. 

• Chapter 4: The guidelines for designing a resource-rich cluster message layer are then 

applied to implement a real system. This chapter discusses the core functionality of the 

GRIM communication library. 

• Chapter 5: The performance characteristics of GRIM for traditional transactions between 

host CPUs is examined and compared with existing work. 



• Chapter 6: This chapter provides a description of how commercial peripheral devices 

can be attached to the GRIM communication library. In order to illustrate the extensible 

nature of GRIM for supporting hardware, four commercial peripheral devices with 

different operating characteristics are integrated into the GRIM library. Implementation 

and performance details are provided for each card. 

• Chapter 7: Integrating distributed, specialized computing resources into a unified 

infrastructure for an application is the topic of this chapter. Specifically, this chapter 

provides insight as to how peripheral devices can be utilized to construct distributed, 

computational pipelines. 

• Chapter 8: To demonstrate the extensibility of GRIM for application software, this 

chapter provides implementation details of a multicast system that performs message 

replication in the NI, general-purpose fragmentation and reassembly mechanisms, and an 

emulation of a sockets API. 

• Chapter 9: The thesis concludes with some summary remarks and directions for future 
work. 
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CHAPTER II 

BACKGROUND 

By the end of the 1980's, the need for high-performance computing platforms in 

scientific and military applications had resulted in the emergence of a small number of 

supercomputer companies. These companies constructed large-scale systems that utilized massive 

amounts of custom hardware to improve application performance. Unfortunately, because these 

systems were extremely expensive, supercomputers were not a practical option for a large number 

of end users. Therefore, researchers in the 1990's began exploring alternative high-performance 

computational platforms that could be constructed in a more cost-effective manner. One of the 

results of this effort is the field of cluster computing. In cluster computing a large number of 

commercial workstations are collectively utilized to function as a single, multiprocessor system. 

Since system hardware is comprised of widely available commercial components, cluster 

computers can be constructed at a fraction of the cost of traditional supercomputers. As such, a 

considerable amount of high-performance computing research in recent years has focused on 

improving cluster computer performance. 

A key challenge in improving cluster computer performance is adapting commodity 

hardware and software to function as part of a high-performance, multiprocessor system. Early 

cluster computing efforts revealed that application performance is highly dependent on the 

performance of a cluster's communication facilities. From a hardware perspective, several 

companies have addressed this issue by constructing system area networks (SANs) that provide 

an order of magnitude improvement over traditional local area networks (LANs). From a software 

perspective, researchers have constructed specialized communication libraries, or message layers, 

that are designed to deliver native SAN performance to end applications. In addition to 
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facilitating low-latency, high-bandwidth communication, these message layers provide a 

programming abstraction where the cluster is viewed as a pool of host CPUs in a large virtual 

parallel-processing machine. This abstraction has sufficed for numerous researchers to 

effectively utilize a cluster computer's hardware as a distributed multiprocessor system. 

2.1 Evolution of High-Performance Computing Platforms 

Supercomputers are the computational systems that deliver the highest peak performance 

of all computer systems available at a given point in time. These systems typically employ large 

amounts of custom hardware to accelerate computational performance and often feature 

specialized computer architectures. Supercomputers have been primarily designed to process 

complex scientific applications that frequently exhibit large amounts of data parallelism. A 

number of commercial supercomputer systems have been produced since early groundbreaking 

work performed by the industry in the 1970's. The evolution of this technology provides both 

insight into high-performance computing and a motivation to continue the work in related 

research areas. 

2.1.1 A Brief History of Commercial Supercomputers 

While numerous people have contributed to the field of supercomputing over the years, 

perhaps the most influential individual in this effort is pioneer Seymour Cray. After leaving the 

Control Data Corporation in 1972 to form Cray Research, Cray began work on a new computer 

architecture that would provide significant gains in peak performance levels. In addition to 

advances in high-speed circuitry, Cray investigated the use of sophisticated vector processing 

units that allow computations to be applied to a stream of data to achieve high throughput. In 

1976 the Cray-1 [1] was brought to market with a retail value of approximately nine million 

dollars and a record-breaking performance of 133 million floating-point operations per second 

(megaflops). In addition to being a technological marvel, the Cray-1 demonstrated that there was 
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a definite market for expensive high-performance computing systems. Cray continued his work 

with vector processor systems, producing the 2 gigaflops Cray-2 in 1985 and the 5 gigaflops 

Cray-3 in 1989. A number of other computers followed the trend of vector processor systems, 

including the Meiko CS-2 [2], the NEC SX series supercomputer [3], the Fujitsu VP series 

supercomputer [4], and IBM's vector extensions to the System/370 [5]. Currently, the fastest 

system in the world [6] is the NEC SX-6, used in the Earth Simulator Center [7] in Japan. This 

system provides up to 8 teraflops of performance and employs multiple single-chip vector 

processing units. 

The supercomputing industry also explored other architectural techniques for increasing 

the computational performance of a system. A key effort in this work is the use of a large number 

of processors to perform computations in parallel. In the SIMD (single instruction stream, 

multiple data streams) approach, a large number of identical processors perform the same series 

of operations on different data sets. Multiple SIMD systems were constructed in the early 1990's, 

including the MasPar Computer Corporation's MP-1 [8] and the Thinking Machines 

Corporation's CM-2 [9]. Both of these systems housed up to 16,384 SIMD processing elements, 

and could be used for parallel applications such as image processing. Due to the programming 

complexity of SIMD, researchers began constructing MIMD (multiple instruction streams, 

multiple data streams) systems that employed a large number of general-purpose CPUs. This 

work resulted in massively parallel processing (MPP) systems such as the Intel Paragon [10] (up 

to 4,000 Intel 80860 processors), the TMC CM-5 [11] (up to 16,000 SUN SPARC processors), 

and the Cray Research Cray-T3E [12] (up to 2,048 DEC Alpha 21164 processors). 

2.1.2 Motivation for Alternate Computing Platforms 

While the supercomputer companies of the 1980's provided significant advances in the 

field of high-performance computing, a large number of these companies withdrew from the 

supercomputer business in the 1990's. In hindsight it can be said that a common vulnerability for 
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these companies was the large amount of custom design that was required to build a 

supercomputer. Several of these companies operated with a vertical design methodology, 

constructing all components of the system from the individual processors to the interconnection 

network. While having complete control over the design space gave engineers freedom to 

innovate performance enhancements, product design times were increased and complicated by the 

volume of custom hardware design that was required. Therefore, new supercomputers were 

expensive, brought to market infrequently, and often could not be designed in time to utilize the 

latest developments in state-of-the-art technology. 

Additional issues make traditional supercomputers less appealing to researchers that need 

high-performance computing platforms. First, supercomputers generally are not scalable and 

therefore offer a limited lifetime of leading-edge use. An investment in a state-of-the-art 

supercomputer depreciates rapidly in value due to Moore's Law, thereby making current systems 

obsolete within 18 months. Second, supercomputers require specialized hardware and software 

maintenance that adds to the expense of ownership. These components can be expensive to 

replace and there are generally few people that are trained to perform such maintenance. Finally, 

it must be noted that a risk in purchasing a traditional supercomputer is that the manufacturer 

might go out of business or otherwise abandon support for a particular product. Maintaining and 

utilizing orphaned hardware is time consuming and ultimately impedes end users. 

Given the problems associated with using traditional supercomputers, a number of 

researchers in the early 1990's began exploring alternative methods by which high-performance 

computational platforms could be constructed. This effort made several observations about 

commercial technological advances and the global marketplace that would influence the 

construction of future parallel-processing systems. These observations include the following: 

• Commercial Off-the-Shelf (COTS) Parts: In industry there are numerous corporations 

producing state-of-the-art hardware and software components. By using COTS parts, 
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designers leverage other people's work and reduce the design time for a system. COTS 

parts are also beneficial because components can easily be replaced or upgraded from 

third-party products. 

• Growth in the Workstation and Network Markets: Consumer demand for personal 

computers has resulted in high-performance workstations that are available at a low cost. 

Processor design in this market remains competitive, resulting in frequent updates to peak 

performance levels. Likewise, consumer interest in the Internet has resulted in advances 

in network hardware. The need for faster networks has resulted in low-cost local area 

networks (LANs) that economically offer high-bandwidth communication. 

• A Rich Software Environment: An important aspect of commodity workstations is the 

wide availability of software. Operating systems such as GNU/Linux provide a UNIX-

like environment with built-in network features. The open source nature of Linux allows 

researchers to easily incorporate custom functionality into the operating system kernel. 

In summary, researchers observed that advances made in consumer markets in the 1980's 

and 1990's had resulted in hardware that was widely available, economical, and offered 

respectable levels of computational performance. These systems could be utilized to provide 

impressive price-to-performance ratios and have benefited from considerable efforts to improve 

the PC's software environment. 

2.1.3 Emergence of Cluster Computers 

In the mid-1990's, researchers began investigating the use of multiple commodity 

workstations to construct a new form of high-performance system. This work resulted in the 

notion of a cluster computer, where a number of workstations are collectively utilized to function 

as a single parallel-processing system. Through commodity network hardware and specialized 

communication software, a cluster computer can effectively appear as a large pool of host 
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processors to the end user. Since workstations in the cluster are commercially available products, 

cluster computing can leverage the performance gains achieved by the workstation industry. The 

high-level architecture for a cluster computer is depicted in Figure 2.1. 
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Figure 2.1: A cluster computer constructed with commodity workstations and 
network hardware. 

One of the first cluster computing projects to receive serious attention from the scientific 

community was NASA's Beowulf Project [13]. In this work, researchers demonstrated that a 

small number of dedicated workstations could collectively operate to perform computations that 

were beneficial to scientific computing [14]. Utilizing commodity PCs equipped with multiple 

Ethernet adaptors, the 16-node demonstration cluster achieved 60 megaflops in 1994. Later 

clusters in this project would expand the number of workstations to 199 nodes and accomplish 10 

gigaflops of performance for under $50,000. While researchers stated that Beowulf clusters were 

a far step from true supercomputing, the price-to-performance ratio was a significant motivator 

for building such clusters. After this work numerous research institutes constructed Beowulf-style 

clusters out of Ethernet-connected PCs. 

An observation made about the early Beowulf-style of cluster was that while some 

applications performed well, others did not. An examination of this problem revealed that these 

clusters were severely limited in terms of communication performance. Grossly parallel 

applications that did not require significant amounts of communication between host CPUs 
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performed well because each task in the cluster could operate independently. However, 

applications that required frequent exchanges of data between CPUs performed poorly due to the 

low performance of the network. The conclusion to be drawn from this observation is that 

ultimately, the communication performance of the cluster determines the granularity at which 

parallel-processing applications can productively use a cluster. 

Realizing that the poor communication performance limited the types of applications a 

Beowulf cluster could run, researchers in the mid to late 1990's began examining ways in which 

the cluster's communication performance could be enhanced. Several academic projects focused 

on adding hardware to facilitate specific types of communication. In the SHRIMP project at 

Princeton [15], workstations were extended with hardware that allowed hosts to operate in a 

distributed shared memory (DSM) environment. At Purdue, the PAPERS project [16] utilized 

custom hardware to rapidly distribute barrier synchronization information to host computers. 

However, the most significant advance for cluster computers came with the advent of 

commercially available system area networks (SANs). SANs provide communication 

performance that is over an order of magnitude better than traditional LANs. This allows for 

significant improvements in fine-grain parallel processing performance. Current work in high-

performance cluster computers involves delivering as much native performance from a SAN as 

possible to end applications. 

2.2 Using Workstations as a Cluster Computer's Processing Elements 

Multiprocessor systems are generally comprised of two types of hardware components: 

processing elements that are used to perform computations, and a communication network to 

distribute data in the system. In cluster computers, individual workstations function as processing 

elements, while commodity SAN hardware performs communication tasks. 
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2.2.1 Workstation CPUs 

A number of vendors have constructed different workstations that can be utilized in a 

cluster computer. Historically, companies such as Sun Microsystems, Hewlett-Packard, SGI, and 

Compaq/DEC have dominated the workstation industry with CPU architectures that offer high 

performance at a relatively high cost. However, the workstation market for these companies has 

eroded over the last decade as x86-based PCs and PowerPC-based Apple Macintosh computers 

have steadily improved in performance and popularity. Because of its impressive price-to-

performance ratio, the x86 PC has become the workstation of choice for the majority of cluster 

computing efforts. Therefore, the work presented in this thesis specifically deals with clusters 

constructed from x86-based PCs. 

While affordable, x86-based systems have some of the most limiting architectural 

characteristics of any workstation when used for high-performance computing. First, the x86 is 

based on a 32-bit architecture that may not be sufficient for the processing needs of scientific 

applications that require 64-bit computations. Second, an x86 processor can only support 4 GB of 

physical memory. This trait limits the amount of state information an application can have loaded 

at a workstation, and is becoming more of an issue as memory prices continue to decline. Finally, 

in order to obtain peak performance levels in x86-based hosts, it is often necessary to utilize 

architectural extensions such as the MMX and streaming SIMD (SSE) units. The performance of 

these units can vary greatly between different generations of x86 processor. 

2.2.2 Evolution of Workstation I/O Systems 

A second key factor that affects the performance of a workstation as a processing element 

is the architecture of its I/O system. In ideal multiprocessor systems, processing elements are 

placed in close proximity to the NIs in order to allow fine-grained interactions between 

applications and the network. Unfortunately, in most workstations the CPU and NI are separated 

by a complex general-purpose I/O system. Transactions involving the I/O system can be up to an 
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order of magnitude slower than similar transactions with host memory. While the computer 

industry makes improvements to x86 CPU performance multiple times a year, PC I/O 

performance is improved on average once every three years. 
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Figure 2.2: A history of PC I/O systems. 

Figure 2.2 highlights the history of I/O systems utilized in PCs. The peripheral 

component interconnect (PCI) standard [17] provides reasonable performance and has become 

the de facto standard for peripheral devices in current workstations. While this thesis targets PCI-

based systems, the implementation can be tuned to platforms with higher bandwidth I/O systems. 

2.2.3 Peripheral Component Interconnect (PCI) 

The peripheral component interconnect (PCI) standard was introduced in 1992 as a 

means of allowing high-speed peripheral devices to be incorporated into the x86 PC architecture. 

The architecture of modern host systems employing PCI is depicted in Figure 2.3. In this 

architecture the system's memory controller is responsible for routing data between the host 

CPU(s), main memory, and peripheral devices on the PCI bus. At boot time the memory 

controller assigns regions of the host's 32-bit physical address space to both main memory and 

individual peripheral devices. When a device driver for a PCI card is loaded into the kernel, the 

driver can establish a memory translation that allows the card's memory to appear in the kernel's 
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virtual address space. The driver can then share this mapping with user-space applications 

through the implementation of a memory map system call, handled by the device driver. Doing so 

allows user-space applications to directly read and write the on-card memory of a peripheral 

device. 
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Figure 2.3: Architecture of a modern host utilizing PCI. 

In addition to memory mapped reads and writes from the host CPU, communication 

involving peripheral devices can be facilitated by on-card DMA engines that are available with 

bus-mastering PCI devices. These DMA engines adhere to the low-level PCI bus standard and 

can be used to transfer blocks of data between a peripheral device and host memory or other 

peripheral devices in the system. All memory references on the PCI bus are in terms of the host's 

32-bit physical address space in the x86 architecture. Each PCI device also controls an interrupt 

request (IRQ) line, which can be used to transmit an interrupt to the host CPU. Due to a limited 

number of IRQs in a host, multiple peripheral devices may share the same interrupt, requiring 

each card's device driver to determine which card initiated an interrupt. 

A number of modern PCI devices support sophisticated DMA transfers through the use of 

chained DMA operations. With chained DMA, a peripheral device is capable of performing a 

series of DMA operations as specified by a linked-Iist of DMA descriptors. Each descriptor in a 

linked list specifies the length, direction, and addresses of a transfer. Some implementations allow 

users to specify whether an interrupt should be generated for the host at the completion of a 

transfer for a given DMA descriptor. The DMA engine processes each descriptor linearly until an 
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end-of-chain marker is specified in a descriptor. While most cards employ a similar API for 

controlling chained DMA operations, it should be noted that there is no standard and that each 

peripheral device driver must be outfitted with custom functionality. 

2.2.4 Architecture Tradeoffs 

There are a number of architectural tradeoffs designers must face when considering how 

cluster computer workstations can be used as processing elements in a multiprocessor system. 

From the previous three subsections it is clear that host CPUs in a cluster computer incur 

significant overheads when interacting with other CPUs in the cluster. This trait is a serious 

obstacle for application designers, especially when clusters are compared to traditional MPP 

supercomputers that allow fine-grained network interactions. However, a workstation by itself is 

a complete, self-contained system that features processing, memory, and storage resources, as 

well as a sophisticated operating system for managing these resources. Therefore, a processing 

element in a cluster computer is more likely to be better equipped to perform diverse tasks than a 

processing element in a traditional MPP supercomputer. The architectural tradeoffs of using 

workstations as processing elements therefore suggests that cluster computers are better utilized 

for computations where operations can localized to individual processing elements. 

2.3 Cluster Computer Network Hardware 

In addition to processing elements, multiprocessor systems must be equipped with 

communication infrastructure that allows distributed processor elements to interact. In cluster 

computers, this infrastructure is built from commercial network hardware. Several network 

substrates have been used in cluster computers over the years. One of the most popular 

approaches is to employ traditional LAN hardware such as Ethernet. While economical, the 

drawback of Ethernet is that it only offers limited host-to-host communication performance in a 

cluster environment. Therefore, a number of companies have constructed system area network 
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(SAN) products that are better suited for cluster computers. These SANs feature multi-gigabit 

bandwidths and host-to-host transmission latencies that are less than 50 JLLS. SANS generally offer 

high levels of reliability and commonly utilize intelligent NI cards to manage network 

interactions. Examples of SANs include Myricom's Myrinet [18], Compaq's Servernet [19], 

Dolphin Interconnect Solutions' implementation of the scalable coherent interconnect (SCI) [20], 

and Quadrics' QsNet [21]. 

2.3.1 Ethernet 

The Ethernet network standard first created at Xerox Pare labs in 1976 [22] has grown to 

become the most popular network ever utilized. The Ethernet standard has been periodically 

updated over the years, and now features link speeds of up to 10 Gbps in the most recent standard 

[23]. Ethernet NI cards traditionally have employed a simple hardware architecture, where the NI 

only manages a pair of message queues for incoming and outgoing transmissions. In this 

approach, the host CPU formats and processes all messages transferred to and from the network. 

In order to reduce the workload of the host CPU, some high-end Ethernet NI cards feature more 

sophisticated processing engines that are capable of managing network interactions on behalf of 

the host. These intelligent NI cards are especially beneficial for Gigabit Ethernet networks where 

high-bandwidth transactions are necessary. 

While widely available, Ethernet is not the ideal communication substrate for cluster 

computers. The primary issue is that Ethernet was designed for use in LANs. Since data in LANs 

is transmitted over long distances, Ethernet is largely optimized for bandwidth but not latency. 

Another consequence of Ethernet being designed for LANs is that the hardware is not designed to 

facilitate reliable transmissions. Instead, workstations in the cluster must implement reliable 

transmission protocols that can tolerate dropped messages. Finally, Ethernet hardware can be 

criticized because currently there is a lack of high-performance NI adaptors. In [24], researchers 

compare several commercial Gigabit Ethernet adaptors. Tests using a host with 32b/33MHz PCI 
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found that the maximum obtained bandwidth was only 436 Mb/s, while most of the cards 

provided less than 200 Mb/s. In tests using a host with 64b/66MHz PCI, general performance 

rose to 650 Mb/s, with one card obtaining 928 Mb/s. While industry is steadily improving Gigabit 

Ethernet product performance, these tests demonstrate that it is still challenging to obtain the peak 

performance levels of the network. 

2.3.2 Scalable Coherent Interconnect (SCI) 

The scalable coherent interconnect (SCI) standard is a SAN for clusters that has gained 

widespread use in Europe. SCI evolved out of the Futurebus+ project [25] in 1988 as a means of 

developing a next-generation I/O infrastructure for high-performance workstations. SCI is 

designed to allow a large number of hosts to function as part of a distributed shared memory 

machine. In the programming model for this system, each host is allocated a region of memory in 

SCI's global address space. When a host reads or writes a region of the address space that is not 

available at the local node, the SCI NI card forwards the transaction to the memory system of the 

host that owns the memory. Distributed memory interactions take place efficiently in SCI because 

shared memory protocols are implemented in hardware in the SCI NI cards. Initial versions of 

SCI interconnected hosts in ring topologies that were similar to token ring LANs. As the standard 

evolved SCI hardware was adapted to operate in point-to-point network topologies using 

dedicated switches. 

An advantage of SCI's approach to communication is that it provides a specific set of 

actions that the network hardware must perform. These actions can be implemented with custom 

hardware that benefits from circuit-level optimizations. While this prevents the NI from being 

extended with functionality by the user, it allows NI hardware to be simplified and produced 

more economically. One of the largest vendors of SCI hardware is Dolphin Interconnect [26]. 

This company's implementation of SCI has an application-to-application performance of up to 

2.6 Gb/s in bandwidth and 1.4 [xs in latency [27] (using IA64 Itanium hosts). 
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2.3.3 Myrinet 

Myricom's Myrinet is one of the most commonly utilized SANs for cluster computers, 

due to its high levels of performance and programmability. Myrinet is a descendent of the Mosaic 

[28] and ATOMIC [29] research projects. In these projects, researchers developed a high-

performance network for multiprocessor systems that employed source-routed, wormhole [30] 

messages to reduce switch latencies. These networks provided high levels of data reliability and 

would only drop messages if deadlock was suspected. Myricom converted Mosaic into a 

commercial product known as Myrinet for use with commodity workstations. Current generation 

Myrinet hardware is comprised of network switches, 1.28 to 2.0 Gb/s full-duplex links, and 

programmable NI cards. Network hardware is connected in a point-to-point fashion, allowing the 

construction of both regular and irregular network topologies. In minimizing switch latency, 

Myrinet designers have pushed network tasks out of switch hardware and into the NI cards. A 

beneficial side effect of this design choice is that network functionality (e.g., multicast or added 

fault tolerance) can be implemented by users in the form of NI firmware. Myricom has released 

several generations of NI hardware as summarized in Table 2.1. 

Table 2.1: A history of Myrinet network interface cards. 
NI Processor Year Link Speed NI Speed NI Memory Host I/O 

LANai 3 1994 640 Mb/s 25 MHz 128KB 20 MHz SBUS 
LANai 4 1996 1.28 Gb/s 33 MHz 1 MB 32b/33MHz PCI 
LANai 9 2000 1.28/2.0 Gb/s 100-200 MHz 2-8 MB 64b/66MHz PCI 

The organization of the Myrinet NI is depicted in Figure 2.4. In this architecture, the NI 

is situated between an interface to the host I/O system and an interface to the network wire. High­

speed SRAM is utilized to house both the executable firmware and data for the NI. Firmware 

typically occupies less than 256KB of SRAM memory, allowing the remaining memory to be 

used as needed by communication library designers. The SRAM is shared between the LANai 

and DMA engines through a priority-based memory controller. 
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Figure 2.4: Architecture of the Myrinet NI card. 

While the architecture of the Myrinet NI is relatively simple, the NI is a powerful device 

because it can support multiple data transfers at the same time. The NI can be configured to 

simultaneously send data to the network, receive data from the network, and issue a DMA 

transfer to or from host memory. In more recent versions of the Myrinet NI, the NI is also capable 

of supporting multiple DMA transfers between the NI and host using four PCI DMA engines. The 

programmable nature of the NI has allowed firmware designers to construct efficient 

communication pipelines with the NI, where data is transferred in a cut-through manner without 

buffering delays in the NI. Basic performance measurements of the LANai 4 and 9 NI cards are 

provided in Appendix A. 

2.3.4 Quadrics QsNet 

The QsNet [21] interconnection network is a relatively new SAN product created by 

Quadrics in Europe. QsNet is currently being utilized in high-end cluster computers such as the 

Terascale Computing System [31] at the Pittsburgh supercomputer center (currently the third-

fastest supercomputer in the world [6]). Similar to Myrinet, QsNet uses wormhole routing to 

efficiently transfer data between NI cards through a point-to-point network. However, QsNet 

differs in that communication resembles a virtual circuit approach, as wormhole transmission 

paths are not released until the receiver transmits an acknowledgement token. Similar to SCI, 

QsNet provides a means of allowing hosts in the network to share a global address space. In order 
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to accelerate remote memory operations, NI cards are equipped with hardware engines that can 

dynamically translate virtual addresses into physical addresses. Initial reports of QsNet indicate 

that it is capable of providing over 2.4 Gb/s of bandwidth and approximately 2 JJ.S of latency 

between user-space applications. 

2.4 Cluster Computer Network Software 

After early work in Beowulf-style clusters, researchers observed that the high latency of 

traditional communication libraries for LANs precluded fine-grained cluster applications. Given 

the raw performance available in SAN hardware, a considerable amount of cluster computing 

research in the late 1990's focused on techniques for harnessing this communication 

performance. This work resulted in the development of a number of custom "message layer" 

communication libraries that offered mechanisms for reducing communication latency and 

increasing bandwidth between host-level applications. The most commonly utilized SAN in this 

effort is Myrinet, due to its open source software and well-documented hardware. A large number 

of message layer packages have been implemented for Myrinet, including Active Messages (AM, 

AM II) [32,33], Fast Messages (FM) [34], PM [35], Link-level Flow Control (LFC) [36], Trapeze 

[37], Virtual Memory Mapped Communication (VMMC) [38], GM [39], and BIP [40]. 

2.4.1 Limitations of LAN Protocols 

Early Beowulf-style cluster computers utilized traditional LAN hardware and software to 

provide reliable communication between workstations in the cluster. These clusters typically 

employed Ethernet network hardware and communication software based on the transmission 

control protocol (TCP). While leveraging existing LAN equipment allowed large clusters to be 

constructed easily in a cost-effective manner, researchers observed that these Beowulf-style 

clusters offered limited performance in some parallel processing applications. The fundamental 

issue observed with using LAN equipment is that it is primarily designed to transmit data over 
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long distances using an error-prone medium. Therefore, LAN software such as TCP must perform 

a number of complex transmission management operations in order to guarantee that messages 

are reliably delivered in the proper order to a destination. 

Cluster computers have different operating conditions than LANs. In cluster computers, 

workstations are separated by small distances and utilize dedicated network switches for local 

communication. Under these conditions, messages are dropped or reordered by the network 

infrequently. Therefore, TCP's reliable transfer mechanisms are not optimal for cluster computers 

and are in general too heavy weight for high-performance applications. Transmissions using 

Ethernet and TCP can suffer communication latencies greater than 100 us for host-to-host 

deliveries. By comparison, inter-processor communication in a symmetric multiprocessor (SMP) 

node takes place in only a few microseconds. This difference in communication performance is 

enough to significantly limit the effectiveness of cluster computers in the case of fine-grained, 

communication intensive parallel programs [41]. Therefore, researchers in the late 1990's began 

investigating custom message layers that were better suited for cluster computers. 

2.4.2 Message Layer Characteristics 

Message layers for cluster computers serve as a means of transferring application data 

between communication endpoints in the cluster. Naturally there are many ways in which 

message layers can be designed. Therefore, a first step in understanding how message layers 

function is to consider a few of their key characteristics. These characteristics include the 

following. 

• Programming Interface: One of the most defining characteristics of a message layer is 

the programming interface that is provided to end users. Message layers generally 

employ one of three types of programming interface. First, active message [42] systems 

utilize an interface similar to remote procedure calls (RPCs) [43], where an application 

23 



can invoke an operation at a remote endpoint simply by transmitting a message. Second, 

in rendezvous approaches, sending and receiving endpoints are tightly synchronized and 

require the receiving endpoint to post requests to extract certain messages from the 

network. Finally, systems using a shared memory programming interface use remote 

memory operations to manipulate data located at different hosts in the cluster. 

• Buffer Management and Flow Control: NI cards have a limited amount of buffer space 

for housing in-flight messages. Therefore, an important aspect of a message layer is the 

means by which it manages the reliable transfer of messages from one endpoint to 

another. In some message layers, flow-control schemes are applied at either the host or 

NI levels in order to prevent messages from being dropped due to insufficient buffer 

space at the receiver. Other message layers do not implement such mechanisms, either for 

performance reasons or because they are not necessary. For example, in a shared memory 

system, the receiving NI always accepts and processes an incoming message, so buffer 

management is not necessary. 

• Delivery Order: In a strictly ordered system, messages are processed by a receiver in the 

same order they were injected into the network by the sender. When messages are 

dropped in the network, a message layer with ordered delivery performs retransmission 

and reordering to maintain consistent data flow. In systems where network messages can 

carry priorities, some message layers allow higher priority messages to bypass lower 

priority messages by relaxing ordered delivery constraints. 

• Receiver Notification: Another characteristic of a communication library is the manner 

in which the receiving application is notified that a new message has arrived. In message 

layers that notify the receiving endpoint, either an interrupt mechanism or polling is 
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utilized. While interrupts allow applications to interact with the message layer only when 

new data has arrived, the interrupts can take place at any time and are therefore 

challenging to manage. Polling techniques require an application to periodically examine 

the message layer for new data, but can generally provide better performance than 

interrupts. Shared memory systems do not necessarily need to utilize any explicit form of 

notification, as this task is implicitly performed by the receiver application. 

2.4.3 Common Message Layer Optimizations 

Researchers often utilize a number of common techniques for improving the performance 

of a message layer. One of the earliest and most widely used techniques is to construct a message 

layer in user-space. This technique is beneficial because it allows an application to interact with 

the NI card without invoking expensive system calls. Another common technique used in many 

message layers is to make use of the reliable nature of SAN hardware. Since SAN hardware can 

operate for months at a time without a single bit error, researchers often simplify message layer 

protocols by assuming the common case of error-free transmissions. Finally, with the observation 

that the host CPU is much more powerful than the NI processor, a number of researchers have 

minimized the amount of work NI processors perform in the message layer. While these 

optimizations have boosted performance in message layers, such approaches have resulted in 

CPU-centric message layers. As will be discussed in the following chapter, these message layers 

are inappropriate for resource-rich cluster computers, which require both host CPUs and 

peripheral devices to function as communication endpoints. 
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2.4.4 Myrinet Message Layers 

A number of message layers have been constructed for Myrinet over the years. An 

excellent survey of several of these message layers is provided in [44]. The more influential of 

these message layers are summarized as follows. 

• Active Messages (AM, AM-II) [33]: The active messages project was one of the first 

academic message layer packages for Myrinet hardware. In addition to demonstrating the 

active message programming paradigm, AM software illustrated that communication 

libraries implemented in user space could provide significant performance improvements. 

AM utilizes host-based flow-control mechanisms to manage buffer space in the library. 

• Fast Messages (FM) [34]: The FM library was released shortly after AM and extends 

AM concepts by providing mechanisms for increased performance, stability, and 

usability. FM utilizes an active message programming interface and includes mechanisms 

for registering and managing application function handlers. Another feature of FM is its 

ability to efficiently fragment and pipeline large message transmissions, which allowed 

for significant gains in communication performance. While FM originally employed NI-

based flow-control mechanisms, these mechanisms were later deferred to the host due to 

poor NI performance. 

• BIP [40]: The BTP message layer is an effort to construct a lean message layer that can 

provide high performance for higher-level programming interfaces such as MPI [45]. BIP 

uses a rendezvous communication model where a receiver must provide the NI with 

information that specifies where the NI should store a particular incoming message. BIP 
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provides no reliability guarantees, and has been reported to have the best communication 

performance of any Myrinet message layer. 

Virtual Memory Mapped Communication (VMMC) [38]: The VMMC layer is 

designed to support shared memory operations on cluster computers. In this software, the 

library provides efficient means of transferring blocks of data from the virtual memory of 

one application to the virtual memory of another application located on a different host. 

These operations take place with remote DMA operations and require no flow-control 

mechanisms. VMMC NI firmware is equipped with mechanisms to perform virtual-to-

physical address translation, as well as facilities to cache translation results. 

GM [39]: GM is an industrial strength message layer from Myricom that provides good 

performance and is supported on a wide variety of cluster platforms. Like BIP, GM 

utilizes a rendezvous programming interface that works well with MPI. GM provides rich 

functionality at both receiving and sending endpoints and uses callback functions to 

notify applications that message layer operations have been completed. GM requires that 

all data transferred with the message library be loaded in a block memory that is 

registered with the library. Registered memory allows the NI to efficiently DMA data 

between the host and card, with virtual memory translation performed through a simple 

table lookup. 

2.5 The Virtual Parallel-Processing Machine 

In addition to providing low-level mechanisms for transferring data between cluster 

workstations, SAN message layers provide a programming abstraction that allows end users to 

control a cluster's computational resources. This abstraction presents the cluster as a virtual 
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parallel-processing machine that is capable of running parallel and distributed applications. An 

example of such a virtual machine is presented in Figure 2.5. In this example, the message layer 

maintains information about the workstations in a cluster and provides an interface where 

applications can globally reference any host CPU in the cluster. Therefore, an application running 

at one host CPU transmits data to another CPU by providing the message layer software with a 

message that is labeled with the reference identifier for the destination. In current generation 

message layers, host CPUs are the only resource included in the virtual machine architecture. 

Figure 2.5: The virtual parallel-processing machine architecture provided to end 
users in current message layers. 

While there are many ways in which a virtual machine can be realized for a cluster, a 

common approach is to load each host in the cluster with an executable program that is part of an 

overall parallel-processing application. Each executable program contains user-defined 

functionality for the local host as well as message layer library functions and information about 

the cluster's global resources. After all hosts in the cluster have executed message layer 

initialization functions, the virtual parallel-processing machine becomes operational and each 

host begins processing the application code defined in its local executable program. Maintaining 

the appearance of a virtual machine is a straightforward process in the message layer after this 

point, as the message layer must simply service application queries regarding cluster resources 

and route transmissions to the appropriate cluster resources. 
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CHAPTER III 

MESSAGE LAYERS FOR RESOURCE-RICH CLUSTER COMPUTERS 

As discussed in the previous section, cluster computers provide a cost-effective platform 

for processing distributed applications. If a cluster computer's communication library is 

visualized as a means of providing a virtual parallel-processing machine for distributed 

applications, there is one component of the virtual architecture that current generation 

communication libraries omit: peripheral devices. Traditional cluster communication libraries are 

designed to transfer data only between host CPUs, not peripheral devices. For these libraries it is 

assumed that cluster interactions with a peripheral device are performed by a host-level 

application that resides in the same host as the device. Therefore, in order to interact with a 

remote peripheral device, an application must communicate with the remote host's CPU and 

request that an operation be performed on behalf of the application. This method of controlling a 

peripheral device through a proxy incurs costly overheads that limit the dynamic use of peripheral 

devices in distributed applications. 

The fact that peripheral devices can strongly influence a cluster computer's performance 

challenges the notion that communication libraries should be designed in such a CPU-centric 

manner. Peripheral devices are becoming increasingly more powerful, and therefore represent a 

valuable opportunity for accelerating cluster computer applications. The inclusion of powerful 

peripheral devices in the cluster architecture results in a new category of cluster computer that we 

refer to as resource-rich cluster computers. Since these clusters exhibit different communication 

requirements than traditional clusters, it is beneficial to examine the design of new 

communication libraries that are well suited to these clusters. These libraries specifically allow 

both host CPUs and peripheral devices to be efficiently utilized as computational resources by 
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distributed applications. The resulting virtual parallel-processing machine provided by the 

communication library is depicted in Figure 3.1. 
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Figure 3.1: Including peripheral devices in the virtual parallel-processing machine 
architecture provided by the communication library. 

This chapter provides the groundwork for designing message layers that are well suited 

for resource-rich cluster computers. As a first step in this effort, definitions of the hardware 

environment are provided as well as motivating examples of how these clusters can be beneficial 

to end users. This work is followed by a discussion of fundamental concepts that influence the 

construction of the communication library. These concepts are then individually elaborated. 

Finally, this chapter concludes with a listing of research projects that are related to resource-rich 

clusters. 

3.1 Emergence of Resource-Rich Cluster Computers 

Resource-rich cluster computers are clusters in which individual workstations are 

supplemented with powerful peripheral devices. It is important to examine the characteristics of 

these clusters in order to determine how message layers should be designed for these systems. 

3.1.1 Availability of Powerful Peripheral Devices 

In recent years, commercial hardware vendors have constructed a number of powerful 

peripheral devices that are designed to perform a variety of application-specific operations. One 
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of the key motivations for this effort has been the need to produce high-performance network 

servers for the Internet. In answer to market demand, developers have constructed a number of 

intelligent I/O cards for both LAN and storage operations. For LANs, developers have 

constructed high-performance network cards that feature embedded processors and multiple 

physical links to the network. Some of these cards are equipped with firmware that allows 

common network operations such as TCP connection management to be performed on the 

network card as opposed to the host. Storage controller cards are also becoming increasingly 

more powerful due to the active disk [46] and netv/ork-attached storage (NAS) [47] efforts. 

Modern intelligent storage adaptor cards are capable of managing a disk's file system at the 

controller in a self-contained manner. These storage cards provide a file-level interface to end 

applications, and do not require the assistance of the host's operating system. 

Another area where peripheral devices are becoming more powerful is in multimedia 

applications. Driven by consumer interest in high-quality video and audio editing, developers 

have made significant improvements to multimedia peripheral devices. Modern audio and video 

capture devices can be configured to automatically push high-resolution data samples directly 

into host memory, allowing data streams to be captured in real time. Some of these cards feature 

hardware to perform desirable operations such as compression, clipping, and filtering. Other 

multimedia cards are available for rendering high-quality output for people to observe. Audio 

playback and video display cards generate output signals from large on-card buffers that can be 

written to by applications. Some of these output cards feature processing devices that are capable 

of performing significant computations in real time. 

A third area where peripheral devices have become more powerful is in the field of 

computational accelerator cards. These cards are designed to utilize custom hardware to improve 

the performance of certain types of computations. Typically, these cards employ digital signal 

processors (DSPs), field-programmable gate arrays (FPGAs), or even dedicated application-

specific integrated circuits (ASICs). Often these cards feature large amounts of high-speed 

31 



memory for storing large data sets at the card, and function as a form of co-processor for the host. 

The common procedure for utilizing a hardware accelerator card is for the host application to pass 

data to the card, have the peripheral device process the data, and then have the results transferred 

back to the host. Custom hardware accelerator cards are often useful for processing large streams 

of data such as multimedia traffic. 

3.1.2 Categorizing Peripheral Devices 

Based on the previous examples, it is possible to broadly categorize peripheral devices by 

the manner in which they are utilized. Three common categories include the following. 

• Data Sources and Sinks: Peripheral devices are often utilized to produce data for the 

host (i.e., a data source) or store data from the host (i.e., a data sink). Some peripheral 

devices, such as storage adaptor cards, are capable of performing both of these 

operations. Typically, these devices do not perform elaborate computations on incoming 

or outgoing data. 

• Intermediate Processing Elements: Peripheral devices such as the custom hardware 

accelerators are primarily designed to process data for the host. Data is typically injected 

into these cards, processed, and then ejected back to the host system. Incoming and 

outgoing data rates for these cards do not have to be equal and are dependent on the 

application. 

• System Bridges: A peripheral device can also be designed to serve as a form of bridge 

between two separate systems. The bridge device therefore manages communication 

between the two systems, performing protocol translations when needed. One example of 

a bridge is a LAN adaptor card that is utilized to connect the cluster to an application 
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running at a host that is not part of the cluster. The cluster side of the bridge 

communicates with a SAN protocol while the external side utilizes a LAN protocol (such 

as TCP). 

3.1.3 Characteristics of Resource-Rich Cluster Computer Hardware 

A resource-rich cluster's hardware architecture is similar to traditional cluster computers, 

with the exception that workstations are equipped with powerful peripheral devices. Physically 

adding these devices to the cluster is relatively simple, as cards are placed in the available PCI 

slots of a cluster's workstations. Figure 3.2 depicts the physical architecture of a resource-rich 

cluster computer. Each workstation features various peripheral devices and is connected to the 

cluster through a high-performance SAN. This SAN functions as a backbone for communication 

in the cluster and can be accessed by both host CPUs and peripheral devices. 
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Figure 3.2: The inclusion of peripheral devices in the resource-rich cluster 
architecture. 

While resource-rich clusters are not a radical departure from traditional cluster 

architectures, there are several unique characteristics that communication library designers must 

be aware of. The more significant characteristics include the following. 
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• Two-levels of Communication Infrastructure: Communication within a resource-rich 

cluster takes place in two distinct levels: in the local host context (intra-host) and between 

hosts using the SAN (inter-host). Intra-host communication can be facilitated with 

software that intelligently utilizes the host's local I/O system. Inter-host communication 

requires software that transfers data through both the local I/O system and backbone SAN 

substrate. 

• Globally-Shared Peripheral Devices: Resource-rich clusters feature a number of 

peripheral devices that can be utilized by end applications. While each device in the 

cluster is owned and managed by the operating system of the workstation in which it 

resides, it is beneficial for devices to be accessible in the global context of the cluster. 

The ultimate goal is for any resource to be able to efficiently utilize any other resource in 

the cluster. 

• Differences in Peripheral Device Capabilities: Peripheral devices are generally 

designed to perform specific functions using minimal amounts of hardware resources. 

While some devices feature programmable embedded processors and large amounts of 

on-card memory, others may only be equipped with low-speed ASICs configured with 

simple state machines. Therefore, different peripheral devices have different capabilities. 

These differences influence the extent to which a device can be integrated into the 

resource-rich cluster environment and made available as a global resource 

• Limited Local I/O Capacity: Workstations have a fixed capacity for local I/O 

operations. In addition to being limited, local I/O bandwidth is generally shared among 

all peripheral devices in a host. Therefore, it is important that data transfers involving the 
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local I/O system be orchestrated in an efficient manner. For example, if data is being 

moved from one resource to another in a host, it should be transferred directly with a 

single copy as opposed to a two-copy approach where the data is first transferred into an 

intermediate host buffer. 

3.1.4 Resource-Rich Cluster Computer Applications 

There are a number of applications that can benefit from the use of resource-rich cluster 

computers. One motivating example can be found in the field of high-performance network 

servers. As depicted in Figure 3.3, a resource-rich cluster could be used to implement a tightly 

synchronized web server that is capable of sustaining high network loads. In this example, each 

host in the cluster utilizes an intelligent LAN adaptor card to service incoming requests from 

external clients and an intelligent storage adaptor to house portions of a large database. In order to 

service incoming requests, the LAN adaptors communicate directly with the appropriate storage 

controller card using the SAN and the communication library. This form of large-scale server is 

particularly useful for applications such as digital libraries, where the database is enormous and 

cannot simply be replicated at each host. 
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Figure 3.3: An example of a resource-rich cluster functioning as a network server. 
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Resource-rich cluster computers can also be utilized for applications that process large 

multimedia data streams. In a full-scale multimedia task, audio and video data is acquired by 

multimedia capture devices, streamed through various computational resources in the cluster, and 

then ejected to either storage or output devices. In this application, the communication library 

must efficiently transfer data between cluster resources in order to meet real-time requirements. A 

variant of this task is to utilize host CPUs to generate the data streams instead of capture devices. 

An example of this task is illustrated in the WireGL project [48], where multiple hosts in a cluster 

generate objects that are combined and rendered to a grid of output displays. These types of 

operations can be beneficial in scientific applications where a small cluster is utilized to 

graphically render the computational results of a larger cluster [49,50]. 

3.2 Design of Message Layers for Resource-Rich Clusters 

Physically constructing a resource-rich cluster is a relatively straightforward task: 

individual components of the architecture can be purchased and assembled from commodity parts 

that are widely available. A more challenging task is constructing software that allows the 

hardware to function as part of a single system. Utilizing commodity software such as the open 

source GNU/Linux operating system is a significant first step in this effort. Linux provides well-

defined APIs and built-in device drivers for managing many different hardware devices. 

However, current generation commodity operating systems are only designed to control a local 

host, not a cluster of hosts. What is needed is a communication library that is located in or 

directly above the operating system to provide an application with a means of utilizing the 

resources that are distributed throughout the cluster. As discussed in the previous chapter, this 

communication library serves as a means of presenting end users with a form of virtual parallel-

processing machine for distributed applications. 

Existing communication libraries are inappropriate for resource-rich clusters because 

they do not provide mechanisms for accessing peripheral devices in the global context. Extending 
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these communication libraries to provide such access is nontrivial or impossible because the 

libraries are optimized under the assumption that the NI is controlled exclusively by the host 

CPU. Therefore, it is necessary to consider how a communication library can be designed with 

fundamentals that support the needs of resource-rich cluster computers. In this effort, it is 

beneficial to examine both system level issues as well as practical features that assist end users. 

These factors influence the design of the communication library and must be addressed in order 

for a resource-rich cluster to function efficiently. 

3.2.1 Definition of a Communication Endpoint 

Central to the design of a message layer is the functionality of an endpoint. A 

communication endpoint is a set of programming abstractions for interacting with a resource. 

These abstractions define operations for sending/receiving messages to/from other resources in 

the cluster. For resource-rich clusters, both host CPUs and peripheral devices function as 

communication endpoints. 

In general, the endpoint abstraction has three components. The first is a block of local 

memory for queuing incoming messages. These queues allow other resources in the local host 

(e.g., the NI and other local endpoints) to pass messages directly into the endpoint's address 

space. The second is a set of operations for interpreting and processing messages from the 

incoming message queues. The third is a set of mechanisms for ejecting an incoming message to 

another resource in the local host (e.g., the NI or a local endpoint). These mechanisms allow the 

endpoint to interact with other resources in the cluster. 

Simplified endpoints may implement only a subset of the preceding components. For 

example a low-end peripheral device that functions as a data source only requires mechanisms for 

sending messages. Similarly, a data sink needs only to accept and process incoming messages. 

The advantage of implementing all three components of a generic communication endpoint is that 

the customization of services and functions becomes feasible. 
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3.2.2 Architectural Design Issues 

The architectural characteristics of a resource-rich cluster have a strong influence on the 

way that communication library software should be designed for these clusters. Key issues that 

must be addressed include the following. 

• End-to-End Flow Control: Flow control is utilized as a means of preserving buffer 

space in the communication library implementation. Resource-rich clusters typically 

employ a large number of communication endpoints, many of which have limited 

computational facilities. Therefore, it is infeasible for each endpoint to manage end-to-

end flow control for delivering messages. Instead, resource-rich cluster communication 

libraries should utilize per-hop flow control schemes that simplify the workload of the 

endpoints. 

• Shared NI Access in a Host: In resource-rich clusters a host may be equipped with 

multiple communication endpoints at both the host CPU and peripheral device levels. 

Each of these endpoints must access the NI to communicate with other endpoints in the 

cluster. Therefore, the communication library must provide efficient means of sharing the 

NI among multiple endpoints. These mechanisms must allow multiple endpoints to 

coherently inject data into the NI. For this task we propose the use of Nl-based logical 

channels. 

• Flexible and Powerful Programming Model: The communication library must provide 

a programming model that is flexible enough to serve the diverse needs of cluster users. 

This programming model must be able to support traditional host-to-host communication 

mechanisms as well as methods for interacting with peripheral devices in the cluster. The 
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model must also be extensible, allowing new functionality to be added by end users when 

necessary. We propose the use of two APIs in the communication library: one for active 

messages and the other for remote memory operations. 

Simple Standardized Endpoint Interface: A variety of diverse cluster resources must 

implement communication endpoint software. For robustness and portability it is useful if 

the endpoint interface adheres to a standard form that is universal for all endpoints. Since 

there is a large amount of diversity in the capabilities of peripheral devices, it is important 

that this interface be designed in a manner that allows it to be implemented on even the 

simplest of peripheral devices. 

Optimizations: Modem communication libraries are expected to deliver high levels of 

performance for traditional host-level transactions. While a communication library for a 

resource-rich cluster trades some performance for increased functionality, the library 

should still be able to provide reasonable amounts of host-level performance. Therefore, 

it is necessary to include optimizations in the library when possible for improving 

performance. 

3.2.3 Design Overview 

Designing a communication library for a resource-rich cluster requires the construction of 

appropriate mechanisms to address the preceding design issues. While there are certainly many 

possible solutions, we define a list of four key design characteristics that can be utilized to 

provide a suitable communication library. These characteristics are discussed in detail in the 

following sections and are summarized as follows. First, per-hop flow control can be utilized to 

address the need for dynamic buffer management in the communication library without 

complicating the communication endpoint software. Second, the use of multiple logical channels 
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in the NI allows communication endpoints in a host to share a NI without heavyweight 

synchronization protocols. Third, an active message style programming interface provides a 

uniform means by which end users can efficiently utilize peripheral devices. Finally, the 

programming interface can be supplemented with methods for interacting with remote endpoint 

memory in order to improve the flexibility of the library as well as its performance. 

3.3 Per-hop Flow Control 

Reliable communication libraries utilize flow control mechanisms to manage buffer space 

in the library. Without flow control an incoming message can erroneously overwrite an in-flight 

message that has not yet been processed. For simplicity, several reliable message layers 

implement flow control at the host level. This approach can be labeled as endpoint-managed flow 

control, and requires an endpoint to acquire a flow control credit for the intended destination 

before it injects a message into the NI. The credit represents a reservation of buffer space along 

the entire communication pathway in the library (i.e., the sending and receiving NIs and the 

receiving endpoint). Endpoints must maintain flow control state information and communicate 

with other endpoints when updating this information. 

Endpoint-managed flow control is inappropriate for resource-rich clusters because it 

complicates endpoint responsibilities. A more appropriate mechanism recommended for resource-

rich clusters is to manage flow control on a per-hop basis. In this approach, a message can 

progress along its communication pathway when enough buffer space is available to receive the 

message in the next communication stage. While this adds complexity to the design of the 

communication library, it simplifies the work a communication endpoint must perform in order to 

interact with the library. A key element of this design is managing flow control between NI pairs. 

An optimistic approach is suggested for this effort in order to reduce communication latency. 
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3.3.1 Disadvantages of Endpoint-Managed Flow Control 

In endpoint-managed flow control schemes, an endpoint must secure a reservation of 

buffer space for a message from all of the network elements that will be used to transfer the 

message before the message can be injected into the network. Rather than perform reservations 

on-demand, most endpoint-managed flow control schemes use a credit-based reservation system, 

where network buffers are allocated in advance and assigned to the endpoints in the system. An 

endpoint has a limited number of credits to communicate with each endpoint in the system and 

must spend a credit before the communication can begin. After receiving a message, an endpoint 

must transmit a credit-replenishing reply to the sender. An example of this scheme for a single 

transaction is depicted in Figure 3.4. The shaded regions in the message queues represent buffer 

space that is allocated for a transmission during the time between when the message is first 

transmitted and the reply is received. 
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Figure 3.4: Endpoint-managed flow control schemes typically require send/reply 
messages to be transferred between endpoints to manage flow control credits. The 
dark buffers in the NIs represent buffer space that is reserved until the send/reply 
transaction completes. 

There are several negative aspects of endpoint-managed flow control for both traditional 

and resource-rich clusters. First, endpoint-managed flow control schemes perform injection 

policing at a coarse granularity. It is possible that an endpoint will delay injecting a message into 

a NI that has buffer space for the message, simply because buffer space has not yet been reserved 

for the entire communication path. Second, endpoint-managed flow control schemes require 

credit information to flow between endpoints. This information adds to the network traffic and 

41 



may be redundant. Finally, in endpoint-managed flow control schemes, each endpoint is 

responsible for dynamically managing its own flow control credits. This requirement adds to the 

work that individual endpoints must perform in order to communicate. As the number of nodes 

increases in the system, this management becomes a substantial effort that requires larger 

memory and compute resources. These resources may exceed the capabilities of some peripheral 

devices, thereby preventing their use in the cluster. 

3.3.2 Per-hop Flow Control 

An alternative approach to endpoint-managed flow control is for the communication 

library to perform buffer management on a per-hop basis. In this approach, a message is 

transmitted to the next stage in the communication path as soon as buffer space is available to 

receive the message. As illustrated in Figure 3.5, the communication library moves data in three 

phases: sending-endpoint to sending-NI, sending-NI to receiving-NI, and receiving-NI to 

receiving-endpoint. Each of these phases employs flow-control mechanisms to guarantee that data 

is transferred reliably from one stage to the next. This approach is commonly referred to as NI-

based flow control because the most challenging aspect of the implementation is the transfer of 

data between NI pairs. 
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Figure 3.5: Per-hop flow control utilizes synchronization in the communication path 
to allow messages to progress when buffer space is available. 

For resource-rich cluster computers, the primary advantage of per-hop flow control is that 

it can greatly simplify the software for communication endpoints. In this scheme, an endpoint 

simply injects a message into its local NI as soon as buffer space becomes available in the NI. 

From the endpoint's perspective the communication process completes after the injection because 

the individual network elements in the communication path are guaranteed to reliably transport 
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the message to its destination endpoint. Unlike endpoint-managed flow-control schemes, the per-

hop approach does not require endpoints to maintain state information for in-flight messages. 

This property simplifies the amount of work an endpoint must perform to communicate in a 

reliable fashion, and is particularly valuable in cases where peripheral devices with limited 

capabilities are being used as endpoints. 

Another benefit of a per-hop flow control scheme is that buffer space can be managed 

dynamically. In this approach, a communication element such as a NI makes a decision to accept 

or reject an incoming message based on whether the element currently has enough buffer space to 

house the message. Therefore, the hardware devices that propagate a message allocate buffer 

space on demand as needed by applications. An example of how this trait can be beneficial can be 

found in a scenario where two endpoints are communicating exclusively with each other at a 

particular point in time and are not receiving data from other endpoints in the cluster. In this 

situation the NIs of the elements effectively allocate all of their buffer space for the 

communication between the two nodes. This buffer space allows more messages to be in-flight 

between the endpoints at the same time, which improves overlap in the communication pipeline. 

Endpoint-managed flow control schemes do not allow such dynamic use of resources because 

allocations are managed at a high level with coarse granularity. 

3.3.3 Optimistic NI-NI Flow Control 

Nl-based flow control mechanisms can be implemented in a variety of manners. A 

popular approach is to employ a credit-based scheme where each NI has a limited number of 

credits for communicating with other NIs in the cluster. As observed in the endpoint-managed 

flow control case, this approach may result in a NI unnecessarily delaying a transmission because 

acknowledgements have not propagated back to the sender. Another approach is to utilize a 

scheme where the sending NI requests a reservation of buffer space from the receiving NI before 

a message is transmitted. This approach is useful in times of high network loads because data 
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messages are only transmitted when they can be received. However, this approach has poor 

performance for the common case where the network is not saturated, because a reservation must 

be acquired before a data message can be transmitted. 

An alternative approach to credit-based flow control is to utilize an optimistic 

transmission scheme. In an optimistic approach, the sending NI transmits a message with the 

expectation that the receiving NI will be capable of accepting the message when it arrives. The 

receiving NI transmits a positive or negative acknowledgement to the sender depending on 

whether the message could be accepted or not. If the sending NI receives a positive 

acknowledgement, the buffer space allocated for housing the in-flight message is deallocated. If a 

negative acknowledgement is received, the sender performs a rollback on the outgoing message 

queue and retransmits the message and all of the following messages that are to the same 

destination. 

An optimistic Nl-based flow control protocol has several benefits. First, similar to a 

credit-based scheme, an optimistic protocol allows a newly detected message to be transmitted 

without delay. Second, the optimistic approach does not require any form of credit management. 

Instead messages must be identified and tracked by the NIs. However, this work is normally 

required by any Nl-based flow control scheme. Third, the NIs naturally allocate buffer space in 

this approach to meet runtime needs. This trait takes place automatically without explicit 

signaling between NIs. Finally, the optimistic approach allows the network's delivery latency to 

be overlapped with useful work. The sending NI can begin transmitting a message at a time when 

the receiving NI cannot accept it. By the time the message arrives at the receiver it is possible that 

the receiver will be able to accept the message, thereby reducing the latency of delivery. 

3.4 Logical Channels 

An important characteristic of resource-rich clusters is that there are multiple 

communication endpoints in a host that need to interact with the SAN. Since a host generally has 
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more endpoints than NI cards, it is necessary to construct mechanisms that allow the endpoints to 

share the NI. In traditional approaches, this sharing is performed in the kernel by constructing 

multiple virtual network interfaces for end applications. Unfortunately, this approach is 

inefficient for resource-rich clusters because it is difficult to present these virtual interfaces to 

peripheral device endpoints in an efficient manner. 

Without kernel-based NI management, it is necessary to implement synchronization 

mechanisms in the individual endpoints to guarantee that the NI is accessed in a mutually 

exclusive manner. Utilizing explicit signaling between endpoints is complex and impedes 

performance. Therefore, we propose moving the task of managing shared access to the network 

into the NI. In this approach, the NI employs multiple message queues that are referred to as 

logical channels. Each endpoint has exclusive ownership of a small number of the NI's logical 

channels. The endpoint utilizes these logical channels as virtual interfaces for communication 

with the network. The task of mapping the logical channels onto the physical network is 

dynamically performed by the NI. In addition to providing a sharable means of low-latency 

communication, logical channels can also be utilized by applications to provide isolation between 

different types of network data streams and allocate bandwidth among peripheral devices. 

3.4.1 Sharing Network Access through Kernel Management 

For traditional networks such as Ethernet, the kernel is utilized as a means of sharing a 

physical NI card with multiple applications. As depicted in Figure 3.6, the kernel has exclusive 

ownership of the NI and provides virtual communication interfaces for multiple application 

endpoints. The kernel therefore must merge the messages injected by endpoints into a single 

outbound NI queue and distribute incoming messages from the network to the proper endpoints. 

In addition to providing a scalable means of sharing the NI, this approach protects end 

applications from each other by insulating the applications from the low-level hardware. 
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Network 

Figure 3.6: The traditional approach to providing shared access to a network device 
through the use of the kernel. 

Utilizing the kernel as a means of sharing the NI is impractical for resource-rich clusters 

due to the types of network interactions that are utilized in these clusters. The primary problem 

with relying on the kernel to manage the NI is that the communication interfaces provided by the 

kernel are designed to operate with host-level endpoints, not peripheral device endpoints. 

Adapting a peripheral device to operate with these interfaces is difficult and inefficient. The 

peripheral device would have to route all of its network transactions through the kernel and utilize 

costly interrupts to invoke the necessary kernel operations. This process requires extra data copies 

and taxes the memory and I/O systems of the host. Another disadvantage of utilizing the kernel to 

manage the NI is that host-level endpoints must invoke kernel calls for network operations. Since 

kernel calls can be relatively expensive operations, it is beneficial if shared access to the NI can 

be accomplished without involving the kernel driver. 

3.4.2 Sharing Network Access through Logical Channels 

Another means of sharing the NI with multiple endpoints is simply to remove the 

dependencies that exist between endpoints that interact with the NI. One such approach is to 

implement a small number of independent message queues or logical channels in the NI. Each of 

these logical channels is assigned to an endpoint in the host when the system is initialized. 

Because an endpoint has exclusive ownership of its logical channel(s), it can send and receive 

messages without having to synchronize with other endpoints in the system. The NI in this 
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approach is responsible for mapping the logical channels onto the physical network at runtime 

through the use of a simple scheduling algorithm. An example of this approach is illustrated in 

Figure 3.7. 
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Figure 3.7: Utilizing multiple logical channels in the NI to provide shared access to 
the network. 

There are several benefits to using logical channels as a means of providing shared access 

to the NI. First, this approach removes the need for any form of direct synchronization between 

endpoints that are interacting with the NI. An endpoint can begin injecting data into the NI as 

soon as buffer space is available in its logical channel. Second, endpoints interact directly with 

the NI. Unlike kernel-managed approaches, an endpoint transfers data directly into the NI without 

intermediate buffering. Finally, this approach provides a simple interface for communication that 

can be implemented for many peripheral devices without complex management mechanisms. 

There are two primary disadvantages to utilizing logical channels in the NI. First, there is 

a finite amount of buffer space available in the NI for implementing logical channels. As the 

number of logical channels in the NI increases, the buffer capacity of each logical channel 

decreases. Therefore, it is expected that most resource-rich cluster users will allocate only a few 

logical channels in the NI (i.e., roughly one per endpoint). Second, the presence of multiple 

logical channels in the NI has a negative impact on the performance of the NI. Because the NI 

must spend time managing each logical channel, the NI's workload increases as more logical 

channels are added to the NI. Additionally, NI firmware becomes more complex when it is 
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switched from servicing a single queue to multiple queues. This complexity results in extra NI 

operations, which detract from performance. 

3.4.3 Application-Level Use of Logical Channels 

In addition to allowing multiple endpoints to share the same NI, logical channels can be 

utilized by end applications as a simple means of separating traffic streams. For this use an 

application requests two or more logical channels from the NI and assigns different traffic 

streams to each channel. Data streams on different logical channels are isolated from each other 

due to two properties of logical channels. First, each logical channel has a private allocation of 

buffer space in the NI. Therefore, if one traffic stream saturates its logical channel's buffer space, 

other logical channels are not affected. Second, in-order delivery in the communication library is 

guaranteed only for messages that belong to the same logical channel. This property is necessary 

in order to allow the NI to implement a fair scheduling algorithm in which each logical channel 

has equal access to the NI. The result is that a message injected into an empty logical channel 

does not have to be delayed until all of the messages in other queues are transmitted. 

* Network 

Figure 3.8: Utilizing multiple logical channels to prioritize messages. 

An example of how the presence of multiple logical channels in the NI can be exploited 

by an end application is illustrated in Figure 3.8. In this example, an endpoint obtains two 

separate NI logical channels for two types of network traffic. The network bandwidth made 

available for each logical channel is controlled through a scheduler implemented in the NI. 
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3.5 Active Message Programming Interface 

One of the defining characteristics of a communication library is the programming 

interface that is provided to the end user. Users of resource-rich clusters require a flexible 

programming interface that can easily be extended to support new functionality. As a means of 

addressing this need, we propose constructing the communication library with two types of 

programming interfaces: one that employs active message style processing (described in this 

section) and another that provides a means of interacting with remote memory (described in the 

following section). For the active message interface, each communication endpoint is equipped 

with various function handlers for processing incoming messages. Whenever an endpoint injects 

a message, it specifies the function handler the receiving endpoint should use to process the 

message when it arrives. In addition to providing a powerful means of controlling computations 

in a distributed processing environment, the active message programming interface is well suited 

to controlling peripheral devices in a resource-rich cluster. In this effort, peripheral device 

functionality is encapsulated as a set of active message function handlers that all endpoints in the 

cluster can utilize. 

3.5.1 Active Message Operation 

The fundamental concept of active messages is that a message contains both application 

data and information describing how the receiver should process the message. While active 

network research [51] has discussed encoding complex processing instructions into active 

messages, a more common approach is for endpoints to be equipped with predefined methods for 

processing messages. These methods are commonly referred to as function handlers. When the 

communication library is initialized, each endpoint publishes a list of its function handlers to 

other endpoints in the system. At runtime when an endpoint injects a message into the 

communication library, it must specify the function handler the receiver should use to process the 
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message. Endpoints are responsible for monitoring incoming message queues and processing new 

messages with the appropriate function handler. 

The appeal of an active message interface is that it provides basic programming 

mechanisms that are both powerful and flexible. As opposed to simply transferring data between 

endpoints, active messages provide a means of invoking actions at remote endpoints. These 

actions can be utilized in an active manner to remotely control the behavior of an endpoint. For 

example, a message handler can be designed to spawn, modify, or terminate a computation in an 

endpoint. With these types of operations, a user can directly control the flow of computations in a 

distributed system. Active messages can also be utilized in a passive manner where a remote 

endpoint's state is not affected by the execution of a handler. For example, a handler can be 

designed to simply return the remote endpoint's current dataset to the sender of the message. 

From the remote endpoint's perspective, the processing of the function handler takes place in the 

background and does not affect the endpoint's main thread of execution. 

The original active message specification [52] is not directly applicable for resource-rich 

clusters because it is only designed to operate with homogeneous endpoints. Therefore, it is 

necessary to construct a more robust specification that allows diverse endpoints to interact with 

the active message interface. Three issues must be addressed in this specification. First, function 

handlers must be managed in a dynamic fashion by the communication library. It is not practical 

to statically configure endpoints with a list of the cluster's handlers because endpoint software 

would have to be recompiled every time a new application defined new handlers. Second, 

handlers should be referenced with useful labels, such as string and integer identifiers. In addition 

to being portable, these identifiers help make programs more readable (e.g., referencing a handler 

by the string "handler_compute_PI" has more meaning than a pointer to the handler's virtual 

memory address). Finally, active messages should be formatted in a manner that is interpretable 

by endpoints with different byte orders and word alignments. Constructing a single message 

format that takes into account these characteristics provides standardization among endpoints and 
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allows an endpoint to transmit a message without having to know the processing characteristics of 

the destination endpoint. 

3.5.2 Utilizing Active Messages with Peripheral Devices 

The active message programming abstraction is particularly useful for resource-rich 

clusters because active messages can be used as a simple but powerful means of controlling 

peripheral devices. In this approach, active message function handlers are defined for all of the 

actions that a peripheral device can perform. Endpoints in the cluster can therefore trigger an 

operation at a peripheral device by transmitting an active message to the device containing a 

reference to the function handler that needs to be invoked. Figure 3.9 illustrates an example of 

how a host-level endpoint can interact with an intelligent storage controller at a remote host using 

the active message programming interface. In order to obtain data from a desired file, the host 

CPU transmits an active message that contains the name of the file and the function handler id 

am_f e t c h _ f i l e ( ) . Upon receiving this message, the storage controller accesses the file and 

generates an active message with the handler am_return__f i l e _ d a t a 0 and the requested 

data. The transaction completes when the host CPU endpoint receives this reply and stores the 

data accordingly. 
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Figure 3.9: Active messages can be used to facilitate an API for a peripheral device. 

Using an active message programming interface to control a cluster's peripheral devices 

is beneficial for a number of reasons. First, it is relatively easy to integrate new peripheral devices 

into the cluster using this interface. Designers simply construct a series of card-specific active 

message function handlers for a peripheral device and provide references for the handlers to 
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application designers. Second, the active message interface serves as a universal communication 

substrate upon which multiple APIs can be layered. In this system, each peripheral device has its 

own API that is comprised of card-specific active message handlers. Endpoints therefore invoke a 

peripheral device's API operations by transmitting the corresponding active messages using the 

communication library's message passing functions. Finally, the active message interface is 

beneficial for controlling peripheral devices because it allows an endpoint to utilize a peripheral 

device no matter where the resources are physically located. Since API operations are separated 

from communication mechanisms, users can issue API operations knowing that the 

communication library will automatically perform any routing in the cluster that is necessary. 

3.6 Remote Memory Programming Interface 

The second programming interface proposed for a resource-rich cluster's communication 

library is one that allows an endpoint to directly interact with the memory of a remote host. This 

remote memory interface is designed to provide an efficient means of transferring data from one 

endpoint to another. A remote memory programming interface can also be utilized as a means of 

performing custom interactions with a cluster's peripheral devices. This functionality is especially 

beneficial because it can be used to allow an endpoint to control a peripheral device for which it 

is impossible to construct endpoint software. Issues involved in implementing a remote memory 

interface include integrating the interface into a library that also supports active messages, and 

providing the functionality to translate an endpoint's virtual address space into a physical address 

space. 

3.6.1 The Need for a Remote Memory Interface 

While active messages provide a flexible communication interface for end users, there 

are certain operations for which active messages are not ideal. For example, consider the case 

where an application needs to transfer a large block of data from one endpoint to another. In the 
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active message approach, the data is encapsulated in an active message that is marked with a data 

transfer function handler. The receiver processes this message by copying the message's payload 

data to the memory location specified in the message's arguments. This process is inefficient 

because two transfers are involved in the receiving endpoint: one from the NI to the endpoint's 

incoming message queue and another from the message queue to the target address. With a 

remote memory programming interface, it is possible for the NI to transfer the data directly to the 

message's target memory address. 

Remote memory operations are also valuable in resource-rich clusters because they can 

be used to support low-level interactions with remote peripheral devices. The architecture of 

several peripheral devices makes it impossible to construct endpoint software that would allow 

these devices to participate as intelligent resources in the cluster. For example, video display 

adaptors are generally designed as data sinks, and therefore it is unlikely that endpoint software 

can be constructed for such adaptors. However, it is still desirable for other resources in the 

cluster to be able to interact with the adaptor. With a remote memory interface, it is possible for 

an endpoint to transmit image data into the video adaptor's frame buffer. These forms of direct 

memory transactions can be useful in a number of resource-rich cluster applications where data 

must be deposited into distributed memory locations in an efficient manner. 

3.6.2 Remote Memory Interface 

From an end user's perspective, a remote memory interface is relatively straightforward. 

The user supplies the interface with the source and destination addresses, the direction and size of 

the transfer, and the identifier of the remote endpoint. The communication library is then 

responsible for transferring the block of data utilizing the most efficient means available. In the 

case of multiple transactions, remote memory transfers are completed in the order that they are 

issued. Remote memory interfaces generally allow both read and write operations. Write 

operations are simpler to implement, as data is simply streamed from the sender's address space 
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to the receiver's. Read operations are more complex, as the sender must issue a message that 

fetches data from the receiver's address space. Results are returned in a reply message and written 

into the sender's address space. 

A host system operates with two related address spaces: virtual memory addresses and 

physical (or bus) memory addresses. The API for a remote memory interface must be designed to 

allow users to universally reference memory distributed throughout the cluster. As a means of 

simplifying the interface for end users, utilizing virtual memory references are preferred since a 

memory reference is the same in both the host where the memory resides and remote endpoints. 

As a consequence, it is necessary for the communication library to be capable of internally 

transforming virtual addresses to physical addresses that the NI can utilize. The library must also 

provide mechanisms to prevent a memory region from being moved by the kernel (e.g., a page 

fault) during a memory operation. Finally, it is beneficial for a remote memory interface to be 

able to operate with physical addresses, in order to provide efficient direct access to memory-

mapped devices. 

3.7 Related Work 

Various aspects of this thesis are related to themes found in other research projects. A 

common goal of all these efforts is to enhance cluster computer performance by incorporating 

powerful peripheral devices within the hosts. Researchers have designed custom I/O architectures 

to support this functionality, as well as specialized software to integrate specific peripheral 

devices into the communication model. This thesis is distinguished from past work in that it 

provides a general framework for integrating all manner of peripherals into a low-latency 

message layer. Device-specific functionality is separated from network-specific functionality to 

produce an extensible design and significantly improve the productivity of the application 

designer with minimal sacrifices in performance. The following efforts represent state-of-the-art 

research being performed involving resource-rich cluster computers. 
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3.7.1 InfiniBand 

Industry is currently developing a new generation of I/O fabric called InfiniBand (IB) 

[53] that can potentially serve as a means of constructing resource-rich cluster computers. IB is 

primarily designed as a turnkey solution for a number of high-end server issues. It provides a 

high-performance communication substrate that functions as a system area network, a storage 

area network, and a distributed I/O system. In addition to featuring expandable multi-gigabit 

links, IB defines a protocol for efficient communication between peripheral devices and host 

CPUs. This protocol could therefore be utilized by end users to allow peripheral devices to be 

integrated into the cluster's computational model. Therefore, IB represents a promising 

communication substrate for resource-rich cluster computers in the near future. 

A fundamental difference between the work presented in this thesis and InfiniBand can 

be found in the hardware architectures used for these systems. In the work presented in this thesis, 

it is assumed that cluster computers will be constructed with commodity hardware that is 

currently available. This approach utilizes existing hardware and defines flexible mechanisms for 

addressing the performance obstacles of the hardware. In contrast, IB is a complete overhaul of 

the I/O architecture found in current generation clusters. With the freedom to redesign the low-

level architecture of the cluster computer, IB designers constructed a new hardware environment 

that is conducive to high-performance communication. The difficulty in this approach is public 

acceptance: the success of IB as a communication substrate depends on the generation of new 

hardware products that provide better performance than current products. In comparison, the 

work in this thesis utilizes current generation hardware and can be adapted to exploit gains in 

faster network substrates as they become available. 

3.7.2 Extensions to the GM Message Layer 

In recent years Myricom's GM message layer has become the de facto standard for 

traditional clusters interconnected with Myrinet hardware. GM exhibits a number of basic 
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characteristics that make it a desirable starting point for constructing a message layer for 

resource-rich clusters. In addition to utilizing Nl-based flow control mechanisms, GM supports 

multiple concurrent users of the NI through the use of multiple work queues. While GM does not 

specifically support active messages, it provides a generic programming interface that allows 

other APIs to be layered on top of it. GM also provides mechanisms for low-level interactions 

with the virtual memory system, which can be extended to provide remote memory operations. 

While GM can be extended, we note that there are fundamental design issues that make 

the adaptation of this message layer to resource-rich clusters nontrivial. The primary difficulty is 

that the basic means for a communication endpoint to interact with the message layer is through a 

work queue. In this approach, an endpoint inserts a reference to a message that needs to be 

injected. When the NI is ready, it processes the work entry by pulling the message into the NI. It 

then inserts a notification message into the endpoint's completion queue that specifies that the 

host memory housing the message can be reused by the application. While suitable for host-level 

endpoints, this process may not be appropriate for some peripheral devices because it requires the 

peripheral device to maintain a block of data until the NI has retrieved it. Peripheral devices 

generally have limited memory and resources to manage such interactions. 

3.7.3 OPIUM 

GM has been extended in previous work to allow the NI to directly interact with multiple 

peripheral devices. In the OPIUM [54] project, researchers examined the extension of GM to 

support SAN interactions with a specific SCSI card. The goal of this work is to minimize the 

number of traversals that take place across the PCI bus for servicing network requests for file 

data. The researchers accomplished this task by modifying the storage card's device driver so that 

it could issue DMA operations to route file data directly to a buffer located in NI card memory. In 

later work OPIUM was modified to allow the NI to directly write data into a video display card's 

frame buffer [55]. 

56 



While OPIUM provides the first steps in allowing peripheral device interactions with the 

SAN, the work is directed at providing an ad hoc solution for two specific devices. While the 

modifications that allow the host to control SCSI interactions with the network is certainly useful 

for network-attached storage efforts, the work is card-specific and may not be suitable for other 

peripheral devices that could be used in the cluster. Likewise, the work with integrating a video 

display card into the communication library does not demonstrate an interaction with an 

intelligent peripheral device, because a display card's frame buffer can trivially be written by any 

PCI device in a host. This work however, does provide a motivation to improve the flexibility of 

the communication library in order to allow peripheral devices to be utilized in an efficient 

manner by cluster applications. 

3.7.4 Adaptive Computing Machines 

Another area of work that is related to this thesis is the field of Adaptive Computing 

Machines (ACMs). In ACMs, a number of field-programmable gate arrays (FPGAs) are utilized 

as a means of processing an application with dedicated hardware [56]. In this approach, the 

FPGAs are configured to emulate application-specific circuitry that can rapidly perform an 

application's computations. Unlike ASICs, which cannot be reprogrammed, FPGAs can easily be 

configured to emulate different circuits as needed by the application. While ACMs are not 

particularly useful for general-purpose applications, they can be valuable for applications that 

require complex computations to be performed in real time [57,58]. 

Initial work in ACMs resulted in custom hardware that employed arrays of FPGAs [59]. 

Observing that these systems were expensive to construct, researchers in the late 1990's began 

investigating the use of multiple commercial FPGA cards to function as an ACM. In the Tower of 

Power project [60], sixteen x86 workstations were equipped with commercial FPGA cards and 

linked using a Myrinet SAN. The researchers investigated the use of existing Myrinet software to 

allow data to be transmitted between FPGA cards [61]. This effort resulted in the computational 
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environment where researchers could effectively utilize the distributed FPGA cards as part of an 

ACM. 

One of the hardships that researchers had to face in the Tower of Power project is 

transporting data between FPGAs in the cluster. Rather than implement new communication 

software, the researchers layered their programming interface on top of a Myrinet implementation 

of MPI. The researcher's software therefore utilizes the host CPU to manage application 

interactions with an FPGA card. While simplifying the design effort, this approach delays 

communication and results in extra traversals of the host's I/O bus. Additionally, selecting MPI as 

the base programming interface makes it challenging to modify the system to support direct 

interactions between the FPGA card and the NI. MPI endpoint software is complex and therefore 

nontrivial to implement for an FPGA card. However, this work indicates that there is a definite 

interest in utilizing peripheral devices in a cluster to perform custom computations. 
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CHAPTER IV 

MESSAGE LAYER IMPLEMENTATION: GRIM 

The design considerations outlined in the previous chapter have driven the 

implementation of an extensible message layer for resource-rich clusters. This message layer is 

known as GRIM: the General-purpose Reliable In-order Message layer. GRIM has evolved 

considerably since its initial development in 1997, but has always provided three basic features: 

Nl-directed flow-control, Nl-based logical channels, and an active message style programming 

interface for interactions between cluster resources. This work was extended in later versions to 

provide an additional remote memory interface for efficiently transferring data between 

endpoints. GRIM has been used to incorporate multiple peripheral devices into the cluster-

computing environment. This chapter examines the core functionality of the GRIM library, 

specifically focusing on low-level implementation details that shaped the library. The core's end-

to-end performance for host-CPU interactions is presented in the next chapter, which is followed 

by details of the library's use in peripheral device interactions. 

4.1 Overview of GRIM 

GRIM is a message layer for resource-rich cluster computers. The current version utilizes 

a Myrinet SAN for interconnecting host systems, although GRIM could be adapted for use with 

other network substrates. The GRIM communication library is comprised of user-space software, 

kernel-space device drivers, and peripheral device firmware. The library currently utilizes the 

Linux 2.4 kernel, although previous kernels have been used during GRIM's evolution. In order to 

minimize the impact of an ever-changing Linux kernel, the majority of GRIM's functionality is 

constructed in user-space software and Nl-based firmware. In recent versions of GRIM, the 
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LANai 4 NI firmware has been ported for use with the newer LANai 9 version of the Myrinet NI 

card. This adaptation has resulted in significant performance improvements due to advances in 

the LANai's architecture. 

Endpoint 
Active Message API 

Handler Management 

Active Message 
Execution 

5 

Remote Memory API 

Memory Management 

Registered Memory 

^ 
f Endpoint-NI Transfer Mechanisms ) 

Nl Logical Channels 

Reliable Transmission 
Protocol 

Figure 4.1: GRIM utilizes logical channels and a reliable transmission protocol at the 
NI and provides two different programming interfaces for end applications. 

The organization of GRIM's core components is depicted in Figure 4.1. Starting at the 

lowest level of the software, GRIM utilizes a Nl-based reliable transmission protocol for 

delivering messages in order between NIs. This protocol is optimistic in that messages are 

transmitted with the expectation that the receiver can accept the message. Messages are supplied 

to the reliable transmission protocol from a small collection of logical channels located in NI 

memory. Each logical channel provides a virtual communication interface for an endpoint in the 

host and serves as a place for buffering messages that are in transit. At the application level, an 

endpoint can utilize two programming interfaces for interacting with a logical channel. The active 

message interface allows the sender to label an outgoing message with the function handler the 

receiver should use to process the message when it arrives. This interface provides a queue in the 

endpoint for buffering incoming message that cannot be processed immediately by the endpoint. 

The second programming interface is for remote memory operations. Memory used with this 

interface must be registered with the communication library. The interface provides multiple 
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mechanisms for translating virtual addresses to physical addresses, and allows the NI to process 

incoming remote memory messages directly. 

4.1.1 Message Structure 

The fundamental unit of communication in the GRIM communication library is a data 

message. GRIM uses a single message format for all of its operations, and therefore it is 

instructive to examine the common message format. A data message in GRIM is comprised of 

two segments: a message header and payload data. The message header consists of eight 32-bit 

words that are formatted in network byte order (i.e., big endian). The first four words contain 

information that is used to deliver the message. These words are arranged in a manner that allows 

a receiver NI to begin processing an incoming message as soon as possible with consequent 

reductions in overall latency. The remaining portion of the header allows users to include up to 

four 32-bit data values in a message. These values serve as function handler arguments in active 

messages, and specify transfer instructions in remote memory messages. The second segment of a 

message is its payload data section. This region allows a large (approximately 64 KB) block of 

data to be associated with each message. 

61 



32b 16b lb 
GRIM ID NI Token NI Sequence 

Message 
Type 
(6) 

Payload 
Correction 

(2) 

Multicast 
Tree 
(8) 

Source Endpoint 

Pay oad Word Length Destination Endpoint 
Logical Channel Active Message Function Handler 

User Argument [0] 

User Argument [1] 

User Argument [2] 

User Argument [3] 

Message Payload 
(0 - 64,572 Bytes) 

Figure 4.2: GRIM uses a single message format for all transactions in the 
communication library. 

Figure 4.2 provides the format of a GRIM data message. The individual fields in a 

message are defined as follows. 

• GRIM ID: This field identifies a message as belonging to the GRIM communication 

library. A NI in GRIM only examines messages that are labeled with this identifier. 

GRIM is registered with Myricom and has been assigned the identifier 0x0636. 

• NI Token: The token ID is supplied by the NI and utilized to reference an in-transit 

message. 

• NI Sequence Number: The sequence number is created by the sending NI and utilized 

by the receiving NI to verify delivery order in the reliable transmission protocol. 

• Message Type: The type field is used to distinguish between different forms of messages 

used in the library. Message types include active messages, remote memory operations, 

NI control messages (e.g., ACK orNACK), and multicast operations. 
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• Payload Correction: Internally GRIM aligns payload data on 32-bit boundaries. The 

payload correction value is used to truncate the length of the payload to match the 

number of bytes specified by the sending endpoint. 

• Multicast Tree: This value is used in multicast operations to identify the multicast tree a 

message belongs to. Multicast operations are discussed in Section 8.1. 

• Source Endpoint: The source field identifies the endpoint that created the message. 

• Payload Word Length: This field specifies the number of 32-bit words that are in the 

payload section of the message. 

• Destination Endpoint: This value identifies which endpoint in the cluster the message 

should be delivered to. 

• Logical Channel: An endpoint that transmits a message can assign a 16-bit logical 

channel identifier to the message. This identifier is used to group messages that must be 

delivered in order by the message layer. 

• Active Message Function Handler: This value identifies which active message function 

handler should be used to process the message at the receiving endpoint. 

• User Arguments [0-3]: Users can specify up to four 32-bit arguments to be included in 

an active message. These fields are utilized in remote memory operations to specify the 

addresses to be utilized in a data transfer. 

Internally GRIM uses an abbreviated version of the message header for control messages 

(ACKs and NACKs). Control messages are only 8 bytes long and contain basic information to 

allow updates in the reliable transmission protocol. 
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4.2 NI-Based Reliable Transmission Protocol 

One of the key characteristics of GRIM is the use of a reliable transmission protocol for 

transferring messages between NIs in the cluster. GRIM utilizes a variation of the "go-back-n" 

protocol that optimistically transmits a message with the expectation that the receiver will be able 

to accept the message when it arrives. If the receiver cannot accept the message, the protocol 

automatically performs rollback on the sender's message queue and retransmits messages as 

needed. In order to facilitate this operation GRIM utilizes control messages and maintains state 

information for each message queue. Since control messages utilize the same network as data 

messages, it is possible for a poorly designed system to reach deadlock. GRIM avoids this 

condition by buffering outgoing control messages when a response to an incoming message 

cannot be transmitted due to a busy outgoing link. Performance measurements of GRIM suggest 

that the Nl-based reliable delivery protocol is advantageous over other approaches. When 

compared to system employing host-based flow control, GRIM allows endpoints to inject a 

greater number of outstanding messages, thereby reducing the sending endpoint's injection 

overhead. 

4.2.1 Protocol 

The Nl-based reliable transmission protocol implemented in GRIM is a variant of the 

traditional "go-back-N" protocol [62] for retransmissions and operates as follows. The successful 

transmission of a message is depicted in Figure 4.3(a) with three steps. (1) When a sending NI 

observes a new message to send, it marks the message with the next sequence ID for the 

destination NI and a token ID that can be used to reference the message. It then transmits the 

message to the destination and increases the sequence number register for the destination. (2) 

When the message reaches its destination NI, the receiver NI verifies that the message's sequence 

number matches the expected value for the sender. If it does and the receiver has enough buffer 
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space, the message is accepted and a positive acknowledgement (ACK) with the data message's 

token ID is transmitted to the sender. (3) When the ACK reaches the sender Nl, the Nl uses the 

token ID to mark the corresponding message in the message queue as acknowledged. If the 

message is the oldest outstanding message, the Nl walks through the queue structure freeing 

buffer space for all acknowledged messages until it reaches an unacknowledged message, a 

message that has not been transmitted, or the back of the outgoing queue. With this protocol the 

sender is allowed to have multiple messages to a destination in-flight at the same time as 

illustrated in Figure 4.3(b). 
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Figure 4.3: (a) Acknowledged transmission of a single message between Nl pairs, (b) 
The optimistic transmission and acknowledgement of three messages, (c) The 
optimistic transmission of three messages with retransmission due to the lack of 
buffer space. 

In the case where the receiver cannot accept an incoming message due to a lack of buffer 

space, the protocol uses a negative acknowledgement (NACK) control message to force the 

sender to retransmit messages. Figure 4.3(c) illustrates such a case where a sender optimistically 

transmits three messages with sequence numbers and token IDs of 0, 1, and 2. After the first 

message is accepted the receiver is unable to accept data due to a lack of buffer space and must 
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transmit a NACK for message 1. The receiver at this point drops incoming messages from the 

sender until message 1 is received and buffer space is available. When the sender receives a 

NACK it must rollback the outgoing queue to the message referenced in the NACK. It then 

retransmits the message and all following messages in the outbound queue that are for the same 

destination. Messages for other destinations are not retransmitted. The procedure is repeated until 

all messages are reliably delivered. 

The implementation of this protocol in GRIM takes advantage of Myrinet's reliability 

guarantees and the fact that source-routed messages do not get reordered in the network. While 

other network substrates do not exhibit these characteristics, the implementation can be extended 

to function under different operating conditions without significant changes to the protocol. For 

networks that can re-order messages (such as an Ethernet LAN with multiple routers), the 

sequencing portion of the protocol preserves in-order delivery. The arbitrary dropping of packets 

on the other hand requires the protocol to be modified with timeout mechanisms. These 

mechanisms automatically retransmit data and control messages after a specified amount of time 

under the assumption that the network has lost a message. 

4.2.2 Managing In-flight Messages for Different Queue Mechanisms 

An important part of implementing a Nl-level reliable transmission scheme is 

constructing mechanisms that allow the NI to manage multiple in-flight messages. These 

mechanisms require the sending NI to maintain a database of in-flight messages that is populated 

with information that can be used to coherently perform rollback on a message queue when a 

message needs to be retransmitted. This work is highly dependent on the types of queuing 

mechanisms that are used to buffer messages in the sending Nl. Over its evolution, three different 

styles of queuing have been used for GRIM, as illustrated in Figure 4.4(a-c). In a slotted approach 

(a), queue buffer space is evenly divided into fixed-sized slots for housing individual messages. 

An append-style approach (b) differs in that messages can be placed in the queue without any gap 
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between successive messages. Finally, in a hybrid-approach (c), a combination of the previous 

two mechanisms is used. In this approach, a message's header is stored in a slotted message 

queue, while its payload is stored in a separate append-style queue. 

(a) (b) (c) 

Figure 4.4: Three approaches to queue buffer management include (a) a fixed-sized 
slot queue buffer, (b) an append-style approach, and (c) a hybrid approach. 

The advantage of a slotted approach to queuing messages is that messages always begin 

at specific locations in the queue. In addition to simplifying the management of the queue, the NI 

can easily store state information for a message in its queue slot. For example, the first word in a 

message slot can be reserved for housing the message's current acknowledgement status (e.g., not 

sent, sent, acknowledged, or unused). The sending NI can then easily walk through the queue 

structure when rollback is performed, and make necessary state updates by modifying specified 

values in each slot. The downside of this approach is that queue buffer space is not used 

efficiently when messages are not the maximum transfer size. Because of the limited amount of 

buffer space available in the NI, this approach is not utilized in GRIM. 

The append-style message queue makes more efficient use of a queue's buffer space by 

allowing messages to be placed in the queue without wasting space between messages. The 

difficulty with this approach is that messages are not stored at fixed locations in the queue. 

Therefore, accessing a particular message in the queue is nontrivial because the NI must 
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sequentially walk through the queue, examining each message to determine the starting address of 

the next message. This operation is expensive and makes storing state information in the message 

queue impractical. Instead, state information for in-transit messages can be stored in a separate 

data structure by the sending NI. Recent versions of GRIM employ an append style of queuing 

and store message information in a structure called the scoreboard. When a NI detects a new 

message in the outgoing queue, it records information about the message (such as its memory 

location) in a new scoreboard entry. Because scoreboard entries are at fixed offsets, the NI can 

easily walk through the scoreboard when processing incoming control messages. 

The last style of message queue used in GRIM is a hybrid-approach where a slotted 

queue is used to store a message's header and an append-style queue is used to store a message's 

payload. This approach is advantageous because (i) in-flight messages are easily managed 

because state information is stored in the slotted header queue and (ii) large messages are 

efficiently stored in the append-style payload queue. Although the hybrid approach was used in 

early versions of GRIM, it had to be abandoned due to a few shortcomings. The first issue is that 

endpoints in this approach must maintain two sets of queue pointers to interact with an outgoing 

message queue. This requirement complicates endpoint software and does not match the design 

goals of a resource-rich cluster. A second and more serious issue is that it is difficult to protect 

this approach from network deadlock. Since a message is housed in two separate memory 

regions, the NI must perform two separate DMAs when transferring a message to the network. If 

the NI firmware blocks the transmission of the second DMA until the first DMA completes, a 

cyclic dependency is formed and it is possible to reach deadlock. This form of deadlock was 

observed in the early versions of GRIM and therefore the hybrid approach was dropped in favor 

of the previous append-style approach. The append-style approach allows a message to be 

transferred to the network with a single DMA. 
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4.2.3 Avoiding Deadlock Caused by Control Messages 

An important aspect of implementing a communication protocol is constructing it in a 

manner that does not lead to deadlock. While the network itself may be deadlock free, poorly 

designed reliable transmission protocols for the NI may result in cyclic dependencies between the 

NIs that prevent forward progress in the system. The primary hazard is that a NI must inject an 

ACK or NACK message back into the network upon receival of a data message. If the NI cannot 

accept a new message until the control message is dispatched, a dependency is formed between 

incoming and outgoing network links. An example of how this dependency can lead to deadlock 

is pictured in Figure 4.5(a). In this example, two NIs transmit data messages to each other at the 

same time in a congested network. Both NIs accept their incoming messages and must transmit 

reply messages for the receive process to complete. However, because one NI cannot proceed 

until the other completes the injection of the control message, neither can make progress and the 

result is deadlock. This phenomenon was infrequently observed in early versions of GRIM, even 

with small network configurations. 
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Figure 4.5: The use of control messages can result in deadlock. A cycle is formed in 
(a) when two nodes transmit data messages to each other at the same time. Deadlock 
can be prevented by buffering control messages (b) when the outgoing link is not 
available. 

One means of deterring this form of deadlock is to provide buffering within the cycle. As 

illustrated in Figure 4.5(b), GRIM employs a special queue for buffering control messages that 

cannot be injected into the network due to a busy outgoing link. When an incoming data message 
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is processed by a NI, an ACK or NACK message is inserted into the control message queue if the 

outgoing link is busy or the control message queue is already populated. The NI's firmware is 

designed to transmit buffered control messages as soon as the outgoing link becomes available. 

This method of preventing deadlock relies on the consumption assumption [63] that is basis of 

most deadlock prevention schemes. 

4.2.4 Observed Advantages to Nl-based Flow Control 

One of the arguments for employing flow control in the NIs is that buffer space can be 

used dynamically as needed by applications. In this scheme a receiving NI rejects a message only 

if the intended endpoint lacks buffer space for accepting the message. In comparison, endpoint-

based flow-control schemes generally reserve buffer space across the entire communication path 

before a message can be transmitted. This reservation results in injection policing that can limit 

performance. As a means of investigating the effects of injection policing, a benchmark program 

was constructed for GRIM to simulate an endpoint-based flow-control scheme. In this test, an 

endpoint transmits a large number of messages to another endpoint, which in turn transmits all the 

messages back to the sender as soon as they are received. In order to observe policing effects, the 

sending NI is limited to having no more than a fixed number of outstanding messages in-flight to 

the destination at any time. The benchmark measures the amount of time required for the sender 

to inject a burst of null-length messages. This value is divided by the burst size to determine the 

average injection overhead for a single message in the burst transfer. The benchmark is run 

multiple times, varying the burst size and maximum number of outstanding messages the sending 

endpoint is allowed to have at any time. 
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Figure 4.6: Injection policing effects of a credit-based flow control scheme 
implemented on top of the optimistic Nl-based scheme used in GRIM. Performance is 
measured as the average message injection overhead time for null length messages. 

The results of this experiment are presented in Figure 4.6 for hosts that allow from four to 

an unbounded number of outstanding messages. As expected the average message injection 

overhead for each test remains low until the injection burst size exceeds the number of 

outstanding messages the sender is allowed to have. After this point injection overhead rapidly 

increases to a steady-state value. While sharp, this increase is not instantaneous because the 

receiver injects credit-replenishing replies at the same time the sender injects outgoing messages. 

As these tests demonstrate, increasing an endpoint's maximum number of outstanding messages 

allows the endpoint to inject larger bursts without overhead penalties. For the case where no 

injection policing is performed, injection overhead does not increase until burst size is larger than 

5,000 null-length messages. At this point the NI buffers become saturated and the host must wait 

for space to become available in the Nls. As these tests demonstrate, a Nl-based flow control 

scheme allows buffer space in the system to be utilized in a dynamic manner. This trait allows 

endpoints to inject a large number of messages with a minimal amount of overhead for each 

message. 
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4.3 Logical Channels 

In resource-rich cluster computers, the message layer must be designed to allow multiple 

communication endpoints in a host to interact with the network through a single NI. In GRIM this 

task is performed through the use of Nl-based logical channels. A logical channel in this context 

refers to a set of data structures housed in NI memory for facilitating message transfers between 

an individual endpoint and the NI. The NI is equipped with a logical channel for each endpoint in 

the host, and therefore the NI must coherently transfer data between its collection of logical 

channels and the physical network at runtime. The advantage of this approach is that each 

endpoint is provided with its own virtual communication interface for the network. 

The use of multiple logical channels in the NI has had a significant impact on the design 

of GRIM's NI firmware. One of the more challenging tasks in this effort has been adapting the 

reliable transmission protocol used by pairs of NIs to operate with multiple logical channels. The 

approach taken in GRIM is to structure the reliable delivery mechanisms to operate at the logical 

channel level as opposed to simply the NI level. This approach can help prevent head-of-line 

blocking that impedes communication performance. Another area of GRIM's firmware that was 

influenced by the use of multiple logical channels is the manner in which in-flight messages are 

buffered by NIs. Because there is a limited amount of memory available for implementing logical 

channels, modern versions of GRIM employ Nl-level message buffering only at the sending NI. 

Finally, using multiple logical channels results in an increased workload for the NI. Therefore, 

the GRIM firmware was examined to determine which areas are affected the most by the use of 

logical channels. Performance tests were constructed to determine the maximum number of 

logical channels a NI could support under practical conditions. 
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4.3.1 Logical Channel Structure 

A logical channel provides a virtual communication interface that an endpoint can use to 

interact with the network. Each logical channel is equipped with data structures in NI memory 

that are necessary for maintaining this interface. Figure 4.7 depicts the data structures employed 

for a logical channel in the GRIM communication library. 

Message Queue 

TT? back | | next | | from | 

Message Queue Registers 

In-flight 
State Info 

NI Logical Channel 

Figure 4.7: Each logical channel contains data structures necessary for providing a 
virtual communication interface. 

In GRIM the three components of a Nl-based logical channel are as follows. 

• Message Queue: Each logical channel provides a dedicated amount of buffer space 

known as the message queue for housing in-transit messages. An endpoint supplies the 

NI with a new data message by appending the queue with the message and notifying the 

NI of the update. Multiple queue styles have been employed in GRIM and are discussed 

in Section 4.2.2. 

• Message Queue Registers: A logical channel employs three registers for managing the 

capacity of its message queue. The first two of these registers are the front and back 

pointers, which indicate the region of the queue that is currently occupied by in-flight 

messages. A third register provides a next pointer for the NI. This pointer indicates the 

next message that is scheduled for transmission in the message queue. 

• In-flight State Information: In addition to queuing data structures, the NI must also 

maintain state information for each logical channel. This state includes sequencing 
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information used by the NI's reliable transmission protocol, as well as information about 

the endpoint that owns the logical channel. 

A NI's logical channels are configured by the host when the system is initialized. 

Endpoints are connected to logical channels based on configuration information supplied by 

users. In the current implementation the same logical channel provides both incoming and 

outgoing interfaces for an endpoint. While it is possible to use different logical channels to 

manage an endpoint's incoming and outgoing network interactions, doing so complicates the 

interface for the end user, and is therefore avoided. 

4.3.2 Message Sequencing with Multiple Logical Channels 

The use of multiple logical channels affects the manner in which a reliable transmission 

protocol is implemented in the NI. The primary issue involves the manner in which pairs of NIs 

are synchronized to provide in-order delivery of messages from different logical channels. In the 

simplest approach logical channel information is ignored in the reliable transmission process. In 

this approach, all logical channels are mapped on to a synchronous connection that exists between 

a pair of NIs. As described in Section 4.2.1, sequencing information is stored in two one-

dimensional arrays: one for labeling outgoing messages and the other for verifying the order of 

incoming messages. The (outgoing/incoming) sequencing arrays are indexed by the value of the 

(destination/source) NI for the transmission. Sequence values in the arrays are incremented after 

every successful transmission. The downside of this approach is that congestion for one logical 

channel affects the performance of other logical channels. Since there is no way to distinguish 

which logical channel is congested at the destination, a request to retransmit a message forces the 

sending NI to perform rollback on all of its outgoing logical channels. This approach is 

undesirable, especially in resource-rich clusters v/here a host may have multiple endpoints that 

service incoming messages at different rates. 
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Figure 4.8: In the any-to-any approach, message sequencing is performed on 
messages based on the sending and receiving logical channels. 

Another approach to implementing a reliable transmission protocol is to perform message 

sequencing on a per logical channel basis as opposed to a per-NI basis. In this approach, each NI 

manages two three-dimensional arrays of sequencing values. These (outgoing/incoming) 

sequence arrays are indexed by the values of the source logical channel, the (destination/source) 

NI, and the destination logical channel. As depicted in Figure 4.8 this approach allows an any-to-

any form of communication between sender and receiver logical channels. In this approach, a 

message is retransmitted only if previous messages to the same logical channel were refused. The 

downside of this approach is that fetching sequence information is more time consuming and 

logical channels must maintain more state information. This approach is utilized in the current 

version of GRIM. 

4.3.3 Distribution of NI Message Queues 

Using multiple logical channels in the NI also affects the manner in which in-transit 

messages are buffered during the NI-NI communication process. In the ideal case it is desirable to 

provide buffering at both the sending and receiving NIs. Sending buffers allow the 

communication library to hide network congestion from the injecting endpoint. Likewise, a large 

receiving buffer for a NI can prevent the communication library from having to retransmit a 

message when a receiving endpoint is saturated. However, the issue with using multiple NI 

logical channels is that there is a finite amount of memory in the NI for housing the logical 

channels. Naturally, as the number of logical channels in the NI increases, the amount of buffer 
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space provided to each logical channel decreases. Therefore, it is necessary to consider how 

message buffering is performed in the NI in order to efficiently allocate the NI's buffer space. 
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Figure 4.9: It is possible to buffer in-flight messages at both the (a) sending NI and the 
(b) receiving NI. A cut-though path at the receiver improves the performance of the 
receiving process. 

In initial versions of GRIM, message buffering was provided at both the sending NI 

(outgoing queues) and receiving NI (incoming queues) as depicted in Figure 4.9. The intention of 

this approach is to split the NI's buffer space evenly between the sending and receiving tasks. 

Unfortunately, there are at least three drawbacks to this approach. First, it was observed that the 

incoming message queues were used infrequently in the communication path. The characteristic 

can be attributed to the fact that the endpoints in the system commonly feature enough buffer 

space and processing power to match the rate at which messages arrived from the network. 

Second, using incoming message queues adds to the workload of the NI. While a cut-through 

path allows messages to bypass an empty incoming message queue, the NI must still examine the 

incoming message queue when processing newly arrived messages in order to maintain ordered 

delivery. Finally, the allocation of incoming message queues decreases the amount of space 

available for outgoing message queues. This trait decreases the number of messages an endpoint 

can inject into the communication library at a time. 

Based on these issues, GRIM was redesigned in a manner that only provides Nl-level 

message buffering at the sending NI. In this approach, a message that cannot be accepted by an 

endpoint due to a lack of endpoint buffer space is simply dropped by the NI and negatively 
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acknowledged. Upon receipt of the NACK the sending NI automatically performs rollback on the 

appropriate outgoing message queue and retransmits the message at a later time. While this 

approach increases network load, Myrinet provides a considerable amount of bandwidth and 

retransmissions take pace only when a receiving endpoint is saturated. In addition to increasing 

the amount of buffer space available for housing outgoing messages, this approach reduces the 

overhead in receiving portion of the NI's firmware. 

4.3.4 Number of NI Logical Channels 

Utilizing multiple logical channels in the NI naturally results in an increased workload 

for the NI. Therefore, it is beneficial to examine how the use of logical channels impacts the 

performance of the NI. A first step in this process is determining which portions of NI firmware 

are most affected by the use of logical channels. In GRIM's firmware the use of multiple logical 

channels has more of an impact on sending tasks than receiving tasks. In the sending portion of 

the NI's firmware the NI must inspect each outgoing logical channel to locate newly injected 

messages. Increasing the number of logical channels therefore increases the amount of time that a 

NI must spend searching for new messages to send. In contrast, the receiving process is not 

significantly affected by the use of multiple logical channels. This is because an incoming 

message contains all the information necessary for the NI to determine which incoming logical 

channel should be used to accept the message. 

A second step in examining the impact of logical channels on NI performance is 

determining the maximum number of logical channels a NI can support under practical 

conditions. Given that the sending tasks of the NI are the region of NI firmware that is most 

affected, an experiment was constructed to determine how increasing the number of logical 

channels in the NI impedes performance. Specifically, this experiment is designed to measure the 

amount of time required for a NI to scan all of its outgoing logical channels for new messages. 

This scanning time is important because it can add delay to the total transmission time of an 
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individual message. For example, a NI with 16 logical channels may have to scan 15 empty 

logical channels before it detects a message that was available all along in the last logical 

channel. Scanning time is also important because it consumes NI CPU cycles that could have 

been used to perform other NI tasks. 

L o g i c a l C h a n n e l S e a r c h T i m e 
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Figure 4.10: The amount of time required by the NI to search a fixed number of 
message queues for new messages. 

The results of the outgoing logical channel search experiment are presented in Figure 

4.10. The test was performed using the LANai 4 and 9 versions of the Myrinet NI card. As 

expected the LANai 9's performance is roughly three times better than the LANai 4 due to 

architectural enhancements of the card. When using a single logical channel, the tests revealed 

that the LANai 4 and 9 cards require 1 |LIS and 0.5 \xs respectively for the NI to examine the 

logical channel. These times increase to 5.5 us and 1.5 us for 8 logical channels, 9 us and 3 us for 

16 logical channels, and 18 us and 6 jus for 32 logical channels. These results can be used to set a 

practical limit on the number of logical channels employed in a NI. Given that most Myrinet 

message layers provide end-to-end latencies of approximately 10-20 us, a conservative approach 

would dictate that in the worst case, a NI would spend no more than half of the potential delivery 

time searching for messages in the outgoing logical channels. Therefore, it is suggested that the 

LANai 4 and 9 NI cards use no more than 8 and 24 logical channels respectively. 
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4.4 Active Message Interface 

The first of two APIs used in GRIM provides end users with an active message style 

programming interface. This interface is designed to be more robust than the original AM 

specification [52] due to the heterogeneity of communication endpoints used in resource-rich 

clusters. In GRIM, active message function handlers must be registered with a global server 

before they can be used by applications. In this process endpoints submit a string identifier for 

each function handler and are returned a unique integer identifier that any endpoint can use to 

reference the function. An active message contains all arguments necessary for an endpoint to 

process a message. Therefore, GRIM endpoints employ a polling interface for detecting and 

processing incoming messages. The active message interface was extended with an overflow 

buffer to break the dependency between outgoing messages and incoming messages, thus 

avoiding deadlock. 

4.4.1 Active Message Handler Management 

GRIM provides an infrastructure for dynamically managing active message function 

handlers used in the cluster. The challenge in this task is providing a means for endpoints to 

publish a list of available function handlers to the global context and have these handlers 

universally identified in a coherent manner. Since handler registration generally only takes place 

during system initialization, GRIM dedicates a single node in the cluster for providing global 

handler registration. In this approach, endpoints submit a list of string identifiers for available 

function handlers to the server. The server correlates submissions and assigns unique integer 

identifiers for each string identifier. The list of mappings between string and integer identifiers is 

then published to all nodes in the cluster. 
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Figure 4.11: The active message API requires endpoints to register function handlers 
locally and then publish the information to a global database. 

Figure 4.11 depicts an example of the active message handler registration process used in 

GRIM. The first step in this process is for an endpoint to locally identify its available function 

handlers using a local registration function. When the endpoint is prepared for other endpoints in 

the cluster to use the handlers, it executes a synchronization function. This function transmits the 

endpoint's table of available function handlers to the server in the cluster that manages the global 

database of active message handlers. The server processes the message by assigning new global 

identifiers for function handlers that have not yet been registered. The entire list of global 

function handlers is then transmitted back to the sender, where the data is stored in a database of 

global function handlers. At run time, the endpoint consults this database to determine an integer 

identifier for a named function handler. If a node cannot perforin the translation locally, it issues a 

request to the server to determine the proper integer identifier. 

4.4.2 Polling Interface 

Message-passing programming interfaces specify the means by which applications 

consume incoming messages. In active messages, the incoming message is labeled with all of the 

information necessary for the receiver to process the message, regardless of the state of the 

application. Therefore, active message libraries typically do not implement explicit receive 

functions to extract specific messages from the network. Instead, these libraries usually provide a 

poll function. This function extracts incoming active messages that are queued at an endpoint, and 
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executes the appropriate active message function handlers. GRIM provides a polling function to 

perform these operations, which must be invoked periodically by applications to guarantee that 

incoming messages are processed. For threaded programs, GRIM provides a built-in thread that 

periodically invokes polling operations. 

4.4.3 Deadlock Avoidance for Message Handlers 

A common problem in implementing an active message based system is that it is possible 

for deadlock to occur at the application level if precautions are not taken. Deadlock can occur 

because an active message handler can inject a reply message back into the network. The buffer 

space housing the incoming message cannot be freed until the handler completes and a handler 

that issues a reply cannot complete until buffer space is available in the network to inject the 

reply. As illustrated in Figure 4.12(a-b), this can result in a cyclic dependency between two 

applications when the network is congested. One option for removing this dependency is to 

utilize separate buffer space or separate networks for send and reply messages, and specify that a 

reply message cannot generate additional replies. This option is costly in terms of buffer space 

and limits the functionality of end applications. 

Inject Message 1 

Inject Message Receive Message Reply Message 2 

Endpoint 
Communication 

Library Endpoint ! AM Process Endpoint 
Communication 

Library — Endpoint 
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Inject Message 2 

(b) 

Figure 4.12: Example of deadlock at the application level, (a) The dataflow of 
messages for an active message handler that injects a reply message, (b) Application 
deadlock due to the simultaneous injection of two messages that require replies. 

A second option that is utilized in GRIM is to provide an overflow message queue at the 

host. If a handler must inject data back into the network and there is no room available for the 
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outgoing message in the NI, buffer space is allocated in host memory to house the message. This 

memory serves as an overflow message queue, with additional injections appended to the queue 

until all overflow messages can be injected into the network. Since the host has a finite amount of 

memory, this approach does not guarantee that application deadlock due to message recycling 

will never occur. However with the large amount of virtual memory available to a host, this 

approach makes deadlock extremely unlikely and comes at little penalty to the common case. 

4.5 Remote Memory Interface 

The second programming interface provided by GRIM is for remote memory operations. 

This interface is designed to provide low-level mechanisms for manipulating and observing 

memory distributed throughout the cluster. For management purposes, GRIM requires that all 

remote memory operations utilize registered memory. Registered memory is memory allocated by 

GRIM that is guaranteed to always be available in physical memory. The remote memory 

interface utilizes virtual memory addresses to reference registered memory, and therefore requires 

mechanisms to translate a virtual address into a physical address that the NI can use to complete a 

remote memory operation. GRIM allows both remote memory reads and writes, and provides a 

simple notification mechanism to indicate that a transaction has completed. As a means of 

improving performance, GRIM also provides a special remote memory write operation that uses a 

physical address to reference registered memory. While there are basic rules that a user must 

follow when using the remote memory interface, the API provides a powerful means of managing 

distributed data in the cluster. 

4.5.1 Registered Memory 

The first step in using the remote memory API is obtaining an allocation of registered 

memory. Registered memory refers to a block of memory that has been allocated by the 

communication library and pinned so that the host's operating system does not attempt to relocate 
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the block's physical pages. GRIM provides two interfaces for obtaining registered memory. The 

first interface obtains a block of memory in user space and then utilizes a system call to pin all of 

the pages of the allocation. While this approach can acquire large blocks of memory, its primary 

drawback is that the allocated memory is non-contiguous in the physical address space. This 

characteristic can result in reduced performance for NI interactions, because when the NI 

accesses the memory, it must fragment its DMA operations into a series of page-sized transfers. 

Additionally, applications using this option must be given sufficient access privileges for 

invoking the system call that pins the memory. 

GRIM provides a second interface for obtaining registered memory that uses a specially 

designed pinned memory management unit. This unit is a combination of both user- and kernel-

level software, and provides mechanisms for allocating large blocks of pinned memory that are 

contiguous in the physical address space. While the operating system has a limited amount of 

contiguous memory, it is possible for this library to obtain multiple 4 MB regions from a host 

with 256 MB of system memory. There are two advantages to using this interface for obtaining 

registered memory. First, since this memory is contiguous, the NI can execute remote memory 

operations with a single DMA transfer. This feature decreases overhead and improves 

performance. Second, applications do not have to be given system privileges in this approach 

because a dedicated device driver performs the privileged task of interacting with the kernel's 

memory system. 

4.5.2 Virtual Memory Translation in the NI 

Remote memory operations are designed to use virtual memory addresses to reference a 

block of registered memory. Because the NI operates with physical memory addresses it is 

necessary for the NI to be equipped with mechanisms for translating a virtual address to a 

physical address. In GRIM the Myrinet device driver is designed to perform address translation 

for the NI on demand. In this process the NI DMAs an address translation request to a known 
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location in the kernel's memory space and then triggers an interrupt signal to obtain the host's 

attention. The Myrinet driver handles the interrupt with an interrupt service routine that examines 

the request, performs the translation, and writes the resulting information back to the NI. Once 

equipped with a translation, the NI can process a remote memory operation. 

Translation Cache Entry 
VM Address | VM Block Size | 

| PM Address [ 1 ] | PM Block Size | 

| PM Address [ n ] | PM Block Size | 

Figure 4.13: If a virtual memory translation is not available in the NI's translation 
cache, the Kernel must be consulted. An entry in the translation cache contains the 
size of a virtual memory block and a list of its physical memory regions. 

Interrupt service routines are expensive operations for both the host CPU and the NI. 

Therefore, it is beneficial if the NI is equipped with a means of caching address translations. As 

Figure 4.13 illustrates, GRIM's NI firmware is designed with a translation cache that is divided 

into two regions. The first region houses static translation entries that are programmed by the 

communication library when an application acquires a large block of contiguous, registered 

memory. The second region of cache entries is for storing translations performed at runtime by 

the NI that were not satisfied by the first set of cache entries. This part of the cache is beneficial 

in situations where the first set of cache entries is full, or when an application frequently accesses 

the same virtual address. Cache entries contain the virtual memory address for the registered 

block of memory, the size of the block, and the physical addresses and sizes of the pages that are 

used for housing the block of memory. 
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4.5.3 Remote Memory Writes (RM-V, RM-P) 

GRIM provides two functions for performing remote memory writes. The first of these 

functions utilizes a virtual memory address to reference a remote node's registered memory and is 

referred to as an RM-V operation. At runtime the receiving NI must examine the arguments of the 

remote memory write operation, translate the virtual memory address, and perform the necessary 

DMAs to store the message's payload in the physical pages of the registered memory. 

Referencing the block of remote memory with a virtual address simplifies the interface for end 

users because local and remote endpoints can use the same memory pointer to reference a block 

of memory. 

GRIM provides a second form of remote memory write referred to as an RM-P operation. 

An RM-P operation utilizes a physical address to reference a block of registered memory instead 

of a virtual address. RM-P operations are designed for experienced users that need to perform 

custom data transfers that must take place efficiently. Since RM-P operations reference the 

destination's memory with a physical address, the receiving NI does not have to perform virtual 

memory translation to execute the message. Therefore, RM-P messages are expected to have 

better performance than RM-V messages. GRIM provides a set of mechanisms for an end 

application to translate the virtual address of a local block of registered memory into a physical 

address. RM-P operations can also be utilized as an efficient means of updating the memory of a 

remote peripheral device. 

4.5.4 Remote Memory Reads (RM-RV) 

The second type of remote memory operation allows an endpoint to fetch data from 

another endpoint's address space. Remote memory reads operate using virtual addresses to 

reference registered memory at the sending and receiving endpoints, and are referred to as RM-

RV operations. RM-RV messages are utilized in GRIM as follows. First the sending endpoint 

injects an RM-RV message that contains references to (i) the receiver's memory that is to be 
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fetched, (ii) the sender's memory where the results are to be stored, and (iii) the length of the 

transfer. When the message arrives at the receiving NI, address translation is performed and the 

requested data is fetched into a Nl buffer. This data is then transmitted back to the sending NI in 

the form of an RM-RV reply message. Upon receiving this reply message, the original NI 

translates the virtual address specified in the message, DMAs the message's payload to the 

address, and marks the original RM-RV message as acknowledged in its outgoing message 

queue. 

4.5.5 Endpoint Notification for Remote Memory Operations 

When utilizing a remote memory interface, a common operation is to transfer a block of 

data and then update a memory location in either the sending or receiving endpoint's address 

space to notify the endpoint that the transfer has completed. This notification operation can easily 

be performed using two remote memory operations, the first performing the transfer and the 

second performing the update. However, processing two instructions increases the workload of 

the communication library, which can degrade performance. Therefore, remote memory 

operations in GRIM are equipped with signaling mechanisms that allow an endpoint to be 

notified when a remote memory operation completes. In these mechanisms, users can specify the 

virtual address of a single 32-bit word in registered memory to update when the remote memory 

operation completes. For remote memory writes, the user can specify both the location of the 

variable to update in the receiver's address space, as well as a 32-bit value to write to the variable. 

Remote memory reads allow users to specify the virtual address of a variable at the sender that is 

cleared when all data is fetched. 

4.5.6 Mixing Active Message and Remote Memory Operations 

GRIM is designed to allow users to work with the active message and remote memory 

programming interfaces at the same time. This feature is possible because both interfaces are 
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implemented as independent units that are layered on top of a system that reliably transfers 

messages between endpoints in the cluster. Because the delivery system forces each programming 

interface to adhere to a common message format, it is possible to mix traffic from different 

interfaces in the delivery system. The outgoing messages of different programming interfaces are 

merged when the endpoint injects the messages into the NI. For messages arriving from the 

network, the NI delivers the messages to the proper programming interface based on the Type 

field of the messages. However, the active message and remote memory programming interfaces 

have different strategies for buffering and processing messages arriving at the NI. Therefore, it is 

necessary to specify the order in which incoming messages are processed when the two 

programming interfaces are used at the same time. 
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Remote Memory Ops Registered Memory 

Figure 4.14: The data path for active messages provides extra message buffering 
before messages are processed compared to the remote memory data path. 

A message layer that implements in-order delivery between a pair of endpoints 

guarantees that messages are processed by the receiver in the same order that that they were 

injected by the sender. Unfortunately, differences in the manner that messages are buffered in the 

active message and remote memory programming interfaces make this guarantee undesirable 

when the two interfaces are used at the same time. As Figure 4.14 illustrates, the issue is that 

while remote memory messages are processed by the NI as soon as they arrive, active messages 

are placed in an additional endpoint-level buffer before they are processed. Therefore, in order to 
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prevent remote memory messages from bypassing active messages, a strictly ordered system 

would require the NI to delay executing a remote memory message until the endpoint's active 

message queue is empty. This requirement impedes performance and negates the benefits of using 

the NI to process remote memory operations. 

An alternative approach is to relax the requirement that the two programming interfaces 

are tightly synchronized in terms of processing order. In this approach, messages are processed in 

the order in which they arrive at a programming interface, not the NI. An examination of the 

communication paths of GRIM reveals that this approach only violates out-of-order execution in 

one case: when an active message is followed by a remote memory operation. Because of the 

buffering of active messages in the endpoint, this approach can result in a remote memory 

operation being executed before preceding active messages are completed. However, all other 

uses of the communication library are guaranteed to take place in the order in which they are 

injected (AM followed by AM, RM followed by AM, and RM followed by RM). This approach 

is implemented in GRIM and requires users to be aware that remote memory operations may 

bypass previously injected active messages. 

4.6 Summary 

GRIM is a communication library designed for clusters that feature a high-performance 

Myrinet SAN. One of the key characteristics of GRIM is that core functionality is largely pushed 

into the NI cards. A Nl-based reliable transmission protocol allows the NI to dynamically manage 

the transfer of data between NIs, and relies on an optimistic approach in order to decrease latency. 

Each NI is equipped with multiple logical channels in order to provide the various endpoints in 

the cluster with private communication interfaces to the network. The presence of multiple logical 

channels in the NI has resulted in changes in the way messages are buffered in the 

communication pipeline, because each NI has limited a limited amount of on-card memory. 

GRIM simultaneously supports both active message and remote memory programming interfaces. 
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These interfaces provide powerful programming abstractions that can be utilized in a flexible 

manner. This description of GRIM represents the core functionality of the communication library 

upon which extensions for resource-rich clusters are built upon. 
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CHAPTER V 

HOST-TO-HOST TRANSFERS 

Modern message layers for cluster computers are optimized to provide high-bandwidth, 

low-latency communication between host CPUs in the cluster. While the key design goal of 

GRIM is flexible communication among host CPUs and peripheral devices, it is also desirable if 

GRIM is capable of providing reasonable levels of performance for host-to-host interactions. In 

order to achieve such performance GRIM had to be designed with communication mechanisms 

that operate in a streamlined manner. The active message and remote memory programming 

interfaces used in GRIM both rely on the same mechanisms for transferring data between a pair 

of hosts. These mechanisms use a communication pipeline that is comprised of three sets of data 

transfers: host-to-host, NI-to-NI, and Nl-to-host. By optimizing each of these transfers it is 

possible to improve the overall performance of GRIM. This performance is further enhanced by 

end-to-end optimizations that increase the amount of overlap that takes place between the stages 

in the communication pipeline. 

This chapter examines the low-level performance characteristics of GRIM for data 

transfers between host CPUs. This analysis takes place in two parts. First, the three stages of data 

transfer in the communication pipeline are examined individually. For each pipeline stage, data 

transfer characteristics are reported as well as measurements of the amount of overhead that is 

required by GRIM to perform stage-specific operations. Second, GRIM's performance is 

examined in the context of end-to-end transfers. In this effort, the effects of pipeline and cut-

through optimizations are inspected. End-to-end performance measurements are reported for two 

sets of hosts and two types of Myrinet NI card. These results are compared to the performance 

values of other message layers, and reveal that GRIM provides competitive performance levels 
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for interactions between host CPUs. These measurements also indicate that GRIM is designed in 

a manner that allows the overhead of its sophisticated functionality to be hidden from the critical 

path. 

5.1 Overview of the Host-to-Host Communication Path 

In traditional cluster computers the main goal of the communication library is to rapidly 

transfer data from one host CPU to another. Since host CPUs are the only resource available for 

processing an application in these clusters, existing communication libraries have largely been 

optimized for high-performance host-to-host interactions. In resource-rich clusters the 

fundamental goal of the communication library is flexible communication, as the cluster provides 

diverse resources to assist in the processing of an application. However, it is still important that a 

message layer for resource-rich cluster computers be able to obtain reasonable levels of 

performance for host-to-host interactions, as host CPUs are expected to provide significant 

contributions to application processing in these clusters. Therefore, a key part of examining 

GRIM is evaluating the communication path it provides between two host CPUs. 

Active Messages 

Remote Memory Operations 

Figure 5.1: The active message and remote memory programming interfaces share 
the same communication path. The three phases of data transfer include (1) Host 
injection, (2) NI-NI delivery, and (3) NI ejection. 

GRIM offers two different programming interfaces that can be utilized for host-to-host 

communication: active message and remote memory operations. As Figure 5.1 illustrates both of 
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these programming interfaces utilize the same communication path between hosts. Data transfer 

in this path can be divided into three separate phases: 

• Host injection into the NI (Host-NI): Both the active message and remote memory 

interfaces begin the communication process by injecting a new message into the NI. This 

operation takes place over the local PCI bus with transfers orchestrated by the host CPU. 

• SAN Transfer (NI-NI): Data is then transferred across the SAN using reliable 

transmission mechanisms implemented in the NIs. 

• NI Ejection (NI-Host): After receiving a valid message the NI must transfer the message 

to the appropriate location. For active messages the NI appends an incoming message to 

the host's message queue. Remote memory operations are performed by the NI, where 

data is directly transferred to and from the host endpoint's address space. 

Implementation details are provided in this chapter for each of the data transfer stages. 

5.1.1 Evaluation Environment 

Three different clusters were utilized in the performance benchmarks provided in this 

chapter. The first cluster utilizes hosts that have four 200-MHz Pentium Pro (PPro) processors 

and 32b/33MHz PCI. Due to the limited performance of these systems, the PPro hosts were only 

utilized to provide a point of comparison for PCI measurements. The second cluster used in this 

effort is based on hosts that have a single 550-MHz Pentium III (P3) processor and a 32b/33MHz 

PCI bus. These systems provide reasonable levels of performance and are characteristic of 

middle-of-the-road clusters that are commonly utilized in academic research efforts. The final 

cluster used in these tests employs hosts that contain dual 1.7-GHz Pentium IV (P4) processors 

and feature both 32b/33MHz and 64b/66MHz PCI buses. While the P4 hosts provide the best 

performance for all the clusters used in these tests, the motherboard chipset (Intel 860) for these 
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hosts suffers from unusual PCI performance characteristics that are unsettling. Therefore, the 

majority of the benchmarks presented in this chapter were performed using the P3 cluster. 

Measurements using the P4 cluster are provided as part of the overall performance evaluation 

described in this chapter. 

The measured values reported in this thesis are the results of benchmarking software that 

was constructed to provide practical and repeatable estimates of performance. In all of these tests 

a measurement is performed several times. The median value for all iterations of a test is reported 

as the measured value. When applicable the benchmarking programs used in this work employ 

cache polluting mechanisms between successive iterations of a measurement. The mechanisms 

help to obtain a better measurement of performance under worst case operating conditions. 

Finally, it is important to note that benchmarks are performed on unloaded systems in order to 

obtain fair evaluation environment. 

A common form of benchmarking network performance that is used in this chapter is to 

acquire a round-trip timing measurement for a transmission. In this form of measurement a 

message is transmitted from one entity to another and then returned to the original sender. The 

sender measures the amount of time the message is in-flight in the network and records this value 

as the round-trip time. Dividing the round-trip time in half yields an estimate of the one-way 

transmission time for the message. One-way transmission times are commonly referred to as the 

latency for communication. Dividing the amount of application data in a message by the one-way 

communication time provides an estimate of the bandwidth for the transmission. 

5.2 Injecting Data into the Sending NI (Host-NI) 

The first stage in the host-to-host communication path is for the host endpoint to inject a 

message into the local NI. This task is the same for active messages and remote memory 

operations because the sending host endpoint assembles an outgoing message in host memory and 

then transfers it to the NI's memory. There is no simple means of efficiently transferring data 
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from a host-level application to a peripheral device such as the NI. Since the host CPU lacks a 

DMA engine of its own, it must either use the NI card's PCI DMA engine to perform the transfer 

or spend CPU cycles moving the data itself with programmed I/O (PIO) operations. While DMA 

operations rapidly transfer large blocks of data, configuring the DMA engines is a complex and 

an expensive operation. PIO mechanisms on the other hand are simple to implement but offer 

limited performance. Therefore, researchers typically employ multiple mechanisms for injecting 

data from the host CPU into a NI and select the best mechanism for a transfer based on run-time 

conditions. 

Since resource-rich clusters utilize a number of diverse peripheral devices, it is valuable 

to encapsulate the various host-to-card transfer mechanisms into a single portable library that can 

be used with different cluster resources. From a user's perspective it is beneficial if the library 

employs self-tuning mechanisms that allow the application to examine the host's hardware 

environment and automatically determine the most efficient means of injecting data into a 

peripheral device. Such a library has been constructed for GRIM named TPIL: the tunable PCI 

injection library. This library selects from multiple CPU-specific PIO and card-specific DMA 

transfer mechanisms to maximize the performance obtained for a given injection size. While this 

section specifically focuses on the use of TPIL to increase host-to-NI injection times, the library 

is utilized with other cards such as the Celoxica card discussed in the following chapter. 

5.2.1 Programmed I/O Transfer Mechanisms 

The first method by which data can be transferred from a host application to a peripheral 

device is through programmed I/O (PIO) operations. In this approach, the device driver for a 

peripheral device provides an application with a memory map of the peripheral device's on-card 

memory. This memory appears as virtual memory that the application can read or write. 

Interactions with the memory are translated by the host CPU and I/O chipsets into individual PCI 

read or write transactions. PIO operations incur a large amount of overhead (roughly 1 us for 
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reads, 2 us for writes). In addition to providing a simple means of interacting with a device, PIO 

operations allow the host CPU to perform virtual memoiy translations for the data residing in host 

memory automatically through normal virtual memory operations. 

A number of features of the modern x86 architecture can be exploited to accelerate PIO 

performance [64]. These hardware features include: 

• Write-Combining: The write-combining MTRR registers included in Pentium MMX 

and higher processors allow stores to user-specified memory ranges to take place without 

strict ordering. This allows multiple writes to consecutive memory addresses to be 

combined for burst transfers. 

• MMX Registers: The eight 64-bit MMX registers can be used as a temporary buffer for 

moving 64-byte blocks of data between host memory and the I/O system. This technique 

allows data writes to take place as burst operations that are efficiently mapped by the 

chipset into PCI transactions. 

• SSE Cache Control: The streaming SIMD extensions (SSE) [65] unit adds features to 

provide user-level control of the CPU's cache. In addition to pre-fetching operations, the 

SSE hardware provides non-temporal stores where writes can bypass cache memory and 

be flushed directly to memory. 

Previous literature [66] has discussed the use of write-combining to improve the host-to-

card performance for transfers less than a kilobyte in size. While this greatly reduces the amount 

of time an application spends injecting data, there are pitfalls that must be addressed. The main 

hazard with write-combining is that writes can be reordered in the chipset to improve burst 

transfer performance. For NIs this could result in a race condition where an update to a queue 

pointer erroneously bypasses the actual placement of data in the queue. Such hazards must be 

prevented through careful definitions of memory regions that perform write-combining or by 
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using fence instructions made available in Pentium III processors. A second pitfall is that there 

are a limited number of regions that can be marked for write-combining, and that the definition of 

such operations is a privileged operation. While early versions of GRIM utilized write-

combining, it has been abandoned in favor of the MMX and SSE PIO transfer techniques. 

5.2.2 DMA Transfer Mechanisms 

The second means of injecting data into a peripheral device is to utilize DMA transfers. 

In this approach, the host CPU configures a peripheral device's DMA engines to transfer data 

from host memory to card memory. DMA transfers are generally only useful for moving large 

blocks of data because there is a large amount of overhead involved in having the host orchestrate 

a DMA transaction. Part of this overhead is due to the fact that the host CPU must use PIO writes 

to configure the registers of a card's DMA engines for each transfer. Additional overhead can be 

attributed to the notification mechanisms employed by the DMA engines. After the host initiates 

a DMA transaction it must wait until the DMA completes before it can proceed. A DMA engine 

typically notifies the host that a transfer has completed by generating an interrupt, which must be 

handled by the card's device driver. 

The main difficulty in utilizing DMA transfers is dealing with virtual memory. In the x86 

architecture PCI devices operate with physical addresses while applications utilize virtual 

addresses. As a consequence three issues must be addressed when using a DMA operation: (i) 

virtual to physical address translation must be performed, (ii) data for a single DMA must be 

contiguous in the physical address space, and (iii) memory must not be changed (i.e. paged out) 

during a DMA transfer. Based on these issues designers typically employ one of two approaches 

to using DMAs. The first approach is simply to allocate a large block of pinned contiguous 

memory which serves as an intermediate buffer for data transferred with a DMA. While this 

approach simplifies DMA transfers it incurs the overhead of a data copy from application 

memory to the intermediate buffer. Another approach is to instead pin the user's virtual memory 
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and perform DMA operations on the individual page frames housing the data. This approach 

involves multiple DMA operations but generally provides the best performance. In the TPIL 

library three card-specific operations are provided for transferring memory with DMA engines: 

• One-Copy: In this approach, user data is copied into a large (128 KB) contiguous buffer. 

The card then issues a single DMA to move the data. The operation is repeated if 

application data exceeds the capacity of the transfer buffer. 

• Double-Buffered One-Copy: Like the previous approach data is copied from user space 

to a contiguous transfer buffer in host memory. However, this approach splits the buffer 

I in half and overlaps the transfer of data into the buffer with the DMA operation. 

• Zero-Copy: This approach pins the pages holding user data and configures the DMA 

engines to transfer data directly from the user pages. While individual DMA transfers are 

limited to a page in size, this approach removes the need to copy data in host memory, 

thus greatly improving speed. 

5.2.3 TPIL Host-to-NI Performance 

TPIL is designed to operate with the GNU/Linux 2.4 operating system and is 

implemented as a combination of user, kernel, and device level software. The internal 

benchmarking functions of TPIL were utilized to examine the performance of two types of hosts 

using two different versions of the Myrinet NI card. In the first set of tests, the Myrinet cards 

were placed in a 550-MHz Pentium III system that only featured a 32b/33MHz PCI bus. The 

results of the benchmark are displayed in Figure 5.2. In these tests the PIO methods had the best 

I performance for small to medium sized transfers (less than 10 KB) while large transfers were best 

served with zero-copy DMA operations. The MMX and SSE methods had similar performance 

levels until approximately 2 KB, at which point the SSE's cache manipulation operations began 

to positively affect performance. For the DMA operations the zero-copy method provided the 
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highest levels of performance for this system, with a maximum transfer rate of approximately 119 

MB/s observed for both NI cards. These transfer rates are less than the maximum 132 MB/s 

performance levels of the 32b/33MHz PCI bus because the data transfers are sourced from virtual 

memory that is non-contiguous in the physical memory address space. 
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Figure 5.2: Host injection performance for a P3-550 MHz host using the (a) LANai 4 
and (b) LANai 9 Myrinet NI cards. 

In a second series of tests the benchmarks were repeated using the 1.7 GHz Pentium IV 

hosts. The results of these tests are presented in Figure 5.3 for the (a) LANai 4 and (b) LANai 9 

NI cards. The LANai 4 card was placed in a 32b/33MHz PCI slot and obtained a maximum 

injection rate of 102 MB/s using SSE PIO transfers. The DMA engines for the LANai 4 card 

performed poorly in this host and allowed data injection rates of only 89 MB/s using zero-copy 

DMAs. The LANai 9 card was placed in a 64b/66MHz slot and obtained much better 

performance. While MMX and SSE PIO transfer mechanisms were limited to approximately 53 

MB/s, the DMA operations were able to reach up to 213 MB/s. An interesting observation of this 

performance is that for very large transfers, the double-buffered one-copy DMA operation 

provides better performance than the zero-copy mechanism. This trait can be attributed to the fact 
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that the Pentium IV hosts have large amounts of host-memory bandwidth because the hosts utilize 

RDRAM for main memory. Therefore, for large transfers it is more efficient for the host to 

arrange source data so that DMAs take place in large contiguous transfers than it is for the host to 

schedule a large number of small transfers. 
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Figure 5.3: Host injection performance for a Pentium IV-1.7 GHz using (a) the LANai 
4 (32b PCI) and (b) the LANai 9 (64b PCI) NI cards. 

As a means of comparing PCI performance between systems, a LANai 9 card was placed 

in three different hosts and the injection performance of TPIL was measured. The best transfer 

rates obtained with TPIL are reported in Figure 5.4 for each host. The PPro-200 MHz system 

provided the worst performance in these tests because it has poor PCI performance and lacks 

MMX and SSE units. The P3-550 MHz system provided the most linear performance of all the 

systems. Linear performance is desirable in a message layer because the user can be assured that 

reasonable performance can be obtained regardless of the size of the messages that are 

transferred. Finally the P4-1.7 GHz system exhibited different performance characteristics for its 

32b and 64b PCI buses. PIO operations work well for the 32b PCI bus but not for the 64b PCI 

bus. The converse can be said of DMA operations for this system. Based on the performance 

measurements it is advantageous to either (a) place the LANai 9 card on the 32b PCI bus if the 

message layer does not issue injections larger than 4 KB or (b) construct the message layer to use 
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transfer sizes that are greater than 8 KB when the LANai 9 card is placed on the 64b PCI bus. 

GRIM is optimized for the latter of these options because of the performance benefits of the 64b 

PCI bus. 
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Figure 5.4: Overall TPIL performance for three different hosts. 

5.3 Data Transfer between NI Pairs (NI-NI) 

The second form of transmission in the host-to-host communication path is the transfer of 

data from the sending NI the receiving NI. This NI-NI transfer takes place across the Myrinet 

network and requires the use of a reliable transmission protocol in order to guarantee that 

messages are transferred in-order from one NI to another. As a first step in examining NI-NI 

performance, tests were constructed to observe the amount of time required to transfer various-

sized messages between NI pairs. These measurements give an estimate of the native 

performance available in the SAN. Additional measurements were made of GRIM's NI firmware 

to determine how much overhead is added by GRIM's reliable transmission protocols. These 

measurements include timings of the individual operations that are performed by sending and 

receiving NIs during the reliable transmission process. 
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5.3.1 Native SAN Performance 

A first step in measuring the performance of NI-NI transfers in the host-to-host 

communication path is determining the native performance of the SAN hardware. A 

benchmarking program was constructed to determine how much bandwidth could be obtained 

from the SAN under ideal conditions. In this test round-trip timing measurements are performed 

between a pair of NIs that are directly connected by a SAN cable. NIs detect a new message in 

this test only when the message has arrived in its entirety at the NI. The test is performed several 

times using different values for message size. 
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Figure 5.5: Observed bandwidth for different transfer sizes between NI pairs. 
Measurements are based on round-trip timings. 

The results of the bandwidths measured in this test are presented in Figure 5.5 for three 

pairs of NI cards. The first two tests measured the performance of the SAN-1280 links [67] using 

pairs of LANai 4 and LANai 9 NI cards. The LANai 4 cards are able to obtain approximately 132 

MB/s (1.056 Gb/s) while the faster LANai 9 cards reach close to 150 MB/s (1.2 Gb/s). These 

transfer rates suggest that NI pairs can obtain a significant portion of the SAN-1280's available 

160 MB/s (1.28 Gb/s) bandwidth. In the third test a two LANai 9 cards are configured to use the 

Myrinet-2000 link standard. These cards are able to obtain 200 MB/s (1.6 Gb/s), which is 80% of 

• LANai 9 M2000 

•LANai9SAN-1280 

•LANai4SAN-1280 
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the Myrinet-2000 standard's 250 MB/s (2.0 Gb/s). It is important to note that the cards obtain 

good performance even for small messages. In each test half of the maximum observed 

bandwidth could be obtained using messages that were only 256 bytes long. This characteristic is 

especially important in cluster computing because many parallel applications frequently utilize 

small messages for state updates. 

5.3.2 Overhead for the Sending and Receiving NIs 

While the previous tests demonstrate that a significant portion of the available SAN 

bandwidth can be obtained for data transmissions, there are a number of operations that take place 

at the sending and receiving NIs that add to the overhead of NI-NI communication. Because these 

operations degrade communication performance, it is beneficial to determine and measure the 

individual tasks that must be performed in the NI-NI transmission process. Table 5.1 provides a 

listing of measurements made to perform various operations in both the sending and receiving 

NIs for the LANai 4 and LANai 9 NI processors. 

Table 5.1: Reliably delivering a message incurs overhead at the sending and receiving 
Is. 

NI Function 
Time (us) 

LANai 4 LANai 9 

Sending 
NI 

Detect new message 
(1 Logical Channel / 8 Logical 

Channels) 
1.0/5.5 0.5/1.5 

Sending 
NI 

Set values in message 2.5 1.0 

Sending 
NI 

Insert message in scoreboard 3.0 1.0 

Receiving 
NI 

Decode and begin processing message 2.5 1.0 
Receiving 

NI 
Verify sequencing information 2.0 0.5 Receiving 

NI Destination capacity check 2.0 0.5 
Receiving 

NI 
ACK/NACK generation 4.0 1.5 

As this table indicates, the sending and receiving NIs must perform a number of tasks 

before and after a message is transmitted. In the sending NI the message must first be detected by 

scanning the NI's outgoing logical channels. Once a message is detected the sending NI must 
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mark certain values in the message such as its sequence number and a token value that can be 

used to track the message. The sending NI must then record information about the message in a 

scoreboard, which allows the NI to keep track of the messages when retransmissions are 

necessary. At the receiving NI, an incoming message is first detected by the NI polling the 

network DMA interface. After a message has been detected the receiving NI must decode the 

message's header to determine how to process the message. For data messages the NI must verify 

that the message is marked with the next expected sequence number for the logical channel. 

Messages passing this test are then examined to determine if the specified destination endpoint 

has enough buffer space to accept the message. For accepted messages the NI must generate an 

acknowledgement message that is transmitted to the sender after the data message is transferred 

to the endpoint. 

Performing these actions sequentially adds greatly to the overall overhead of the 

communication process between two NIs. Therefore, the NI firmware is designed to operate in a 

manner that allows some of these operations to overlap with DMA transactions. For example in 

the sending NI scoreboard updates take place after the NI begins transmitting the outgoing 

message to the network. Likewise in the receiving NI the firmware begins decoding and 

processing a message as soon as the first few bytes of the message's header begin to arrive. While 

it is complex to construct such concurrency in NI firmware, doing so shaves overhead off of the 

critical path in the communication library. The fact that GRIM provides competitive performance 

to other less sophisticated message layers indicates that the overhead of GRIM's increased 

functionality can be effectively hidden. 

5.4 Ejecting Data from the Receiving NI (NI-Host) 

The last stage in the host-to-host communication path is the receiving NI's ejection of 

data to the destination endpoint. In this phase data from active messages and remote memory 

operations must be transferred to the proper locations in host memory. The NI accomplishes this 
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task with the use of an on-card PCI DMA engine. For active messages data is appended to the 

back of a message queue for the host endpoint that is located in pinned, contiguous memory. A 

remote memory operation on the other hand requires the NI to transfer a block of data to host 

memory that is specified in the message. Completing this operation may require virtual to 

physical address translation by the NI depending on the arguments of the message. 

5.4.1 Native NI PCI Performance 

A first step in examining the performance of the Nl-host ejection process is to determine 

the speed at which the NI can transfer data to host memory using its on-card DMA engines. A 

benchmark program was constructed in NI firmware to measure the amount of time required for a 

PCI device to transfer variable sized blocks of data from card memory to a contiguous region of 

host memory. This benchmark provides an estimate of the raw PCI performance a peripheral 

device can obtain from a host system. Three versions of the Myrinet NI card were used in this 

effort. The first two cards are the LANai 4 and LANai 9 NI cards that were used in the previous 

tests. The third card is a PCI mezzanine connector (PMC) version of the Myrinet LANai 4 card. 

This card is attached to one of the PMC daughter-card slots available on the Celoxica RC-1000 

FPGA card that is discussed in Chapter 6. The RC-1000 card utilizes a PCI bridge unit to allow 

the LANai 4 PMC card to appear as a normal PCI device to the host system. 
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Figure 5.6: Bandwidth measurements for peripheral device DMA transfers into pinned 
host memory for (a) P3-550MHz and (b) P4-1.7GHz hosts. 

The benchmark software was utilized to measure the PCI performance of the P.3-550 

MHz and P4-1.7 GHz hosts. The results of the experiment are presented in Figure 5.6(a-b). For 

the P3-550 MHz host (a), the normal LANai 4 and LANai 9 cards were able to obtain up to 132 

MB/s using the 32b PCI bus. The LANai 4 PMC card was only able to obtain approximately 112 

MB/s. This degradation in performance can be attributed to the fact that the PMC card's PCI 

transactions are routed through the bridge chip of the RC-1000 card. For the P4-1.7 GHz host (b), 

the LANai 4 card obtained 130 MB/s from the 32b PCI bus while the LANai 9 reached 307 MB/s 

from the 64b PCI bus. It is important to note that all of these cards were able to obtain reasonable 

performance levels, even with small transfer sizes. Half of the maximum observed bandwidth for 

these cards can be obtained using transfers that are only 256 bytes long. 

5.4.2 Active Message Delivery 

In the Nl-host ejection stage in the host-to-host communication path, the NI implements 

separate delivery mechanisms for the active message and remote memory programming 

interfaces. The active message delivery mechanisms operate by inserting an incoming active 

message into a FIFO queue that is located in host memory. The NI is equipped with front and 

back indices for this queue so that it can determine v/here to place the next incoming message 
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without assistance from the endpoint. Once a message has been transferred to the queue, the NI 

must notify the endpoint of the arrival of new data. In GRIM this notification is provided by the 

NI updating a queue pointer that is located in the endpoint's address space. 

Table 5.2: The amount of time required for the receiving NI to deliver an active 
ige to the host endpoint for a P3-550 MHz host. 

Action Time 
LANai 4 

(U*) 

LANai 9 
DMA (32B / 64KB) message to host 3.0/496.0 2.0/494.0 
Increment and convert queue pointer 1.5 0.5 

DMA queue pointer to host 4.0 1.5 

Instrumentation software was added to GRIM's NI firmware to determine how much 

time is required for the NI to perform its ejection tasks. Table 5.2 lists the amount of time the NI 

takes to perform the tasks for ejecting an active message. The first step in the ejection process is 

for the host to transfer the active message to the message to the proper location in the host's 

message queue. As the previous subsection discussed, it is possible for this task to be performed 

as data is arriving from the network in a cut-through fashion. The second task is for the NI to 

increment its local back pointer for the message queue. The new pointer is also converted into a 

value that has the same byte order as the destination endpoint (e.g., big-endian for the x86 host). 

The final task in ejecting an active message is to update the endpoint's back pointer using a DMA 

transfer. This transfer is only four bytes long and cannot be performed until the previous DMA 

completes. 

5.4.3 Remote Memory Execution 

For remote memory messages the NI must perform a DMA operation using arguments 

that are specified in the incoming message. Three different remote memory operations are 

possible. The first type of remote memory is a remote memory write to a physical memory 

address (RM-P). The NI processes RM-P messages by transferring the payload of the message to 
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a physical address specified in the header of the message. As such these messages are executed 

immediately upon arrival at the NI without any external translation assistance. The remaining two 

remote memory operations utilize virtual addresses to reference memory and therefore require the 

NI to perform address translation. The virtiial memory write operation (RM-V) writes payload 

data to a virtual address while the virtual memory read operation (RM-RV) operation transmits 

the contents of a block of virtual memory to the sender. All remote memory operations provide an 

optional mechanism for updating a separate lock variable in virtual memory when a remote 

memory operation completes. 

Table 5.3: The amount of time required for the receiving NI to process a remote 
memory operation in a P3-550 MHz host.  

Action Time (jis) 
LANai 4 LANai 9 

Search NI VM translation cache (hit / miss) 3/10 1/4 
DMA translation request to host 3 1.5 
Host interrupt overhead 6.5 6 
Host VM translation and NI update 

(1 page/ 17 pages) 
2 /17 3 /10 

DMA message payload (4B / 64KB) 3/514 2/507 
DMA update to lock variable (optional) 

(cached / non-cached address) 9/29 4 /17 

Instrumentation software was constructed to determine the amount of time required for 

the NI to process remote memory messages. Timings are reported in Table 5.3 for the LANai 4 

and 9 NI cards. The first step in processing a remote memory operation is translating the virtual 

memory addresses supplied in the RM-V and RM-RV operations. For these operations the NI 

first consults a small cache of translations that is located in NI memory. If a translation cannot be 

obtained from this cache the NI must DMA a formal translation request to host memory and 

interrupt the host. The device driver for the NI parses these requests, translates the requested 

virtual memory addresses, and stores the results back into NI memory. It is important to note that 

translating virtual memory address is relatively expensive. However, translation overhead can 
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partially be hidden by allowing translation to take place while the message's payload is arriving. 

After the NI is equipped with the proper physical address it can begin transferring data between 

the card and the host. Once this operation completes a remote memory operation can optionally 

update a lock value in host memory. This operation requires a virtual memory translation as well 

as a DMA of 4 bytes. 

5.5 Performance and Optimizations of the Communication Path 

While it is important to consider the performance of individual stages in the 

communication path, it is also necessary to consider how the stages behave in the context of end-

to-end communication. One method of transmitting data through multiple network elements is to 

utilize a store-and-forward communication model. In this model each network element must 

receive a data message in its entirety before the message can be transmitted to the next stage. 

While this model has poor performance for individual transmissions, it is possible to use store-

and-forward transmissions in a pipelined manner for improving the performance of a series of 

transmissions. GRIM utilizes built-in fragmentation mechanisms to allow a store-and-forwards 

pipeline to be constructed in the communication library. These mechanisms allow data to be 

transferred in a high performance manner between host endpoints. 

The performance of a store-and-forward system can be improved through the use of cut-

through optimizations. In cut-through approaches network elements are permitted to begin 

transmitting a data message before the entire message has arrived at the network element. Cut-

through techniques therefore reduce the amount of time between when a message begins to arrive 

at a network element and when transmission begins to the next stage in the communication 

pipeline. Cut-through optimizations have been applied in GRIM to both the sending and receiving 

NIs. While cut-through benefits are more visible at the receiving NI, both the sending and 

receiving NI cut-through optimizations provide noticeable improvements for the communication 
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pipeline. This section provides details of the optimizations used to increase the performance of 

the host-to-host communication path, as well as performance measurements of each optimization. 

5.5.1 Store-and-Forward Communication Model 

One approach to implementing a system that delivers data messages through a multi­

stage communication path is to employ store-and-forward data transfers. In this approach, each 

stage in the communication path must receive a message in its entirety before it can begin 

transmitting the message to the next stage. An example of how store-and-forward data transfers 

take place in the host-to-host communication path is illustrated in Figure 5.7. In this example, the 

host-NI, NI-NI, and Nl-host transmissions of a data message take place sequentially with no 

overlap. Because a message must serially propagate through all three transmission stages, it 

should be expected that the performance of the overall communication path will be roughly a 

third of the performance of an individual transmission stage. Using the maximum bandwidth 

available for each transmission stage (listed to the right of the figure), it is possible to determine 

the maximum bandwidth that can be obtained for the transmission of a single message through 

the overall communication path. Inverting the maximum bandwidth for a transmission stage 

yields the amount of time required to transfer a single byte through a stage. Assuming 32b PCI 

buses, the sum of the transmission times for the three stages is 21.39 ns. This value corresponds 

to a maximum host-to-host bandwidth of 46.75 MB/s. 

Sending 
Hosl-Nl 

Receiving 
NI-Host 

Message I 

Message 

PCI: 132 MB/s 
(7.57 ns/B) 

Myrinet: 160 MB/s 
(6.25 ns/B) 

Message 1 PCI; 132 MB/s 
(7.57 ns/B) 

Figure 5.7: Messages are moved in their entirety in a store-and-forward 
communication model. The minimum amount of time required to transmit a byte can 
be determined by inverting the maximum bandwidth of the transmission mechanism. 
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A set of benchmark programs were constructed to observe GRIM's host-to-host 

performance. These programs use round-trip timing measurements between two hosts to 

determine the overall bandwidth that can be obtained from the hosts. The tests are performed for 

both the active message and remote memory programming interfaces. In the active message tests 

a special function handler is used to either return an incoming message to the sender or stop a 

timer if the host is the endpoint that originally transmitted the message. In the remote memory 

tests a block of data is transferred using the remote memory write physical (RM-P) operation. The 

notification mechanisms of the RM-P operation are used to update a memory location that holds a 

value that signifies the completion of a transfer. The sending and receiving endpoints in the 

remote memory test poll this notification variable and transmit blocks of data when necessary. 

These benchmark programs are used in all of the tests in this chapter that examine host-to-host 

performance. 
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Figure 5.8: The store-and-forward performance for a single message transmission 
between a pair of P3-550MHz hosts using (a) active messages and (b) remote memory 
operations. 
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The host-to-host benchmarking programs were utilized to observe the performance of 

GRIM for the store-and-forward transmission of a single message between two P3-550 MHz 

hosts. The results of the experiments are presented in Figure 5.8(a-b) for message sizes ranging 

from four bytes to nearly 64 KB. For the tests using the active message programming interface 

(a), the LANai 4 and 9 NI cards reached maximum bandwidths of 39 MB/s and 43 MB/s 

respectively. The remote memory tests yielded nearly identical results. As expected the end-to-

end performance of the system is less than the theoretical maximum bandwidth of 46.75 MB/s. 

This reduction in performance is due to processing overhead that takes place in the various stages 

of the communication path. 

5.5.2 Store-and-Forward Pipelining 

While the store-and-forward model of communication only offers limited performance 

for transferring a single message, it provides a framework for establishing a high-performance 

communication pipeline between a pair of endpoints. In a pipelined approach a series of messages 

is transmitted from one host to another in rapid secession. While each pipeline stage can only 

forward one message at a time, the abundance of messages to transfer allows each stage to 

operate at the same time on different messages. An example of how this concurrency can result in 

increased performance is illustrated in Figure 5.9. In this example, a series of messages are 

transmitted from one host to another. After the host finishes injecting the first message to the 

sending NI, it can begin injecting the second message. During this time the sending NI can begin 

transmitting the first message to the receiving NI. As the pipeline fills it becomes possible for 

more stages to operate concurrently, increasing the performance of the overall communication 

path. It is important to note that pipeline performance is dependent on the sizes of the messages 

that are being transferred as well as the transfer rates of the individual pipeline stages. For 

example in Figure 5.9, the third message is larger than the second message. Therefore, there is a 

111 



gap between when the NI-NI stage finishes transmitting the second message and when it can 

begin transmitting the third message. 

Sending 
Host-Nl 

Receiving 
Nl-Host 

Message 1 Message 2 Message 3 Message 4 Message 51 

Message 1 Message 2 Message 3 Message 4 Message 5 

Message 1 Message 2 Message 3 Message 4 Message 5 

Figure 5.9: Store-and-forward mechanisms can be used to create a communication 
pipeline for increased performance. 

Given the performance advantages of pipelining it is beneficial to include mechanisms in 

the message layer that allow transmissions to take place in a pipelined fashion. One means of 

accomplishing this task is to utilize fragmentation and reassembly techniques at the programming : 

interface level. In this approach, large messages are broken into a series of smaller messages that 

are individually transmitted through the communication path and reassembled at the receiver. 

Because network hardware generally limits data transfers to a maximum transfer unit (MTU), 

most message layers naturally provide some form of fragmentation and reassembly. GRIM 

includes fragmentation and reassembly mechanisms for both the active message and remote 

memory programming interfaces. Low-level details of these mechanisms are provided in Chapter 

8. These mechanisms were adapted to allow pipelining to take place in the communication path. 

5.5.3 Pipelined Store-and-Forward Performance 

The benchmarking programs used in the store-and-forward tests were modified to 

examine how fragment size affects the performance of the overall communication pipeline. In 

these tests the fragmentation size for the communication library was varied from 256 bytes to 

nearly 64 KB (GRIM's MTU). Host-to-host bandwidth was then measured using different sized 
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messages for both the active message and the remote memory test programs. The tests were 

performed for P3-550 MHz hosts using a pair of LANai 4 NIs and a pair of LANai 9 NIs. 
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Figure 5.10: The performance of different fragment sizes for a pair of P3-550 MHz 
hosts using different NIs and different programming interfaces. The tests used (a) 
active messages with the LANai 4, (b) remote memory operations with the LANai 4, 
(c) active messages with the LANai 9, and (d) remote memory operations with the 
LANai 9. 

The results of the experiments are presented in Figure 5.10(a-d). The first observation to 

be made from these measurements is that pipelining does in fact increase communication 

performance for messages that are larger than approximately 4 KB. For these messages there is 

enough data being transferred that a message can be fragmented in a manner that allows 

concurrency between pipeline stages. As expected best results in these tests were obtained when 

the fragment size was selected in the middle range of possible values. For the LANai 4 cards a 
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fragment size of approximately 2-4 KB provides good performance for both programming 

interfaces. The LANai 9 cards operate well with 1-2 KB fragments. The lower desirable fragment 

size can be attributed to the fact that the LANai 9 card is roughly three times faster than the 

LANai 4 card, thereby allowing a finer granularity of transmissions in the pipeline. 

The benchmark tests also reveal that there are performance differences between the active 

message and remote memory interfaces. The most notable difference is that the remote memory 

performance curves generally increase with message size while the active message curves have 

slight performance drops at certain message sizes. These drops can be attributed to the 

reassembly mechanisms of the active message interface. Fragmented messages in the active 

message interface are reassembled in an intermediate message buffer. Therefore, as soon as 

message fragmentation takes place there is a slight drop in performance because the receiver must 

perform an extra copy of all message fragments. The remote memory reassembly procedures do 

not need to perform this procedure and therefore function more efficiently. 

5.5.4 Cut-through Optimizations 

While pipelining increases the performance of the host-to-host communication path, a 

criticism is that data transfers are still based on store-arid-forward mechanisms. These 

mechanisms can cause a pipeline stage to delay the transmission of a message until the stage has 

received the entire data message. An alternative approach is to employ cut-through routing, where 

individual stages are permitted to begin transmitting a message as soon as the first bytes of the 

message arrive. For many LAN cards cut-through optimizations are not possible because network 

interactions take place at the packet level. However, Myrinet NI cards allow users to manage 

network interactions at the byte level. Therefore, it is possible to implement cut-through 

optimizations in Myrinet at both the sending and receiving NIs. An example of how cut-through 

optimization can be applied to the end-to-end communication path is illustrated in Figure 5.11. In 

this example, a data message is transferred as a series of smaller segments. Each stage in the 
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communication pipeline can therefore begin transmitting a message as soon as the first segment 

of a message arrives. 

Sending 
Host-NI 

Receiving 
NI-Host 

Message I Message 2 Message 3 

Message 1 Message 2 Message 3 

Message I Message 2 Message 3 

Figure 5.11: Cut-through optimizations allow a pipeline stage to begin transmitting a 
message before all of its data has arrived. 

GRIM implements cut-through transfer optimizations for both the sending and receiving 

NIs. The receiving NI implementation is the more straightforward of the two because the 

receiving NI can easily coordinate all necessary data transfers. In the current implementation the 

receiving NI monitors the capacity of an incoming message buffer and then begins transferring 

data to the host as soon as the network begins to fill the buffer. Implementing cut-through 

optimizations in the sending NI is more challenging because of the manner in which data 

injections are performed in GRIM. In other message layers, the sending NI pulls a data message 

out of a host endpoint's address space and pushes the message to the network. As such it is trivial 

to implement the transfers in a cut-through manner because the transfers are performed entirely 

by the NI. Unfortunately, this approach is not valid for GRIM because messages are injected into 

the NI by endpoints in a push fashion. This push methodology is due to the fact that some 

endpoints in GRIM are peripheral devices that operate with simple transfer mechanisms. 

Given the benefit of cut-through optimizations, special functions were constructed in 

GRIM to allow an injecting endpoint to achieve cut-through data transfers without having to 

resort to using the NI to pull messages into the NI. In GRIM the injecting endpoint and the 

sending NI can operate in a cooperative cut-through manner. In this effort, the endpoint breaks 
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the injection process of large messages into a series of smaller message segment injections. After 

transferring a segment to the NI, the endpoint updates a counter in the NI that spec fies how much 

of the message has been transferred. When the sending NI detects a new message it begins 

transmitting as much of the message as is available to the wire. The NI then appends the network 

transmission as new segments arrive. This approach is cooperative in that in the common case, 

the endpoint and NI operate at the same time and transfer a message to the network in an efficient 

cut-through manner. However, there is no guarantee that the endpoint and sending NI will be 

synchronized to perform a cut-through transfer. In addition to increasing performance, this 

approach is advantageous because cut-through transfers can be accomplished without major 

modifications to the endpoint or NI software. 

5.5.5 Performance with Cut-through Optimizations 

The host-to-host performance benchmarks were used to examine the impact of cut-

through optimizations on the communication pipeline. In these tests a fixed fragment size of 4 KB 

was selected for the transfers. Sending cut-though procedures were designed to segment a 

message into 1 KB blocks, while receiving cut-through mechanisms were designed to move data 

to the host endpoint as soon as it becomes available. The tests were performed for different 

message sizes using the LANai 4 and LANai 9 cards, with different cut-through optimizations 

enabled in each run. These tests utilized only the remote memory operation for the transfer, 

although active message performance provided similar behavior. 
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Figure 5.12: The effects of cut-through optimizations on end-to-end performance 
between P3-550MHz hosts using the (a) LANai 4 and (b) LANai 9 NI cards. These 
tests use RM-P programming interface, a fixed cut-through injection size of 1 KB, 
and a pipeline fragment size of 4 KB. 

The results of the experiment are presented in Figure 5.12 (a-b). Cut-through 

optimizations in these tests provided a significant performance boost for both the LANai 4 and 9 

NI cards. Receiver-based cut-through provided the most improvement in the tests due to the fact 

that it can operate at a fine granularity. In the best case the receiver cut-through mechanisms can 

begin transferring data to the host as soon as the header for the message arrives. Sender-based 

cut-through provides a slight performance gain. This gain is less than the receiver-based 

optimizations because the 4 KB message fragment size limits the sender to four injection 

segments per fragment. 

Additional tests were performed varying the GRIM's fragment and segment sizes. 

Determining a good combination of these settings is highly dependent on the PCI transfer 

characteristics of the host and NI cards. For both LANai 4 and 9 NI cards, the performance 

bottleneck is the transfer of data from host to NI card. The LANai 4 card obtains maximum PCI 

injection performance for 1-2 KB transfers. Therefore, GRIM is configured with a segment size 

of 1 KB and a fragment size of 16 KB for the LANai 4 card. For the LANai 9 card, the DMA 

engines provide maximum performance at roughly 16 KB. Therefore, GRIM is configured to use 

a segment size of 16 KB and a fragment size of 64 KB for the LANai 9 card. 
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5.6 Overall Performance 

The host-to-host benchmark programs were run a final time with all performance 

optimizations enabled. The three programming interfaces were independently measured in this 

effort using message sizes ranging from four bytes to two megabytes. The LANai 4 and 9 NI 

cards were used to connect pairs of P3-550 MHz and P4-1.7 GHz hosts. 
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Figure 5.13: Overall performance of P3-550 MHz hosts in GRIM using (a) LANai 4 
and (b) LANai 9 NI cards. 

The results of the experiments with the P3-550 MHz hosts are presented in Figure 5.13(a-

b). For the LANai 4 NI cards (a), the performance curves are relatively smooth. The RM-P 

interface provides the maximum performance of 96 MB/s and the minimum latency of 14 JLLS. The 

LANai 9 card (b) offers better performance in this host, reaching a maximum bandwidth of 116 

MB/s (928 Mb/s) and a latency of 9.5 jus for RM-P operations. The transition from PIO to DMA 

injection mechanisms for this card results in performance reaching a temporary plateau for 

messages between 4 KB and 32 KB. 
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Figure 5.14: Overall performance of P4-1.7 GHz hosts in GRIM using (a) LANai 4 
and (b) LANai 9 NI cards. 

The results of the experiments for the P4-1.7 GHz hosts are presented in Figure 5.14(a-b). 

The LANai 4 cards (a) had to be placed in 32b PCI slots in the P4 hosts. These cards were able to 

obtain 108 MB/s of bandwidth and 14.5 [is of latency between the P4 hosts using the RM-P 

interface. Compared to the P3 tests, the P4s provide better bandwidth but slightly worse latency 

for the LANai 4 card. The P4's superior processing power also helps the more computationally 

demanding AM interface to provide performance that is closer to the RM-P interface than is 

observed in the P3 tests. LANai 9 cards (b) were placed in the 64b PCI slots of a pair of P4 hosts. 

In the performance tests the RM-P interface obtains 146 MB/s (1.168 Gb/s) of bandwidth and a 

minimum latency of 8 [is. Given that the SAN-1280 links offer a theoretical transfer rate of 160 

MB/s, GRIM obtains a substantial portion of the available host-to-host performance. 

Table 5.4: The overall performance of G RIM. 

Host PCI NI Latency (fis) Banc Iwidth (M IB/s) Host PCI NI 
AM RM-V RM-P AM RM-V RM-P 

P3 
550MHz 32b/33MHz 

LANai 4 16 18 14 87 66 96 P3 
550MHz 32b/33MHz 

LANai 9 10 10.5 9.5 102 69 116 
P4 

1.7GHz 
32b/33MHz LANai 4 17 18.5 14.5 105 65 108 P4 

1.7GHz 64b/66MHz LANai 9 9 8.5 8 144 98 146 

GRIM's overall performance numbers are summarized in Table 5.4. An important 

observation of these numbers is that the RM-V interface provides only 60-75% of the 
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performance of the RM-P interface. This performance degradation can be attributed to the 

overhead of translating virtual memory addresses at the receiving NI. The reason why this 

translation has such a negative impact on RM-V performance is that the receiving NI must 

perform this operation before an incoming RM-V message can be processed. Because the 

translation is the first step in the NI's receiving process, it is difficult to hide the overhead of the 

operation with other transfers the NI must perform. Therefore, users should be aware that the 

RM-V interface is only capable of providing limited performance. 

5.7 Comparison with Other Message Layers 

Over the years a number of message layers have been constructed for Myrinet. It is 

beneficial to compare the host-to-host performance of GRIM to these message layers in order to 

gauge how well GRIM can perform in traditional cluster applications. These comparisons also 

reveal how well the complexities of GRIM's lower mechanics are hidden from the critical path 

for end-to-end communication. Unfortunately, many of the existing message layers are no longer 

supported and cannot be run on modern systems. As a means of comparison, this section provides 

two forms of performance estimates for existing message layers. First, performance estimates are 

provided for many message layers using the values reported by the original researchers. Second, 

performance estimates of the most commonly used message layer, GM, are provided for the same 

systems used in the GRIM benchmarks. 

5.7.1 Reported Performance 

It is important to compare the performance of GRIM with existing message layers for 

Myrinet. Performing such a comparison is challenging to do in an accurate and fair manner for a 

number of reasons. At a fundamental level GRIM is designed to provide functionality that is not 

present in other message layers. Therefore, comparisons must be limited to traditional host-to-

host metrics. Unfortunately, utilizing previously reported values in this comparison can often be 
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misleading, as different utilize different hardware and software platforms, and sometimes 

different definitions of performance metrics. Ideally a fair comparison would run a standard set of 

benchmarks on the message layers using the same hardware and software environment. The 

hardship in this effort is that several of the message layers are now legacy software that is no 

longer supported due to changes in the Linux kernel or incompatibilities with modern hardware. 

Rather than port these legacy message layers to modern systems, the first part of comparing the 

performance of GRIM is to provide the performance measurements that were originally reported 

by the researchers. 

Table 5.5; Performance reported for various Myrinet message layers 

Message Layer Host NI 
Latency 

(us) 
Bandwidth 

(MB/s) 

AM [32] 
UltraSparc 167 MHz 

(SBUS) LANai 3 10 38 

AM-II [33] 
UltraSparc 167 MHz 

(SBUS) LANai 4 21 31 

BIP [40] PPro-200 MHz LANai 4 5 126 
FM [34] PPro-200 MHz LANai 4 11 76.2 

GM [39] 
P3-lGHz 
(64b PCI) 

LANai 9-200 MHz 
(Myrinet 2000) 7 240 

LFC [36] PPro-200 MHz LANai 4 12 65 
Trapeze [37] P3-450 MHz LANai 4 30 110 

Reported performance estimates for a number of Myrinet message layers are listed in 

Table 5.5. The majority of these measurements are based on older hosts using the LANai 4 NI 

card. Therefore, the most relevant performance measurements of GRIM are those made of the P3-

550MHz hosts that are equipped with the LANai 4 NI. In these tests GRIM obtained a maximum 

bandwidth of 96 MB/s and a minimum latency of 14 |as. In terms of latency GRIM offers slightly 

less performance than most of the message layers, but is still within an acceptable range. In terms 

of bandwidth GRIM is relatively competitive with other message layers. 
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5.7.2 Measured Performance 

As a means of providing a more accurate comparison of GRIM's performance with other 

message layers, Myricom's GM [39] message layer was benchmarked for the P3 and P4 clusters. 

GM is the de facto standard for communication in Myrinet clusters and supports a variety of 

operating systems and NI cards. GM's internal benchmarking programs were utilized to 

determine how well the message layer performed using the same hardware that the GRIM 

benchmarks were performed with. 

Table 5.6: Measured performance for GM and GRIM. 

Host PCI NI Latency (jis) 
GM GRIM 

Bandwidth (MB/s) 
GM GRIM 

P3-550 MHz 32b/33MHz 
LANai 4 24 14 79 96 

P3-550 MHz 32b/33MHz 
LANai 9 9.7 9.5 108 116 

P4-1.7GHz 
32b/33MHz LANai 4 24 14.5 69 108 

P4-1.7GHz 
64b/66MHz LANai 9 9.44 8 146 146 

The results of the GM benchmarking experiments are presented in Table 5.6. In all of 

these tests the performance of GRIM was observed as being slightly better than that of GM. 

GRIM particularly excelled in the benchmarks involving LANai 4 NI cards. This characteristic 

can be attributed to the fact that GM is largely targeted for LANai 9 cards and that a number of 

GM optimizations have to be disabled in order for the LANai 4 cards to function properly. It is 

important to note that GM is designed to be the most robust and reliable message layer for 

Myrinet. It is not the intention of this thesis to claim that GRIM is a better message layer than 

GM. Instead, these measurements are reported for the sake of demonstrating that GRIM provides 

comparable performance to state-of-the-art message layers such as GM. 

122 



CHAPTER VI 

PERIPHERAL DEVICE EXTENSIONS 

A key characteristic of message layers for resource-rich cluster computers is extensibility. 

From a hardware perspective, it must be easy for users to adapt these message layers to support 

new and diverse peripheral devices in the cluster. In this effort, peripheral devices are visualized 

as communication endpoints and added to the cluster's global pool of distributed resources. 

Therefore, the message layer serves as a general framework for interconnecting both host CPU 

and peripheral device resources. GRIM is unique in that it is a message layer that is specifically 

designed to provide this framework. Peripheral devices in GRIM interact directly with other 

resources in the local host (e.g., the NI or other local endpoints) using efficient PCI transactions. 

Peripheral devices with sufficient processing capabilities are allowed to operate in an autonomous 

manner without the guidance of the host CPU. For legacy peripherals that are less capable, GRIM 

can be configured to utilize host-level software to manage the device's interactions with the 

message layer. 

This chapter focuses on the task of integrating peripheral devices into the cluster 

environment as communication endpoints. The discussion begins with a generalized description 

of how new peripheral devices are added to the GRIM environment. In order to construct new 

peripheral device endpoints, designers must be aware of the manner in which endpoint software is 

expected to function as well as the methods by which GRIM manages peripheral device 

resources. As a means of illustrating the integration process, the remaining portion of this chapter 

provides implementation details for four peripheral devices that have been incorporated into 

GRIM. These devices include an intelligent server adaptor card, an FPGA accelerator card, a 
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video capture card, and a video display card. These devices offer a diverse range of processing 

capabilities and help to demonstrate how GRIM can be used in a flexible manner to allow 

applications to utilize these resources. 

6.1 Adapting a Peripheral Device for use with GRIM 

GRIM is designed to allow multiple peripheral devices distributed throughout a cluster to 

be utilized as resources in the virtual parallel-processing machine. The approach taken in GRIM 

is to allow each peripheral device to function as a communication endpoint that interacts directly 

with the communication library. Therefore, the process of adapting a peripheral device to operate 

in the GRIM environment begins by constructing endpoint software for the peripheral device. 

This software is comprised of a set of device-specific active message function handlers for the 

device and message-passing mechanisms that allow the device to interact with other resources in 

the local host. Once endpoint software is available, a designer must construct host-level software 

to allow the device to be utilized in the GRIM environment. GRIM provides a series of built-in 

functions that can be used by designers to simplify this task. Finally, end users interact with 

peripheral device endpoints through a series of resource-management operations provided in 

GRIM. These functions allow a user to locate, reference, and communicate with a resource that is 

available in the cluster. The overall organization of the software for a peripheral device endpoint 

is pictured in Figure 6.1. 

User-Space 
Device Library 

Kernel-Space 
Device Driver 

PCI Device 

Device-Specific 
AM Handlers 

Message 
Transfer 

Mechanisms 

V* 
Endpoint Implementation 

Figure 6.1: The major components of a peripheral device endpoint implementation. 
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6.1.1 Peripheral Device Endpoint Software 

The first task in integrating a peripheral device into the GRIM environment is to 

construct low-level software that allows the device to function as a communication endpoint. This 

software is divided into two parts: device-specific active message function handlers and message-

passing mechanisms. The active message portion of the software is responsible for serving as a 

means by which end applications can invoke specific operations at a peripheral device. A 

designer must therefore construct active message function handlers for a new peripheral device 

that adequately capture the device's key capabilities. After a device's function handlers have been 

constructed, a designer can add information about the handlers to a static database that is 

available in the GRIM library. This database allows a peripheral device's function handlers to be 

visible to applications in the cluster and removes the need for a peripheral device to register its 

handlers at runtime. 

Low-level endpoint software must also implement message-passing mechanisms for 

communicating with the NI and other endpoints in the local host. For outgoing messages, an 

endpoint utilizes PCI DMA operations to transfer data to the message queues of other endpoints. 

For incoming messages, an endpoint allocates a block of memory for housing message queues 

that other endpoints can write. An endpoint must periodically poll its incoming message queues 

to determine if new messages are available. GRIM provides a set of files in C that can be used to 

simplify the task of implementing this functionality. These files include data structures for 

messages and message queues, as well as skeleton code for performing key message-passing 

operations. A designer can use this software by including the files in an endpoint implementation 

and then defining device-specific functions needed for the message-passing operations, such as a 

function for initiating a PCI data transfer. 
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6.1.2 Host-Level Integration 

After endpoint software is constructed for a peripheral device, a designer must provide 

host-level software that allows the card to be utilized by the operating system and the GRIM 

library. The operating system portion of this software is implemented in a kernel-level device 

driver. While device drivers are nontrivial to implement, GRIM performs most of its operations in 

user space. Therefore, device drivers for GRIM can be relatively simple, and require only basic 

operations such as initializing the peripheral device and providing a memory map of card memory 

to user-space applications. Once a device driver is available, a designer must construct 

appropriate user-space software that allows the GRIM library to interact with the card. Typically, 

this software includes initialization functions and device-specific operations that may be needed 

by applications. 

6.1.3 Library Initialization 

The GRIM library must perform a number of initialization functions before the cluster 

can begin processing an application. The first step in the initialization process is for GRIM to 

load configuration information for the cluster from a set of user-defined configuration files. In 

addition to providing basic information such as routing tables, the configuration files specify the 

peripheral device resources that are available in the cluster. Each host in the cluster uses this 

information to determine which peripheral devices it is equipped with and how it should initialize 

its devices. Cluster configuration information is stored in a database that can be accessed by 

applications at runtime to help locate resource information. 

After all devices in the local host have been initialized, GRIM must configure each 

peripheral device with information that allows the device to interact with the local NI and all of 

the other endpoints in the host. In this process, GRIM determines how many incoming message 

queues each endpoint needs and how large each queue should be. GRIM then updates all of the 

queue pointers for all of the endpoints in the local host. Two sets of pointers must be configured 
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for each message queue, one for the sending endpoint and the second for the receiving endpoint. 

When configuring these pointers, GRIM must translate all references to the message queue into 

values an endpoint can utilize. This procedure is complex, and automatically accounts for virtual-

to-physical address translations, byte-order differences, and card-specific memory addressing 

issues. Needless to say, the automatic endpoint configuration functions are the most mind-

numbingly complex part of GRIM. However, these operations are designed in such a way that 

when a new device is added to GRIM, users simply supply basic information to GRIM's 

configuration function and configuration takes place automatically. 

6.1.4 Runtime Management 

From an end user's perspective, a communication library for a resource-rich cluster 

computer must provide basic mechanisms for allowing users to customize their interactions with 

peripheral device endpoints. After initialization, the GRIM library provides a set of functions for 

performing such operations. With these functions, a user can query the communication library to 

locate a specific type of peripheral device. Users can perform these queries in the context of the 

cluster's global resources, or limit searches to particular hosts. When the communication library 

successfully locates a desired resource, it returns an integer identifier that can be used to reference 

the resource. Applications can then invoke operations at the resource simply by injecting active 

messages that are marked with the reference. Internally, GRIM provides all of the routing that is 

necessary for the messages to be delivered to the resource. 

It is expected that some peripheral device endpoints will require more complex 

management functions than the current runtime system provides. For example, if an endpoint 

needs to use a peripheral device to perform a series of computations, it is beneficial if the 

endpoint can temporarily obtain exclusive ownership of the device so that the computations can 

take place without interruption. This type of operation can be implemented in GRIM by utilizing 

the peripheral device's host CPU to manage ownership of the resource. In this approach, the host 
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manages a reservation system for a peripheral device that is manipulated with active messages. 

When an endpoint needs to obtain ownership of the resource, it transmits the appropriate request 

to the host and waits for a response before accessing the device. Similar approaches can be used 

to layer additional functionality on top of the existing GRIM software. 

6.2 Cyclone Microsystems Server Adaptor Card 

The first peripheral device added to the GRIM communication library was the Cyclone 

Microsystems server adaptor card [68]. While originally marketed as a general platform for 

evaluating the Intelligent I/O (I20) [69] extensions, this card has become a valuable tool for 

active disk and active network research efforts [70]. The overall architecture of the card is 

presented in Figure 6.2. At the core of this architecture is an Intel i960 processor [71] that 

operates at 66 MHz. This processor includes a built-in 32b/33MHz PCI unit that features chained 

DMA engines and PCI doorbell registers. The card is equipped with 4 MB of on-card DRAM that 

can be expanded to 36 MB by populating a standard SIMM socket. In order to market the 

development card for different uses, Cyclone Microsystems placed a custom expansion interface 

on the card for attaching a daughter card. ATM, Ethernet, and SCSI daughter cards were 

constructed for the development card. The daughter card used in this research effort features two 

Fast Ethernet ports and two Ultra-wide, Ultra-fast SCSI ports. Communication between the i960 

and the daughter-card components physically takes place using a secondary PCI bus. 
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Figure 6.2: Architecture of the Cyclone Microsystems I20 development card. 

The Cyclone Microsystems development card uses a custom version of the VxWorks 

operating system [72] to control the card's hardware resources. VxWorks provides a UNIX-like, 

multitasking environment for applications. Application developers write programs for this 

environment in the proprietary Tornado development system [73], and then load the compiled 

binaries onto the i960 using either a serial download cable or the card's Ethernet controllers. 

While the VxWorks operating system greatly simplifies the development process with this card, it 

is important to note that the i960 may be underpowered for operations required by the operating 

system. The I20 card was used in multiple research efforts at Georgia Tech, the most notable of 

which is the QUIC [74] project. 

6.2.1 Endpoint Construction 

The process of porting the GRIM endpoint software to function on the I20 card was 

relatively straightforward due to the card's rich programming environment. The endpoint 

software was constructed to run as a normal VxWorks process on the I20 card. At initialization 

time, the endpoint process allocates a block of memory for housing incoming message queues 

and shares this information with the host library. After initialization the process monitors the 

incoming message queues, processes messages, and ejects outgoing messages to the host's NI or 
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endpoints. Message ejections are performed using the card's DMA engines, allowing the I20 card 

to operate autonomously without the guidance of the host CPU. With the help of Ivan Ganev, 

Robert Goldman, and Kelly Norton, a Linux device driver was constructed for the I20 card that 

allowed the card to be utilized by host applications. 

Multiple active message function handlers were constructed for the I20 card to provide 

end users with a means of controlling the card's hardware. 

Initial development with this card focused on constructing handlers for both network operations 

and storage operations. However, soon after this development began Cyclone Microsystems 

announced that the disk controller hardware for this card did not operate in a reliable manner. 

Therefore, the focus of this work shifted to utilizing this card exclusively for its network 

hardware. Active message handlers were constructed so that the I20 card could be utilized as a 

network bridge, relaying messages between the SAN and the LAN when needed. These types of 

operations are necessary when a cluster is utilized as a large-scale network server that external 

hosts connect to through a LAN. 

Active message handlers were constructed for the I20 card to allow messages to be 

transferred between internal cluster resources and external Ethernet-based hosts. In this system an 

external host connects to the I20 card using a long-term socket. Once a connection is established, 

transactions between the internal resources and external hosts can take place using a special 

active message that performs bridging operations. This message allows a normal active message 

to be encapsulated as the payload of the bridging message. When the I20 card receives a bridge 

message, it extracts the encapsulated active message from the payload and forwards it to the 

appropriate resource in the cluster. In order for bridging to take place the I20 card must maintain 

a table of Ethernet TCP connections so that it can relay data to the proper connection. 
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6.2.2 Performance Measurements 

The I20 endpoint implementation was constructed for an early version of GRIM. While 

this card has several shortcomings, including several documented hardware problems, it was 

sufficient for an initial proof-of-concept demonstration. Simple performance measurements were 

made of the endpoint implementation and are presented here. The early version of GRIM used in 

these measurements was less robust than the current version and thus incurred less overhead in 

host-to-host transmissions. For example, the early version of GRIM featured 13 (is latencies as 

opposed to 16 JLIS latencies for host-to-host transmissions. This difference should be taken into 

account when evaluating the performance of the I20 card. 

A test program was constructed to determine how efficiently a host-level application 

could interact with an I20 endpoint. In this test, the time required to have a message sent to and 

returned from the I20 card was measured. The resulting communication path is for host-NI-NI-

I20, and was performed using the LANai 4 version of the NI card. The one-way travel time for a 

short message was measured to be approximately 21 fis. This latency is much larger than that 

required for two hosts to communicate. While the I20 card is situated in close proximity to the NI 

card, the i960 processor is much slower than the host processor. Additionally, the I20 card's 

DMA engines are designed to transfer large blocks of data and therefore have a large overhead 

for performing small PCI transfers. However, the I20 card illustrates that a peripheral device can 

operate in an autonomous manner in the communication library and serves as an example of how 

intelligent peripheral devices can directly interact with the NT 

6.3 FPGA Accelerator 

Field-programmable gate arrays (FPGAs) are reconfigurable hardware devices that can 

be programmed to function as application-specific circuits. In recent years, commercial FPGAs 

have grown significantly in capacity, and are now capable of emulating large blocks of custom 
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computational circuitry. These circuits can be utilized as a means of accelerating application 

performance in a cluster, and therefore it is beneficial to consider methods by which FPGAs can 

be incorporated into a cluster. Currently, there are multiple FPGA cards that are commercially 

available for accelerating a host's computational performance. One of these cards is the Celoxica 

RC-1000 [75], which features a modern FPGA and large amounts of on-card SRAM. 

In order to better investigate the use of FPGAs as computational resources in the cluster 

environment, the RC-1000 FPGA card has been adapted to function as a communication endpoint 

in GRIM. This process was nontrivial, as endpoint software had to be converted into hardware 

circuitry. This circuitry is referred to as the static frame for the device, and is responsible for 

managing interactions between the FPGA and other resources in the local host. A second block of 

circuitry referred to as the circuit canvas is used in the FPGA as a place for housing multiple user-

defined computational circuits. These circuits are the hardware equivalent of the active message 

handlers found in other GRIM endpoints. This section provides basic details of the RC-1000 

FPGA endpoint implementation. Additional details are provided in the following chapter as well 

as in Appendix B. 

6.3.1 FPGA Overview 

In order to use FPGAs in the cluster environment, it is first necessary to understand the 

basic characteristics of the technology. FPGAs are reconfigurable hardware devices that can be 

programmed to emulate custom, application-specific circuits. Unlike application-specific 

integrated circuits (ASICs), which cannot be reprogrammed, FPGAs can be reconfigured at 

runtime to emulate different circuits that are needed by applications. A high-level architecture of 

an FPGA is presented in Figure 6.3(a-b). In this architecture, an FPGA is comprised of (a) a two-

dimensional grid of (b) programmable logic blocks. Each logic block contains a lookup table that 

emulates a desired logic function. Logic blocks are connected to implement more complex 

operations through a programmable interconnection network inside the FPGA. In addition to 
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lookup tables, modern FPGA architectures include complex structures such as blocks of memory, 

high-speed multiplier arrays, general-purpose CPU cores, and high-speed network transceivers 

[76]. State-of-the-art FPGAs are advertised as being capable of emulating up to 8 million logic 

gates at a time [77]. 
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(a) FPGA Architecture (b) Logic Block 

Figure 6.3: FPGAs are generally (a) large arrays of programmable logic blocks (LBs) 
that feature (b) lookup tables (LUTs) and D-flip flops. 

Designs for FPGA devices are generally constructed in hardware-description languages 

such as VHDL or Verilog. While these languages can simplify the design process, it is important 

to note that designing hardware is still significantly more time-consuming than designing 

software for a general-purpose CPU due to the low-level nature of the work. Once a design is 

debugged with simulation tools, it is synthesized into a gate-level description that is targeted for a 

particular family of FPGA devices. This description is then placed and routed for a target FPGA 

architecture using tools provided by the FPGA vendor. The end result of this process is a 

configuration file that can be loaded into the FPGA. Depending on the size and complexity of a 

design, it may take anywhere from tens of minutes to tens of hours for the entire compilation 

process to complete. Programming an FPGA with a configuration file can take several 

milliseconds in modern FPGAs. 

H> 
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6.3.2 Celoxica RC-1000 FPGA Card 

The FPGA card chosen for integration into the GRIM communication environment is the 

Celoxica RC-1000 FPGA card. This card features a Xilinx Virtex-1000 FPGA [78], 8 MB of on-

card SRAM, and PCI Mezzanine Card (PMC) [79] sockets for connecting two PCI daughter 

cards. A LANai 4.3 version of the Myrinet NI card was available at Georgia Tech in a PMC form 

factor, and allowed the NI card to be attached directly to the RC-1000 FPGA card. Figure 6.4 

illustrates the overall architecture of our FPGA-enhanced NI card and the major hardware 

components of the individual cards. 
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Figure 6.4: Celoxica RC-1000 and Myrinet Peripheral Devices 

The architecture of the Celoxica RC-1000 card divides on~card memory into four 2 MB 

banks of SRAM. Each bank is single ported and operates with 32-bit data values. The RC-1000 

provides switching hardware and memory arbitration mechanisms to allow the single-ported 

SRAM banks to be accessed by either the FPGA or the PCI controller. The arbitration 

mechanisms are implemented in a CPLD through the use of two 4-bit request registers (one for 

the FPGA the other for the PCI unit), and one 4-bit grant register. In this scheme, exclusive 

ownership of a bank of SRAM is acquired by updating a request register and polling the grant 

register. Memory arbitration does not take place automatically for the PCI controller. Instead, the 

external entity initiating a transfer of data to the RC-1000's memory must first interact with the 
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card's CPLD and obtain ownership of the involved SRAM banks. The PCI controller for the RC-

1000 is the PLX-9080 chip [80], which provides a chained DMA engine for PCI transfers. Due to 

the manner in which the memory arbitration mechanisms are implemented for this card, the 

FPGA cannot initiate its own PCI DMA operations. This implies that the card requires the host's 

assistance whenever the FPGA exchanges data with the host. 

6.3.3 FPGA Endpoint Implementation 

Integrating the RC-1000 FPGA into the GRIM environment involved defining a 

hardware configuration for the FPGA that allows the FPGA to function as a communication 

endpoint. This hardware configuration must satisfy three design goals. First, it must be capable of 

managing the card's incoming and outgoing message queues for interactions with the 

communication library. In addition to injecting and ejecting messages, the FPGA configuration 

must be capable of parsing an incoming message to determine which hardware circuitry should be 

used to process the message. Second, the configuration must provide simple mechanisms that 

allow computational circuits to access the RC-1000's on-card SRAM that is not used for the 

message queues. This memory can be used to store application data sets in order to improve 

computational performance. Third, the FPGA configuration must allow multiple user-defined 

computational circuits to be loaded in the FPGA for use by applications. These circuits are 

analogous to software-based active message function handlers found in other endpoints. 
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Based on the preceding requirements, circuitry was designed for the FPGA to allow the 

RC-1000 to function as a communication endpoint. As presented in Figure 6.5, the design divides 

the FPGA into two regions, and uses three separate interfaces to allow interactions between 

hardware units. The majority of the FPGA is used for the circuit canvas, a region of the FPGA 

that houses multiple user-defined computational circuits. These circuits process incoming 

messages and must adhere to a dynamic circuit API. The other portion of the FPGA is allocated 

for use as a frame for the canvas. The frame is a small region of the FPFA that is utilized to 

control card-specific interactions between the circuit canvas and the FPGA card's resources. The 

frame includes state machines for managing interactions with the communication library, the 

circuit canvas, and user-accessible on-card memory referred to as the scratchpad. Because the 

frame is designed to insulate the canvas from card-specific features, it is possible to port this 

work to other FPGA cards by modifying the frame. 

6.3.4 User-Defined Circuits 

One of the key features of the RC-1000 endpoint implementation is its capability for 

supporting multiple user-defined computational circuits in a single FPGA. The frame is designed 

with an interface that allows multiple computational circuits to be physically loaded in the canvas 
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and dynamically utilized to process incoming messages. The frame employs two sets of signals to 

accomplish this task. First, each computational circuit is connected to the frame by a set of 

control signals. These signals allow the frame to activate a computational circuit and detect when 

the circuit has completed its work. The second set of signals routes vector data streams between 

the frame and the computational circuit. A vector data stream transfers a linear series of 32-bit 

data values using an asynchronous transfer protocol. Each computational circuit can use up to two 

input vector data streams and one output vector data stream. 
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Figure 6.6: The interface for computational circuits in the canvas. 

A simplified block diagram of the interface between the frame and computational circuits 

housed in the canvas is presented in Figure 6.6. Each computational circuit is provided with 

vector data streams supplied by ports A and B in the frame. Results of the computations are 

streamed back into the frame through port C. In addition to supporting up to eight user-defined 

computational circuits, each FPGA configuration is also equipped with a built-in unit for basic 

ALU operations. This unit provides a set of linear, two-input vector operations (e.g., add, 

multiply, AND, OR, XOR, min, and max) as well as one-input vector operations (e.g., NOT and a 

no-operation). The no-operation is beneficial because it can be used to transfer memory from one 

memory location in the scratchpad to another. 
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6.3.5 Examples of User-Defined Circuits 

Multiple user-defined computational circuits have been constructed for use in the circuit 

canvas. As a means of illustrating how a modern FPGA can house multiple complex hardware 

units, an FPGA configuration with a set of cryptography cores was implemented. The post-layout 

design was examined to determine how much space each core occupies in the Virtex-1000 FPGA. 

These estimates are presented in terms of the percentage of the Virtex-1000's overall resources 

that are consumed by the circuits. These percentages can be translated to gate counts using the 

estimation that a Virtex-1000 can emulate approximately one million logic gates. Each core is 

briefly described as follows: 

• Digital Encryption Standard (DES) [81] (6%): A publicly available DES core called 

free-DES [82] was ported to operate as a user-defined core. This unit can either encrypt 

or decrypt data supplied by vector data port A using a key supplied by vector data port B. 

• RC6 [83] (13 %): Chris Wood implemented a version of the RC6 encryption standard for 

encrypting and decrypting data from vector data port A using a key schedule supplied by 

vector data port B. The engine operates with up to 1024 rounds (R), at 32-bit data value 

widths (W), with key lengths (B) up to 1024 bytes. 

• MD5 [84] (26 %): The MD5 message-digest algorithm was implemented to generate a 

128-bit identifier for data supplied by vector data port A. 

• Built-in ALU Operations (5 %): The frame features a built-in ALU core for basic vector 

operations. 

The frame for this configuration requires approximately 20% of the Virtex-1000's 

resources. A significant portion of this allocation is for two blocks of the FPGA's internal SRAM 
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so that the frame can buffer messages that are being processed. This design illustrates that 

multiple useful circuits can be loaded in the FPGA at the same time. 

6.3.6 RC-1000 Interactions with GRIM 

In order to allow the RC-1000 to function as a communication endpoint in GRIM, low-

level message-passing mechanisms were constructed to facilitate data transfers between the RC-

1000 and other resources in the local host. The first difficulty in this effort is that the FPGA 

cannot initiate DMA transfers. This problem was resolved through the construction of host-level 

software that initiates DMA transfers on behalf of the RC-1000 card. This software detects when 

the card needs to perform a transfer and issues the proper DMA operation. A more challenging 

issue in implementing the RC-1000's communication mechanisms is dealing with its card-

specific memory-arbitration mechanisms. As discussed earlier, the RC-1000's PCI controller and 

FPGA share access to the card's single-ported SRAM banks through an arbitration scheme. Thus, 

when an endpoint needs to inject a message into one of the RC-1000's incoming message queues, 

it must first obtain exclusive ownership of the memory bank that houses the queue. Ownership is 

acquired by updating the card's request register and then polling a grant register to detect when 

the card has assigned ownership to the endpoint. 

While the RC-1000's memory-arbitration mechanisms are adequate when only the host 

CPU uses the card, there is the possibility of a hazardous race condition when multiple resources 

in the host (e.g., the NI and the host CPU) access the arbitration mechanisms at the same time. 

The problem is that there is only one register for all off-card resources to place memory-

arbitration requests. If an endpoint does not have knowledge of the current requests made by 

other endpoints in the host, it is possible for access to an SRAM bank to be released mistakenly. 

For example, consider the case where the host CPU and NI are each injecting a message into 

different queues located in the same SRAM bank of the RC-1000. If the NI finishes before the 

host CPU, it could mistakenly update the RC-1000's bank request register to indicate that access 
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is no longer needed to the SRAM bank. Because the memory arbiter only observes the most 

recent update to the request register, it is possible for the arbiter to change ownership of the 

SRAM bank from the PCI interface to the FPGA. This series of events results in the host utilizing 

an SRAM bank for which it no longer has access. 
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Figure 6.7: The use of the Myrinet NI to merge arbitration requests. An endpoint (1) 
passes a request to the NI to access RC-1000 memory. The NI merges the request (2) 
and interacts with the RC-1000 card. After access is granted the endpoint (3) injects 
the message. 

A solution to the problem of allowing multiple resources in the host to coherently share 

access to the memory-arbitration mechanisms of the RC-1000 is to merge access requests at a 

single location in the host. In the GRIM implementation, this task is delegated to the Myrinet NI 

due to its proximity to the FPGA card on the PCI bus. As illustrated in Figure 6.7, a series of 

request queues are implemented in the NI. When the NI detects a new request in a queue, it 

updates a local set of registers for the queue and compares the sum of all the current requests to 

the last request issued to the FPGA card. If there is a difference, a new request is sent to the RC-

1000's arbitration unit through a PCI transaction. If this update is due to a new request for 

memory (as opposed to a release), the NI periodically polls the RC-1000's arbitration unit until 

the request is granted. The endpoints in the host system must poll the NTs arbitration registers to 

determine when access is granted for each request. 
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Table 6.1: Performance measurements for RC-1000 memory arbitration. 

Operation Resource Requesting 
Arbitration 

Resource Performing 
Arbitration Time (u.s) 

Acquire SRAM 
Host Host 6 

Acquire SRAM Host NI 13 Acquire SRAM 
NI NI 5.5 

Release SRAM 
Host Host 2 

Release SRAM Host NI 7 Release SRAM 
NI NI 3 

Tests were performed to characterize the RC-1000 memory arbitration mechanisms. In 

these tests both the host and the NI acquire and release ownership of a bank of RC-1000 SRAM. 

In the first set of experiments, arbitration is performed directly by the host or the NI. In the 

second set of experiments, the host utilizes the NI to perform arbitration on behalf of the host. 

The results of these experiments are presented in Table 6.1. As expected, utilizing the NI to 

perform arbitration for the host results in a significant performance penalty for the host. The 

host's indirect arbitration scheme incurs twice as much overhead as a direct approach. These 

measurements imply that it is beneficial for a host endpoint to invoke arbitration mechanisms 

infrequently, and that the host software should be designed to bundle multiple transactions with 

FPGA memory into a single operation whenever possible. 

6.3.7 TPIL Performance for the RC-1000 Card 

The TPIL software was adapted to operate with the RC-1000 card in order to improve 

host injection performance. The internal benchmarking features of TPIL that were used to 

measure the performance of the Myrinet cards in Chapter 5 were utilized to measure the 

performance of the RC-1000. The results are presented in Figure 6.8 for a P3-550 MHz host that 

is equipped with a 32b/33-MHz PCI bus. As expected, MMX and SSE PIO based transfers 

provide the best performance for injections smaller than approximately 3 KB. After this point, 

zero-copy DMAs become the most profitable transfer method, eventually reaching a performance 

of approximately 116 MB/s. 
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Figure 6.8: RC-1000 PCI injection performance for P3-550 MHz hosts. 

An interesting characteristic in these performance measurements is that PIO operations 

reach a peak value of 42 MB/s for transfers that are 1 KB in size. Performance gradually drops 

for transfers larger than this size until a steady-state value of approximately 32 MB/s is reached. 

The RC-1000's PCI chipset is likely to be the cause of this performance drop because the PCI 

chipset has a limited capacity for buffering incoming data from the PCI bus. PIO transfers can 

therefore be slowed if the host CPU attempts to inject data faster than the card can empty the 

buffer. DMA transfers do not experience this performance degradation because the DMA engine 

can throttle its transfers to match the capacity of the buffer. 

6.4 BrookTree Video Capture Card 

The third peripheral device used as a resource in the GRIM environment is a video 

capture card based on the popular BrookTree BT8x8 chipset [85]. Many commercial video 

capture cards utilize this chipset because it is economical, and because device drivers exist for 

both Windows and Linux operating systems. The chipset integrates a PCI controller, video 

capture circuitry, and control logic in a single chip. BT8x8 card utilizes a block of host memory 

to serve as a frame buffer and employ a highly-configurable data-transfer engine to move 
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incoming video data to the host. Unfortunately, this card does not feature a programmable CPU 

that could be used to implement GRIM endpoint software. Therefore, a host-level library was 

constructed to allow GRIM applications to access this device. This effort demonstrates that 

GRIM can be utilized to include even simple peripheral devices in the cluster communication 

model. 

6.4.1 Overview of the BT8x8 Video Capture Card 

Many commercial video capture cards are based on the BrookTree BT8x8 chipset. This 

chipset is popular because it implements all capture hardware in a single chip, can process NTSC, 

PAL, and SECAM analog video sources, and can perform operations such as scaling, clipping, 

and pixel-format transformations in hardware. In order to reduce the cost of the chipset, the 

BT8x8 chipset is designed with minimal buffer space for housing video data. Instead of buffering 

frames of video data in card memory, the BT8x8 uses a programmable DMA engine to stream 

captured data directly into a region of the host's memory. A desirable aspect of this approach is 

that a frame of video data can be streamed to any location in the host, including the on-card frame 

buffer of a video display card. 
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Figure 6.9: The high-leveJ organization of the BT848 chipset. 

An overview of the hardware pipeline that transforms analog video into a raw digital data 

stream in the BT848 chipset is presented in Figure 6.9. The input to the pipeline can be selected 

from one of three analog video sources using a programmable multiplexer. This input is 
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transformed into a digital data stream using an analog-to-digital converter. Digital data at this 

point is represented in a 640x480 pixel frame using the 4:2:2 YCrCb format [86]. The next stage 

in the pipeline is a video scaling unit that can downsample the data stream to user-defined 

dimensions. The data is then passed through a format-conversion engine that transforms the 4:2:2 

YCrCb image into other formats (e.g., RGB565 or RGB32). Video data is then queued in a series 

of pixel FIFOs, where data is held until a PCI DMA engine transfers the data to host memory. 

The DMA engine performs data transfers based on a list of transfer instructions that are 

assembled by the host's device driver for the card. 

Open source device drivers are available in the Linux operating system for BT8x8 video 

capture cards. These drivers are part of the video-4-linux (v41) effort [87] and provide a basic API 

for user-space applications to interact with video capture cards. Because the BT8x8 chipset does 

not employ an on-card frame buffer, the driver must allocate a block of host memory for housing 

captured data and program the card with a list of DMA operations to store data into the memory. 

The driver allows users to create two frame buffers for each card so that the card can write data 

into one buffer while an application reads data from the other buffer. Using this double-buffered 

approach, it is possible for an application to acquire 640x480 pixel video data at 30 frames per 

second (NTSC's frame rate). 

6.4.2 Endpoint Construction 

In the process of examining how the BT8x8 video capture card can be integrated into the 

GRIM environment, it was observed that adapting endpoint software to run on the card would be 

infeasible for three reasons. First, while the card does provide a programmable RISC engine, this 

engine is primarily designed to simply transfer data between the card and host memory. Second, 

the card does not provide any memory that could be used for implementing on-card message 

queues. Finally, the fundamental nature of the card makes it impractical for use as an autonomous 

endpoint. Outside of configuration operations, the card performs the single function of writing 
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data to a memory location in the host. Therefore, it was decided that the integration of the BT8x8 

card into the GRIM environment should leverage the existing v41 work and utilize the host as a 

unit for managing cluster interactions with the card. 

The software that allows the BT8x8 to be used in the GRIM environment is comprised of 

initialization functions and active message handlers. The initialization functions connect to the 

v41 device driver and acquire allocations of host memory for housing video frames. After 

initialization, users can utilize a number of active messages for controlling interactions with a 

video capture card. In addition to active messages that allow users to configure the video capture 

software, a special active message is available for requesting that a frame of video data be 

transmitted to an endpoint. This request message allows users to specify the active message 

handler that is used in the reply message that carries the video data. This interface allows users to 

construct their own interfaces for processing incoming data without having to specify the 

mechanics of how the video capture card obtains the data. If the user does not specify a handler to 

use in the reply message, a built-in handler is selected that simply transfers the message's payload 

to a user-specified memory address. 

Additional active message handlers were constructed to allow the node with the video 

capture card to transmit video data to another node in the cluster using remote memory 

operations. With these functions a node can have a frame of video data transferred directly to a 

frame buffer or a display device. Given that the dimensions of a frame of captured video may not 

match the dimensions of the output display, it is necessary to break the remote memory write 

operation into a series of smaller transfers. For example, if the frame size of the captured video is 

smaller than the size of the display, the captured data must be transmitted one row at a time in 

order for the rows to be rendered properly. The GRIM active message function handlers can 

perform this operation if the user supplies the dimensions of the target display. 
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6.4.3 Driver Modifications 

The V4L device driver was modified to allow captured video data to be stored to a region 

of memory specified by the user. These extensions allow users to pass a physical memory address 

to the driver for a block of contiguous memory that is large enough to house a frame of video 

data. The GRIM software was also extended to allow users to reserve a contiguous block of NI 

card memory for housing application data. This effort provided the fundamental means by which 

the capture card could transfer video data directly to the Myrinet NI card in order to reduce the 

number of PCI transactions required by a system that needed to stream video data from one host 

to another. Test applications were constructed to demonstrate that the video card could in fact 

transfer data directly to the proper location of the NI card. 

Table 6.2: Characteristics of BT8x8 video streams. 
Frame Size (Pixels) 320x240 640x480 

Bytes/Frame (16b Pixels) 150 KB 600 KB 
Bytes/Second (@30 Frames/Second) 4.5 MB/s 18 MB/s 
Bits/Second (@30 Frames/Second) 36 Mb/s 144 Mb/s 

While the basic mechanisms for streaming video data directly into the NI have been 

constructed, development was halted due to a lack of practicality. Table 6.2 lists the 

characteristics of two video streams the BT8x8 card is capable of creating. If the video capture 

card is configured to store data directly to the NI, a buffer large enough to house two frames of 

data must be allocated from NI card memory. With only a megabyte of SRAM, the LANai 4 NI 

would only be able to support the 320x240 pixel video stream. While the LANai 9 could support 

640x480 pixel frame buffers, doing so significantly reduces the amount of memory that is 

available for the NI to buffer normal messages. In contrast, the 640x480 data stream requires only 

18 MB/s of bandwidth from the host's PCI bus. Because this data rate is only 14% of the 

available bandwidth of a 32b/33-MHz PCI bus, it was decided that the extra effort required to 

reliably stream data directly into the NI was not worth the possible performance gain. Instead, 

146 



software was designed to store captured video data in an intermediate host buffer and then 

transfer data to the NI as needed by applications. This method is able to transfer 640x480 pixel 

data streams in 30 frames per second. 

6.5 Video Display Cards 

Video display devices are another form of multimedia peripheral device that can be 

utilized in the cluster environment. While there are numerous commercial video display cards, the 

vast majority of these cards operate on the principle that display data is housed in an on-card 

block of memory known as the frame buffer. Writing graphical data into this block of memory 

results in changes in the rendered output. Therefore, video display cards can be incorporated into 

the GRIM environment by making the frame buffer accessible to end applications. GRIM has 

been extended with functionality to allow the frame buffer in a host to be identified to end 

applications. End users can then use this information with remote memory write operations to 

update the display of a remote host in an efficient manner. 

6.5.1 Video Display Card Overview 

Modern video display cards generally employ a large (2-128 MB) block of memory 

known as the frame buffer for housing video display data. The frame buffer accelerates system 

performance by allowing video data to be stored locally on the video card. The output display 

engine for the graphics card therefore continuously reads from the frame buffer and uses digital-

to-analog converters to generate the appropriate VGA signals. A video display card is typically 

connected to the host system through the accelerated graphics port (AGP) [88]. This port is 

similar to PCI, but is situated closer to the host's memory system and has asynchronous transfer 

characteristics (i.e., 'writes' to card memory are faster than 'reads'). While PCI devices can 

usually store data to an AGP card with write operations, most motherboard chipsets do not allow 

a PCI device to utilize read operations to fetch data from AGP card memory. 
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The Linux kernel provides a simple, universal driver that allows user applications to 

directly access a video display card's frame buffer. This driver provides a means for an 

application to map the frame buffer into the application's address space, where it can be updated 

using normal PIO operations. The device driver also provides basic functionality that allows 

applications to query the frame buffer's settings. User-space applications can use these calls to 

determine the dimensions of the display and the current pixel depth. The frame-buffer driver 

operates regardless of whether or not a window manager is running. Therefore, it is possible for 

user-space applications to update the graphical display even if X windows software [89] is not 

running. 

6.5.2 GRIM Integration 

It is generally infeasible to port communication endpoint software to a video display card 

due to the architecture of these cards. Video display cards simply render graphical data and 

therefore are designed to function as data sinks. Thus, the approach taken in GRIM to integrate a 

video display card into the cluster architecture is to simply present the video display card's frame 

buffer as a block of memory that cluster applications can update. The first task in accomplishing 

this goal was adapting GRIM to interact with the device driver that controls the frame buffer. At 

initialization time, GRIM opens the driver and maps the frame buffer into the application's 

address space. Next, GRIM utilizes a custom-built device driver to transform the virtual address 

mapping of the frame buffer into a physical address that can be referenced by the NI card. 

Finally, the physical address of the frame buffer is shared with other endpoints in the system. 

These endpoints can then use remote memory write operations with the physical address (RM-P) 

to render changes to the output display. 

An example host-level application was constructed to demonstrate how the frame buffer 

could be used in the distributed cluster environment. In this application, multiple hosts are 

equipped with video capture cards and configured to capture live video streams. At runtime, each 
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of these hosts is instructed to transmit its captured video stream to a different area of one host's 

frame buffer. The result is that multiple video streams can be displayed simultaneously on a 

single output screen. The advantage of this approach is that the incoming video streams can be 

routed directly to the output display without buffering the data in the display host's memory. This 

type of operation can be beneficial in other tasks such as distributed rendering systems, where 

individual workstations perform the task of rendering different portions of an overall scene. 

6.6 Summary 

Multiple peripheral devices have been integrated into the GRIM communication 

environment. This work has been simplified by the fact that GRIM implements a common core of 

its communication functionality in the NI. Peripheral devices in this environment implement 

mechanisms to facilitate interactions with resources in the local host such as the NI or other 

endpoints. GRIM is a flexible substrate for this type of work because it can be adapted for use 

with peripheral devices that have a wide array of characteristics. The I20 adaptor integration was 

the least challenging of these efforts because endpoint software could be ported directly to the 

card. The RC-1000 endpoint was the most challenging because endpoint software had to be 

implemented as FPGA circuitry. The video capture and display integration work complete the 

survey of peripheral device work because they represent devices that cannot natively run endpoint 

software, and therefore require host-level management. All of these examples illustrate that 

GRIM is extensible in that it can be adapted with device-specific functionality to allow new 

peripheral devices to be incorporated into the cluster environment. 
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CHAPTER VII 

STREAMING COMPUTATIONS 

Resource-rich cluster computers feature a large number of host CPUs and peripheral 

devices that can be used by applications as a pool of available resources. A challenge in working 

with such resource models is constructing applications that effectively utilize the cluster's 

distributed resources. This chapter describes support for a pipelined computing model where 

accelerators available as peripherals in distinct nodes can be configured through GRIM to operate 

as a single computational pipeline. Such a model can support a wide range of applications, 

including streaming media and signal processing applications. 

Adapting a message layer to support streaming computations requires an examination of 

how cluster resources can be utilized as elements in a computational pipeline. A streaming 

computation is visualized as a connection-oriented service, where a number of operations are 

performed on data that is passed through a connection. This programming abstraction requires 

two specific features from an implementation. First, individual resources in a connection must be 

capable of performing a specified computation on an incoming data stream. In GRIM, this 

functionality can be accomplished through the use of GRIM's built-in active message 

mechanisms. Second, a resource in a connection must be equipped with mechanisms for 

forwarding computational results to the next resource in the connection. This functionality is 

implemented in GRIM through both the library's native reliable delivery mechanisms and a 

programmable forwarding directory. This directory allows users to configure the exact 

functionality of a streaming operation in flexible manner. 

As a motivating example, the Celoxica RC-1000 FPGA endpoint has been adapted to 

support streaming computations. In addition to equipping the RC-1000 endpoint with a 
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forwarding directory, several enhancements were made to the endpoint's architecture. These 

modifications include a virtual memory system that allows on-card memory to be shared by 

applications and a system for dynamically reconfiguring the FPGA with hardware circuits needed 

at runtime by applications. This chapter provides implementation details of the streaming 

computation extensions, as well as performance measurements of the RC-1000 endpoint that 

relate to the streaming environment. 

7.1 An Overview of Streaming Computations 

In pipelined implementations, a complex computational task is divided into a linear series 

of subtasks that can be performed by individual resources. Each resource is then configured to 

function as a pipeline stage, performing a specified computation on incoming data and forwarding 

the results to the next resource in the pipeline. The benefit of this approach is that when streams 

of data are injected into the pipeline, it is possible for the pipeline stages to concurrently operate 

on different portions of the stream. The desired result is for the system to be capable of producing 

output results at the same rate that data is injected into the pipeline. 
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Figure 7.1: A streaming computation example. 

Multimedia applications provide a strong motivation for developing systems that are 

capable of performing high-throughput streaming computations. In a number of these 

applications, raw multimedia data streams must be processed in real time. Unfortunately, it is 

often infeasible to use a single host computer to perform this processing because of the high data 
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rates that are involved and the computational complexity of the operations that need to be 

performed. Therefore, it is beneficial if a series of resources in a cluster can be utilized as a 

streaming computational pipeline. An example of such a pipeline is depicted in Figure 7.1. In this 

system, a video capture card generates a video stream that is relayed through multiple peripheral 

devices distributed throughout a cluster. The devices perform specific operations on the data 

stream until the data is properly prepared for consumption by a host-level application. 

7.1.1 Connection-Oriented Streaming Computations 

While streaming computations can be implemented in a variety of manners, a particularly 

useful abstraction is to visualize a streaming computation as a form of a connection-oriented 

service. In this abstraction, data injected into a connection is processed by a series of 

computational stages that are defined when the connection is established. As Figure 7.2 

illustrates, any endpoint in the cluster can inject data into a connection, but computational results 

are only transmitted to a single endpoint. A new connection can be created by any endpoint in the 

system. After obtaining a unique identifier for a new connection, an endpoint must configure the 

individual resources that are to be used in the connection. Configuration information specifies the 

operation a resource should perform as well as where the results of the operation should be 

transmitted in the cluster. 
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Figure 7.2: An example of a connection-oriented streaming computational pipeline. 

There are multiple benefits to implementing a streaming computation as a connection-

oriented service. First, connection-oriented communication is well understood by programmers 
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and is therefore a programming abstraction that can be adopted without much difficulty. Second, 

this approach can be used in a flexible manner to implement a variety of useful computational 

systems. For example, users can chain multiple connections together by forwarding the results of 

one connection to another. Therefore, users can construct complex operations by using a set of 

basic operations as building blocks. Finally, computational connections provide a simple 

programming abstraction that allows any endpoint to invoke complex operations without having 

to know the underlying mechanics of the connection. This feature is especially valuable for 

simple peripheral device endpoints in resource-rich clusters. 

7.1.2 An FPGA-Based Pipeline Unit 

GRIM has been extended via software to support a connection-oriented form of 

streaming computations. In this effort, peripheral devices can be configured to function as the 

pipeline stages of a streaming computation. Of the peripheral devices that are currently supported 

in GRIM, the most attractive device for this work is the Celoxica RC-1000 FPGA card discussed 

in the previous chapter. This card is a natural candidate for use in streaming operations because it 

is designed to function as a computational accelerator. Therefore, the current RC-1000 endpoint 

implementation has been modified to support streaming computations. These modifications are 

implemented as extensions to the FPGA's frame, which is the block of logic that implements the 

endpoint state machines for the RC-1000. While the focus of this chapter is on implementation 

details for adapting the RC-1000 endpoint for streaming computations, other endpoints can be 

extended with this functionality in a similar manner. 

7.2 Pipeline Computations 

The first of two functional requirements for an endpoint to behave as a pipeline stage is 

for the endpoint to be capable of performing a predefined computation on incoming messages for 

a data stream. This functionality can be implemented in a relatively straightforward manner using 

153 



GRIM's active message programming interface. For the RC-1000 FPGA endpoint, the active 

message function handler is used to select the computational circuit that processes an incoming 

message for a data stream. Observing that FPGAs have a limited capacity for housing 

computational circuits, the RC-1000 FPGA endpoint has been extended with software that allows 

the FPGA to be dynamically reconfigured with different circuitry as needed by applications. The 

FPGA frame in this approach detects when it does not have the circuitry necessary to process a 

message and signals a. function fault to the host. The host software is designed to resolve these 

faults, allowing the FPGA to be reconfigured on demand as needed. 

7.2.1 The Use of Active Messages to Control Pipeline Computations 

An endpoint that functions as a pipeline stage in a streaming computation must be 

configured to perform a user-specified operation on a data stream's incoming messages. This 

functionality can be accomplished through GRIM's active message programming interface. In 

this approach, a message arriving at a pipeline stage is labeled with a stream identifier and an 

active message handler that specifies the operation the endpoint should perform on the message. 

Since all pipeline processing instructions are included in an incoming message, it is necessary for 

the endpoint transmitting the message to format the message. While it may seem counterintuitive 

to have to place an endpoint's processing instructions at the preceding endpoint in the pipeline, 

doing so simplifies the configuration process. In this system, forwarding information (used to 

transmit results to the next pipeline stage) and processing instructions (used to specify the 

operation the next pipeline stage performs) are stored at the same location (the preceding pipeline 

stage). 

Most endpoints can be easily adapted to perform the computational part of streaming 

operations, because this approach relies on the existing active message infrastructure. Similar to 

other messages, endpoints simply process streaming-computation operations by executing the 

proper active message function handler. For the RC-1000 FPGA endpoint, the FPGA frame's 
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current active message interface is sufficient for implementing this functionality. Messages 

arriving at the RC-1000 endpoint for a streaming computation are examined by the FPGA frame 

and processed using the user-defined circuit that matches the arguments specified in the 

message's header. 

7.2.2 Dynamic FPGA Circuit Management 

One of the difficulties involved in utilizing an FPGA as a computational resource is that 

each FPGA is only capable of housing a limited amount of user-defined circuitry. While the 

industry is constantly increasing the gate capacity of commercial FPGAs, it is unlikely that a 

single FPGA will ever be able to house all of the computational circuits that could be utilized by 

end applications. This limitation becomes a significant issue as the number of streaming 

computational pipelines used in a cluster increases. If these pipelines require diverse types of 

processing, it is likely that the number of computational circuits needed by the pipelines may 

outnumber the total space available for housing the circuits in the cluster's FPGA resources. 

What is needed is a system that can dynamically reconfigure the cluster's FPGAs to emulate the 

hardware operations that are needed by applications at runtime. 

Modern commercial FPGAs generally provide two forms of reconfiguration that can be 

utilized by software that dynamically manages an FPGA endpoint's circuits. First, all FPGAs 

support a form of full reconfiguration, where an FPGA is reprogrammed in its entirety. Circuit-

management software can utilize this operation to reprogram an FPGA at runtime with a 

configuration that contains a circuit that is required by an application. In this approach, multiple 

FPGA configurations are generated offline and stored in a database managed by the software. 

Second, some FPGAs support partial reconfiguration, where a region of the FPGA can be 

reprogrammed without affecting the rest of the chip. With this option, circuit-management 

software can be designed to replace one computational circuit for another. Unfortunately, partial 

reconfiguration operations can incur significant overheads due to the amount of effort that is 
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required in rerouting an FPGA's active signals. While the FPGA management techniques 

described in this section can be applied to both forms of reconfiguration, the focus of this effort is 

on utilizing full reconfiguration mechanisms. 

7.2.3 Function Faults in the FPGA Frame 

In order to support dynamic circuit management the RC--1000 FPGA endpoint had to be 

modified with functionality for assisting the reconfiguration process. These extensions allow the 

FPGA frame to detect the need for reconfiguration, and provide a means for the FPGA to save 

and restore its runtime state information during the reconfiguration process. The extensions 

operate as follows. Whenever the host system loads new computational circuits into the FPGA, it 

stores a list of function identifiers for the circuits in the FPGA card's SRAM. After the host 

activates the FPGA, the frame pulls these identifiers and other runtime state information into the 

FPGA. The frame uses this information at runtime to determine if an incoming message can be 

processed by the circuits that are available in the FPGA. If the FPGA is not equipped with the 

proper circuits, it initiates a function fault that must be resolved by the host's dynamic circuit 

management software. 
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Figure 7.3: The process of reconfiguring an FPGA during a function fault. 
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Figure 7.3 depicts the steps that are taken during a function fault. After (1) the FPGA 

detects that it is not equipped with circuitry to process a message it (2) stores its dynamic state 

information in on-card SRAM. The FPGA then suspends its execution and (3) sends an interrupt 

request to the host processor. The host software detects the fault, determines which function is 

needed by the FPGA, and (4) retrieves an appropriate configuration from a database. The host (5) 

loads the FPGA with this configuration and updates the FPGA's list of available circuits. The 

host then restarts the FPGA which (6) fetches its dynamic state information from SRAM. The 

FPGA uses this information to begin processing the message that caused the function fault. The 

message can now be processed because the FPGA is loaded with the computational circuit that is 

needed by the message. 

7.2.4 Function Fault Overhead 

Measurements were performed to estimate the amount of overhead that is involved in 

processing an FPGA function fault. For the FPGA portion of this overhead, the FPGA frame's 

state machines were examined to determine how many FPGA clock periods are required by the 

frame to generate and recover from a function fault. Clock periods can be related to wall-clock 

time by dividing the number of clock periods by the FPGA's clock frequency (20 MHz). For the 

host's portion of a function fault's overhead, instrumentation software was added to the host 

library to measure the amount of time required to perform fault-resolution operations. A P3-550 

MHz host was used in these measurements. 
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Table 7.1; The amount of time required to manage an FPGA function fault. 

Resource Action FPGA 
Clocks Time (|is) 

FPGA 

Store queue pointers 6 0.30 

FPGA 
Store missing function 2 0.10 

FPGA 
Trigger function fault 1 0.05 

FPGA 

Release SRAM bank 0 1 0.05 

Host 

Acquire SRAM bank 0 

-

13 

Host 

Process fault 

-

8 

Host 

Load configuration from file (optional) 

-

10,205 

Host 
Reconfigure FPGA 

-
95,114 

Host 
Set FPGA clock 

-
2,405 

Host 

Set function IDs 

-

2 

Host 

Reset FPGA 

-

56,813 

Host 

Release SRAM bank 0 

-

7 

FPGA 
Acquire SRAM bank 0 8 0.40 

FPGA Reload queue pointers 4 0.20 FPGA 
Reload functions IDs 9 0.45 

The results of the measurements are presented in Table 7.1. While the FPGA operates at 

a relatively slow clock rate, it is able to perform all of its function-fault operations in only a few 

microseconds. Unfortunately, there are significant overheads for the host to resolve a fault. The 

two dominant operations in this procedure are for the host to reconfigure and then reset the 

FPGA. The reconfiguration process is time consuming because approximately 700 KB of 

information must be serially loaded into the FPGA using PIO operations. Resetting the FPGA is 

time consuming because the operation requires a 50 ms delay for proper execution. Newer FPGA 

cards will reduce this overhead by a factor of 5-10, with custom architectures performing even 

better. However, the current model is on par with connection-oriented programming models 

where pipelines are constructed and changed infrequently. 

7.3 Pipeline Forwarding 

The second operation that a pipeline stage must perform is forwarding computational 

results to the next resource in the pipeline. This task is an integral part of a streaming computation 

because it allows a collection of distributed resources to be utilized in a connection. At a 
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fundamental level, forwarding mechanisms should allow pipelines to be constructed in a flexible 

manner. In addition to routing messages between resources, it should also be possible for users to 

route data through the same resource multiple times. The benefit of using the same resource to 

implement multiple pipeline stages is that dynamic application data can be more readily shared 

among the pipeline stages. One means of constructing a flexible system for managing the transfer 

of data between pipeline stages is to employ a forwarding directory at each endpoint in the 

pipeline. A forwarding directory is a user-programmable table that contains information that 

specifies how a pipeline stage should transmit the results of a streaming computation to the next 

stage in the pipeline. These tables are easily updated and serve as a simple means by which users 

can configure both the routing and computational operators used in a streaming computation. 

7.3.1 Forwarding 

After a pipeline stage generates computational results for an incoming message, it is 

necessary to forward the results to the next stage in the pipeline. Forwarding mechanisms must be 

flexible enough to be utilized in a number of manners. Figure 7.4(a-c) illustrates three 

fundamental examples of how data may be forwarded between resources in a pipeline. In the first 

example (a), a resource is configured to function as a single stage in a pipeline. Results from this 

operation are forwarded to another resource in the cluster. It is expected that most applications 

will utilize resources in this manner because the approach is the most straightforward to manage 

and implement. The second example (b) illustrates a more elaborate case where a resource is 

utilized to perform two sequential operations in a computational pipeline. This approach requires 

a means of buffering results at a resource and is beneficial for applications where data locality can 

be exploited. In the final example (c), a resource is utilized to process data for multiple 

independent streaming computations. This approach allows a resource to be utilized by multiple 

applications and requires mechanisms for isolating data streams. 
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Figure 7.4: Forwarding examples for (a) a single computation on a single stream, (b) 
multiple computations on a single stream, and (c) multiple streams. 

7.3.2 Forwarding Directory 

One method by which diverse forwarding operations can be implemented in a streaming 

environment is to store forwarding information at the resources utilized in a connection. In this 

approach, each endpoint is equipped with a forwarding directory that contains information 

specifying where and how the endpoint should transmit the results of a streaming computation 

operation. A message arriving at an endpoint contains information that identifies the message as 

belonging to a particular computational stream. This stream identifier is used to extract 

information from the forwarding directory that specifies how the computational results of the 

operation should be formatted for transmission in the network. Therefore, users can construct new 

connections or modify the flow of existing pipelines simply by updating the appropriate 

forwarding directory entries of the resources that are involved. Updates can be performed using a 

built-in set of active message handlers that modify forwarding directory entries. 
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Figure 7.5: The forwarding directory provides information for transmitting a pipeline 
stage's results to another endpoint. 

Figure 7.5 illustrates how a forwarding directory at an FPGA endpoint can be utilized as 

a means of forwarding data from one pipeline stage to another. In this example, an active message 
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arriving at the FPGA contains information specifying that the message belongs to computational 

stream X and requires processing by the FFT active message function handler. After decoding the 

message's header, the FPGA utilizes an FFT computational circuit to process the payload section 

of the incoming active message. The results of this computation are stored in the payload section 

of an outgoing active message. The header for this message is supplied from entry X of the 

forwarding directory. This header specifies where the communication library should transmit the 

message as well as the operation that should be performed at the next pipeline stage. 

7.3.3 FPGA Implementation 

The RC-1000 endpoint's frame was modified to support a forwarding directory. The 

directory consists of 256 entries that are stored in the first SRAM memory bank of the card. An 

entry in the forwarding table is comprised of eight 32-bit words that house all of the values 

necessary for generating the header of an outgoing message. The frame provides a special active 

message function handler that allows users to program individual entries of the forwarding table. 

When the FPGA frame detects the arrival of a new message, it examines the message's header to 

establish the necessary data paths between resources in the FPGA. Users can store the results of 

an active message operation in on-card scratchpad memory, a recycling buffer, or in the outgoing 

message queue. The recycling buffer allows the message generated by one FPGA computation to 

be routed back to the input of the FPGA endpoint. In this manner, a single FPGA can be 

configured to implement multiple pipeline stages for a computational stream. Forwarding 

directory performance is included in Section 7.5 as part of the overall performance of the RC-

1000 FPGA endpoint when it is used for streaming operations. 

7.4 Managing Pipeline State Information 

In many streaming applications, it is beneficial if application data can be stored at the 

individual resources utilized in the computational pipeline. This data can include dynamic state 
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information or static arguments such as filter parameters that are used to process incoming 

messages. Unfortunately, peripheral device endpoints have a limited amount of on-card memory 

for housing application data. As the number of streaming computations using a resource 

increases, the amount of on-card memory available to each application decreases. It is beneficial 

to consider mechanisms that allow peripheral device memory to be shared in a more flexible 

manner. For the RC-1000 endpoint, a basic virtual memory system has been constructed that 

allows the card's scratchpad memory to be treated as a paged resource. Scratchpad pages are 

dynamically swapped with host memory as needed by applications. These mechanisms provide a 

basic form of protection for applications sharing the FPGA card and allow the endpoint to be 

transparently utilized by different applications. Similar mechanisms can be implemented for other 

peripheral device endpoints. 

7.4.1 Managing On-Card Memory for an Endpoint 

Peripheral device endpoints have a limited amount of on-card memory that can be 

utilized for housing application data. This memory is valuable to application designers because it 

allows application data to be stored at the endpoint. In the case where multiple applications utilize 

the same endpoint, it is necessary to provide some form of management for on-card memory to 

prevent conflicts between applications. 

The simplest approach is to utilize an allocation scheme where each application obtains a 

block of on-card memory that is exclusively owned by the application. While this method may be 

suitable for some endpoints and applications, it has three major drawbacks. First, as the number 

of applications utilizing an endpoint increases, the amount of available on-card memory for each 

application decreases. Second, applications must be designed to work in a cooperative manner 

with the memory system. Depending on how memory is allocated, this approach may make it 

more challenging for applications designers to work with peripheral devices. Finally, this system 

162 



provides no protection between applications. Therefore, an application can erroneously overwrite 

another application's data. 

A better approach to managing on-card memory is to implement a virtual memory system 

for the endpoint. In this approach, card memory is divided into page frames, and applications 

reference on-card memory with virtual addresses. Before the endpoint begins processing a 

message, it determines if the message's memory references can be satisfied with the pages that 

are currently loaded in the card's page frames. If a page is not loaded, the endpoint must replace 

the current page with the requested data. Unloaded pages can be stored anywhere in the system, 

although the most practical location is host memory. While page faults for on-card memory can 

incur substantial overheads, implementing a virtual memory system for a peripheral device 

provides basic protection for applications that share the device. 

7.4.2 Virtual Memory for the RC-1000 FPGA Endpoint 

A basic virtual memory system has been constructed for the RC-1000 FPGA card's 

scratchpad memory. This system operates on a coarse granularity with a virtual memory page 

being defined as a 2 MB block of SRAM. SRAM memory banks 1 and 2 of the RC-1000 are 

therefore used as page frames for housing virtual memory pages that can be accessed by user-

defined circuits. Incoming messages that utilize scratchpad memory reference data with a virtual 

memory address. This address is comprised of a page identifier and an offset into the page. 

Before the frame begins processing a message, it examines the page identifiers of the virtual 

memory addresses supplied in the message to determine if the page is currently loaded in one of 

the two page frames. If a message's pages are loaded, the frame establishes the necessary data 

paths for the computational circuits to access the memory. The offset value of the virtual address 

is used as the starting address within the page for accessing data. 
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Figure 7.6: A virtual memory system is implemented for on-card SRAM. SRAM 
banks 1 and 2 serve as page frames for an application's scratchpad data. Unloaded 
pages are swapped into host memory. 

If a requested page is not loaded in one of the page frames, the FPGA frame must invoke 

mechanisms for loading the proper data into card memory. Figure 7.6 illustrates the organization 

of the memory system used in this procedure. First, the FPGA frame stores the missing page 

identifier in SRAM. It then suspends the FPGA's execution and sends the host an FPGA page 

fault signal. The host receives this signal, determines which page frame needs to be updated, and 

then performs the necessary page swap. A page swap involves transferring the page frame's 

current data to a buffer in host memory and then transferring the desired page from host memory 

to the card. After a swap, the host updates the FPGA's list of loaded page identifiers and restarts 

the FPGA. The restarted FPGA loads the new page identifiers and continues processing the 

message that originally caused the fault. From the user's perspective, these operations take place 

automatically in a transparent manner. 

7.4.3 Page Fault Performance 

The main drawback to implementing a virtual memory system for a peripheral device 

endpoint is that there can be significant overheads in resolving page faults. In addition to using 

the host CPU to resolve a fault, large blocks of data must be transferred to and from host memory. 
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Performance of the RC-1000 endpoint software was characterized to determine how much 

overhead is involved in a page fault. 

Table 7.2: Overhead for managing an FPGA page fault. 

Resource Operation 
FPGA 
Clocks Time ([is) 

FPGA 

Detect fault 1 0.05 

FPGA 
Store page identifiers 3 0.15 

FPGA 
Issue fault signal 1 0.05 

FPGA 

Release SRAM banks 0-2 1 0.05 

Host 

Acquire SRAM banks 0-2 

-

13 

Host 

Process fault 

-

8 

Host 
Unload 2 MB page 

-
43,494 

Host 
Load 2 MB page 

-
17,927 

Host 

Notify FPGA 

-

1 

Host 

Release SRAM banks 0-2 

-

7 

FPGA 
Acquire SRAM banks 0-2 8 0.40 

FPGA 
Reload page identifiers 2 0.10 

The results of the page fault measurements are listed in Table 7.2. As these tests reveal, 

the most time-consuming portion of this procedure is the transfer of scratchpad-memory pages 

between the card and host memory. The differences between loading and unloading a page are 

due to the fact that in the current implementation the load operation is performed by a zero-copy 

DMA, while the unload operation is performed by a one-copy DMA. Based on these 

measurements, page faults are expensive operations in this implementation. In order to reduce the 

number of page faults that take place at run time, users should implement exclusive ownership 

mechanisms for the card that guarantee that only one application will utilize the RC-1000 

endpoint for a period of time. 

There are several means by which the virtual memory system could be improved for this 

card. First, the page size could be reduced in order to allow multiple pages to be stored in the 

scratchpad memory banks. This approach allows the data sets of multiple applications to be 

concurrently loaded in card memory, thereby reducing the frequency of page faults. Another 

interesting approach is to physically attach and utilize a storage device to the FPGA card for 

housing unloaded pages. The RC-1000 card features a large number of I/O pins that can be 
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utilized to attach a hard drive or other storage devices such as flash memory. A disk controller 

can be constructed in the FPGA for managing disk interactions. Therefore, page faults could be 

managed entirely by the card, swapping card memory to disk without the intervention of the host. 

The downside of this system is that it is challenging to implement, and adds to the overall 

complexity of the FPGA frame. 

7.5 Performance of an FPGA as a Pipeline Stage 

Timing measurements were performed to determine how much overhead is involved 

when the RC-1000 FPGA is utilized as a pipeline stage in a streaming computation. In these 

experiments, message data arrives at the RC-1000 endpoint from either the host endpoint or the 

NI card. Messages contain 4 KB of payload data (i.e., 1024 words of 32b data) and specify a pass 

operation for the active message handler. This operation simply transfers the incoming payload 

data to the outgoing message's payload. FPGA clock times are extracted directly from the state 

machines and related to wall-clock time by dividing clock periods by the FPGA clock speed (20 

MHz). 

Table 7.3: RC-1000 overhead involved in processing a 4 KB message. 

Resource Operation FPGA 
Clocks Time (|is) 

(Host/NI) 
Acquire SRAM bank 0 

-
(13/5.5) 

(Host/NI) Inject 4 KB message - (107/32) (Host/NI) 
Release SRAM 0 

-
(7/3) 

FPGA 

Acquire SRAM banks 0,3 8 0.40 

FPGA 

Fetch incoming message header 7 0.35 

FPGA 

Fetch forwarding information r 5 0.25 

FPGA 
Fetch payload data 1024 51.2 

FPGA Computation latency 1 0.05 FPGA 
Store results 3072 153.6 

FPGA 

Store outgoing header 48 2.4 

FPGA 

Update message queue pointers 3 0.15 

FPGA 

Release SRAM banks 0, 3 1 0.05 

Host 
Acquire SRAM bank 3 

-
13 

Host Perform DMA - 69 Host 
Release SRAM bank 3 

-
7 
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The results of the measurements are listed in Table 7.3. Starting with the resources that 

inject the message into the RC-1000 endpoint, it is clear that the NI can insert messages into the 

RC-1000 more efficiently than the host endpoint. This is because the NI controls the RC-1000's 

memory arbitration mechanisms and the NI has better control over its injection mechanisms 

because it directly manipulates a PCI DMA engine. 

For the FPGA endpoint, the majority of the overhead in processing the message comes 

from streaming the individual data values through a computational unit. In this system, the fetch, 

compute, and store operations take place in a pipelined fashion, allowing the operations to 

overlap. This feature demonstrates how an FPGA can be beneficial for processing data because it 

illustrates how custom pipelines can be constructed in the hardware to achieve high throughputs. 

It is important to note that the store operations require 3 clock cycles in the current 

implementation, as opposed to reads which can fetch a new data value every clock period. After 

processing a message, the FPGA must format the outgoing message with a header obtained from 

the forwarding directory. Control is then passed to the host system, which detects the message 

and initiates the DMA that transfers the message to either the NI or another endpoint in the local 

host on behalf of the RC-1000 endpoint. 

7.6 Summary 

Streaming computations are a means of utilizing a collection of distributed resources to 

improve the throughput of a complex operation. In this effort, a series of cluster resources are 

utilized to implement a computational pipeline. While the cluster resources function as the 

computational stages in the pipeline, the message layer provides the framework for delivering 

data between the pipeline stages. Each resource in a pipeline is equipped with a forwarding 

directory that allows users to specify how data flows through the pipeline, and the operations that 

are performed on the data streams. As a means of investigating implementation details, the RC-

1000 FPGA endpoint has been extended to support streaming computations. Additional 

167 



enhancements were made to the endpoint to allow multiple applications to utilize the resource at 

the same time. 
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CHAPTER VIII 

MESSAGE LAYER EXTENSIONS 

In addition to hardware extensibility, message layers for resource-rich cluster computers 

must also be designed to be support user-defined software extensions. These extensions allow 

users to customize their interactions with the message layer in order to implement functionality 

needed by applications. In GRIM, users can easily add new functionality to the core 

communication library at different levels of the message layer. At the network level, users can 

define new communication operations (e.g., multicast) by extending the message layer's NI 

firmware. At the endpoint level, users can implement extensions in a straightforward manner by 

constructing specialized active message function handlers. 

This chapter deals with the issue of message layer extensibility in the context of 

application-related software extensions. Three specific software extensions have been constructed 

for GRIM to illustrate how new functionality can be easily incorporated into the library. First, 

multicast mechanisms have been added to the core library to allow users to easily transmit the 

same message to multiple receivers. These mechanisms result in a reduction in transmission 

overhead for the sender because the message is replicated in the network. These extensions 

demonstrate how users can insert new functionality at the NI level of the library. Second, 

fragmentation and reassembly mechanisms have been constructed for the active message and 

remote memory programming interfaces, as well as for multicast operations. These extensions 

illustrate how endpoint-level software can be added to the library to provide increased end-to-end 

performance. Finally, a reliable sockets emulation has been implemented using the active 
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message programming interface. This emulation allows GRIM to be used as a replacement for the 

sockets library in legacy applications. 

8.1 Multicast 

A common operation utilized in parallel processing applications is multicast. Multicast is 

a form of communication where an endpoint transmits the same message to multiple receivers in 

the cluster. A subset of multicast is broadcast, where the list of receivers includes all endpoints in 

the cluster. Multicast messages are often used to distribute state information or provide 

synchronization among a number of cluster endpoints. In [90], researchers observed that these 

types of interactions have a strong impact on the overall performance of parallel processing 

applications. Therefore, it is worthwhile to investigate means by which multicast can be 

performed efficiently in a communication library for resource-rich clusters. 

While multicast operations can be implemented simply by layering this functionality on 

top of existing unicast mechanisms, doing so results in limited performance as the number of 

endpoints in a multicast distribution grows. Therefore, it is beneficial to examine how the low-

level mechanics of a communication library can be extended to support multicast more 

efficiently. Communication libraries supporting multicast typically perform the task of replicating 

multicast messages for a distribution tree in the NI [91]. Because these approaches recycle an 

incoming message back into the network, it is necessary for multicast mechanisms to be designed 

in a manner that prevents deadlock. The GRIM communication library has been extended with 

multicast support. In order to avoid deadlock GRIM employs an ordering scheme on multicast 

trees that prevents cyclic dependencies between NI cards. In addition to preventing deadlock, this 

scheme utilizes a single message queue for recycled messages as opposed to two or more, 

resulting in an increased utilization of NI buffer space for multicast operations. 
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8.1.1 Multicast through NI Recycling 

Multicast can be implemented on top of any unicast communication library simply by 

constructing endpoint software that transmits a separate copy of a multicast message to each 

receiving endpoint in a multicast distribution. An example of this approach is illustrated in Figure 

8.1(a). While trivial to implement, this approach suffers from several drawbacks. First, this 

approach requires an endpoint to inject multiple copies of a message into the NI. As discussed in 

Chapter 5 the endpoint-to-NI transfers are the slowest part of the end-to-end communication 

pipeline. Therefore, significant overheads may be accumulated by the endpoint for injecting 

multiple copies of the same message into the NI. Second, all transmissions for a multicast 

message must be serially transmitted through the sending endpoint's NI. Because the NI has 

limited amounts of buffer space for housing in-transit messages, it is likely that large multicast 

transmission will saturate the sending NI and delay message delivery. Finally, if endpoints are 

responsible for replicating a multicast message then every endpoint must be equipped with an up-

to-date list of multicast receivers. This requirement makes updating a multicast distribution's 

membership list an expensive operation. 

(a) (b) 

Figure 8.1: Replicating a multicast message can be performed by (a) the sending 
endpoint or (b) in the NI. 

An alternative approach is to perform the task of replicating multicast messages in the 

communication library at the NI level. As illustrated in Figure 8.1(b), this approach is 

advantageous because a multicast message is only transferred once from the sending endpoint 
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into the NI. This optimization reduces the load of the host's I/O system and greatly simplifies the 

amount of work an endpoint must perform to transmit a multicast message. In the context of 

resource-rich clusters, this approach is also beneficial because it is possible for all endpoints in 

the host to utilize multicast mechanisms because message replication is deferred to the NI. 

Moving the task of replicating multicast messages into the NI requires consideration of 

how the NI should perform the task. Simply using the sending NI to transmit the multicast 

message to all receivers results in similar issues to the endpoint-based replication scheme: all 

multicast messages are serially transmitted by the sender and each NI must have knowledge of 

the entire list of multicast receivers. Therefore, most Nl-based multicast implementations are 

based on a distributed approach where the task of replicating messages is divided among the NIs 

in the multicast group. 

(Endpoint AJ 

(a) 

—•(Endpoint D j 

—4 Endpoint E J 

—*l Endpoint C 1 

Figure 8.2: The task of replicating messages can be distributed among NIs through 
(a) constructing a distribution tree and (b) performing a limited number of multicast 
injections at each NI. 

One approach to distributing the task of replicating multicast messages in the NIs is to 

organize the multicast group into a tree structure and then perform message replication in the 

individual NIs. An example of this approach is presented in Figure 8.2(a-b) with a five endpoint 

tree (a) that results in three NIs transmitting multicast messages to other NIs in the network (b). 

There are multiple advantages to distributing the task of message replication among NIs in the 

multicast group. First, multicast distribution can be accelerated because it is possible for multiple 
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NIs to concurrently work on replicating a multicast message. Second, the workload for 

distributing messages is shared among all nodes in the group compared to requiring the sending 

NI to perform all of the work. Finally, individual NIs do not need to have knowledge of the entire 

multicast tree. Instead each node only needs to be equipped with the IDs of its children and the 

root of the tree. This approach is sometimes referred to as recycling [92], as multicast messages 

are recycled back into the network during the distribution process. 

8.1.2 Deadlock Issues in NI-Recycling Multicast 

A hazard of using Nl-recycling to perform multicast message distribution is that without 

precautions, it is possible for the network to become deadlocked. As illustrated in Figure 8.3(a), a 

NI that performs recycling takes an incoming multicast message and injects multiple copies of the 

message back into the network. Therefore, if two or more NIs perform multicast recycling at the 

same time, it is possible for a cyclic dependency to be formed to between the NIs that can result 

in deadlock if the network becomes congested. An example of this type of condition is depicted 

in Figure 8.3(b-c). In this example, two multicast trees have nodes 2 and 4 in common (b). 

Unfortunately, these trees distribute messages in the reverse order, which leads to a cyclic loop 

between the two nodes (c). If the network becomes congested it is possible for the messages from 

these trees to reach a deadlock condition where incoming messages cannot be accepted because 

outgoing messages cannot be transmitted successfully to their destinations. 

TreeB 

ir^) 
Tree A 

(a) (b) (c) 

Figure 8.3: Replicating multicast messages in the NI results in a turn that could lead 
to a cyclic dependency loop. 
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A common means of preventing this form of deadlock is to utilize the up*/down* routing 

algorithm first described for the Autonet network [93]. Up*/down* routing works with irregular 

topologies and is deadlock free [94]. In this approach, a spanning tree graph is constructed for the 

cluster with one node serving as the graph's root. Links in the graph are labeled with directions so 

that a node's "up" direction is towards the root and there are no directed loops in the graph (i.e., 

traversing the graph in the up direction never leads to a previously visited node). Nodes have two 

separate buffers for outgoing messages: one for upward-bound outgoing messages and another for 

downward-bound outgoing messages. At each node an incoming message can be ejected from the 

network, transferred from an incoming down link to an outgoing down buffer, or transferred from 

an incoming up link to either an up or down outgoing buffer. By preventing messages from 

traveling from a down link to an up link, cyclic dependencies are removed from the channel 

dependency graph resulting in deadlock freedom. 

Up*/down* routing can be applied to prevent Nl-recycling multicast mechanisms from 

reaching deadlock [95]. In this effort, a directed acyclic graph is defined for all of the NIs in the 

cluster. This graph is fully connected because point-to-point networks allow any NI to directly 

communicate with any other NI. It is required that all multicast distribution trees be mapped onto 

the directed acyclic graph for the cluster. Each NI is equipped with separate up and down labeled 

logical channels for housing multicast messages that are recycled into the network. When a 

multicast message arrives at a NI from the network, the NI determines which multicast logical 

channel to recycle the message into based on the current direction of the message and the rules of 

up*/down* routing. Through these conditions cyclic dependencies between multicast buffers at 

different NIs are broken, allowing multicast transfers to take place without deadlock. 
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(a) (b) (c) (d) 

Figure 8.4: (a) A directed acyclic graph for a cluster's multicast transmissions, (b) A 
desired multicast distribution tree, (c) The desired multicast tree when labeled with 
link directions, (d) A reordering of the multicast tree that does not violate the 
up*/down* routing rules. 

One of the conditions of using up*/down* routing for multicast is that the multicast 

distribution trees are arranged in a manner that agrees with the cluster's directed graph and 

routing rules. Some multicast distribution trees would violate these conditions and must be 

rearranged in order to prevent deadlock. An example of such a situation is presented in Figure 

8.4(a-d) for a five-node network that has the directed acyclic graph shown in (a). When the 

multicast distribution tree presented in (b) has its links labeled (c) using the cluster's directed 

acyclic graph (a), there is a routing problem at NI 4. In this tree NI 4 is unable to transmit 

messages from NI 1 to NIs 2 and 3 because doing so involves a transfer from a down-directed 

link to an up directed link. Therefore, the multicast delivery tree must be rearranged to a topology 

such as that presented in (d). This topology allows adheres to the routing rules and is guaranteed 

to not to create deadlock situations when used v/ith other valid distribution trees. 

8.1.3 Multicast with a Single Recycle Queue 

A criticism of up*/down* routing is that it requires the use of two separate message 

queues or logical channels for housing outgoing messages. While dynamic buffer space issues 

can be addressed through techniques such as escape channel routing [96], the primary issue in 

GRIM is that increasing the number of logical channels in the NI reduces the overall performance 

of the NI. Therefore, it is beneficial to consider means by which the up*/down* routing algorithm 

can be applied in which multicast traffic can be housed in only a single outgoing logical channel. 
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Reducing the number of logical channels used for multicast traffic to a single logical channel can 

effectively be accomplished by making restrictions on the manner in which multicast distribution 

trees are arranged in the cluster. Given that a two-channel up*/down* routing scheme already 

requires some multicast trees to be reordered, these conditions do not significantly impact end 

users. 

The approach taken in GRIM to achieve deadlock-free multicast transmissions is to use a 

two-channel up*/down* routing scheme with the restriction that multicast trees are arranged in a 

manner that multicast messages always flow in the down direction of the cluster's directed 

acyclic graph. Because this system prevents messages from flowing in the up direction, the up 

logical channel can be removed from the NIs. One implementation of these conditions that is used 

in GRIM is as follows. A directed acyclic graph is constructed for the NIs in the cluster, where 

each NI has an up-directed link to every NI that has a smaller identification number in the cluster. 

An example of such a graph is presented in Figure 8.5. When multicast trees are constructed for 

the cluster, they are ordered in a manner such that a NI's ancestors in the tree are NIs with smaller 

id values and its descendants are NI's with larger id values. As a result multicast transmissions 

always propagate from a NI to a NI that has a larger id. Because data flowing from a NI with a 

smaller id to a NI with a larger id is always a down-traversal in the up*/down* graph, the up 

channel is not needed in this approach. The system however still operates under up*/down* 

routing rules and is therefore guaranteed to be deadlock free. Messages injected into a multicast 

tree must be transmitted to the root of the tree for transmission. However, since these messages 

are maintained in a separate logical channel at the sending NI, and incoming multicast messages 

cannot be recycled into this buffer, there is no dependency or possibility for deadlock. 
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Figure 8.5: A directed acyclic graph for cluster nodes. 

The single recycle queue approach has both positive and negative characteristics for 

multicast transmissions. As discussed earlier the primary benefit of this approach is that the 

sending NI needs to manage only a single message queue instead of two. Another benefit is that 

recycled messages are always placed in the same outgoing logical channel no matter where the 

destination is. In a two-channel approach it is possible that the NI would have to store the same 

multicast message in both channels if the next two receivers in the tree had different link 

directions. As for drawbacks, this approach creates hotspots in the network. NIs with lower IDs 

are more likely to be used for forwarding messages because they have more routing options than 

nodes with higher ids. Another negative aspect of this approach is that updating a multicast group 

is more complex in this approach because there are restrictions as to where a node can be placed 

in the distribution tree. Given that multicast tree updates are infrequent this factor is not a critical 

issue. 

8.1.4 Implementation 

The GRIM communication library has been extended to support a subscription-based 

form of multicast that is based on the preceding arguments. In this implementation the 

distribution of multicast messages to a group of subscribing endpoints is handled in the network 

by NIs that are equipped with a single, multicast recycling logical channel. The subscription 

nature of the implementation allows endpoints to dynamically join or leave a multicast group 
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without significant overhead. The NIs for a multicast group are arranged in a binary tree 

topology, with each NI being responsible for distributing an incoming multicast message to (1) all 

the subscribing endpoints in the local host as well as (2) up to two other NIs in the cluster. In 

order to prevent deadlock, multicast messages may only flow from a NI to another NI that has a 

larger id number. 

Applications utilize the multicast facilities of GRIM through a library of function calls. 

Each multicast group is statically labeled with a string name and dynamically assigned a globally 

unique integer identifier. One node in the cluster manages a database for translating multicast 

string names into runtime integer IDs that can be referenced by all endpoints and NIs in the 

cluster. When an endpoint attempts to translate a string name that is not in the database, a new 

integer identifier is created and ownership of the multicast group is assigned to the endpoint 

requesting the translation. The owner of a multicast group serves as a central reference point for 

the multicast group and is responsible for dynamically managing the subscription list. Multicast 

management functions take place transparently in GRIM through the use of specially designed 

active messages. Therefore, an endpoint needing to communicate with a multicast group simply 

locates the multicast id for the group and injects a message that is marked with the id into the 

communication library. Multicast delivery is performed automatically by the communication 

library. 

In order to perform the task of multicast distribution, individual NIs must be configured 

with two pieces of state information for each multicast tree. First, each NI is loaded with 

information that specifies the root NI for each multicast tree in the system. This information 

allows a message injected into the NI to be routed to the root of the multicast tree so that 

distribution can begin. If the originating NI is also the root of the multicast tree the message is 

simply moved from its outgoing logical channel into the NI's outgoing multicast logical channel 

when buffer space is available. The second piece of state data that NIs are loaded with is 

forwarding information. This information is used to determine which (if any) endpoints in the 
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local host require a copy of an incoming multicast message, and which (if any) NIs in the cluster 

should be forwarded a copy of the message. When a NI is required to forward a message to other 

NIs, it inserts the incoming message into the NFs outgoing multicast logical channel once for all 

intended destinations and marks the message with appropriate forwarding information. 

8.1.5 Multicast Group Updates 

In the subscription-based form of multicast, endpoints can join or leave a multicast group 

dynamically. This operation is performed by transmitting a subscription update request message 

to the host-level endpoint in the cluster that manages a specific tree. After processing this request 

the endpoint determines the new multicast tree that needs to be constructed to satisfy the 

subscription update. The endpoint then transmits a special tree update message to the root of the 

new tree that contains the complete list of NIs that are part of the new tree. Upon receiving this 

message a NI will update its own local forwarding tables and then insert the message into its 

multicast logical channel for forwarding to its new children. These in-band update messages 

allow the multicast tree to be updated without involving the subscribing endpoints. 

One of the challenges in implementing a system where multicast trees can be updated 

dynamically is correctness. In the ideal case all multicast messages are distributed to all of the 

endpoints that were part of a multicast group when the message was initially injected into the 

distribution tree. The use of in-band updates partially upholds this characteristic because when a 

NI updates its forwarding tables, it does not modify multicast messages that are already waiting 

for transmission in the outgoing multicast queue. Therefore, forwarding changes are applied only 

to messages that follow the update message. 

Another challenge in implementing multicast updates is preventing update messages from 

bypassing previously transmitted multicast messages for a tree. This condition is possible because 

update messages propagate through the cluster using the new multicast distribution tree instead of 
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the old tree. For example, if linear tree A-B-C-D-E is being updated to linear tree A-D-F, it is 

possible that the update message will arrive at node D while multicast data is still queued in 

nodes B and C. Therefore, GRIM implements a ticketing scheme that forces multicast message to 

be processed in the order they were injected. In this scheme the root NI labels each message with 

a ticket from a counter that is incremented after the transmission. NIs in the tree refuse to accept 

an incoming multicast message if its ticket value does not match the NI's expected value for the 

multicast tree. Therefore, this system places strict ordering on multicast messages that prevents 

multicast messages for a tree from bypassing each other. 

8.1.6 Multicast Communication Path 

As a first step in evaluating the performance of GRUVTs multicast mechanisms, it is 

beneficial to examine the low-level details of the multicast communication path. An example of 

how data flows through the network components for a multicast tree is depicted in Figure 8.6. In 

this example, endpoint A injects a new multicast message into its outgoing NI message queue. 

The NI is the root of the multicast tree and therefore after the NI detects the message it transfers it 

to the outgoing multicast queue. The NI then transmits the message to two other NIs where the 

message is relayed to endpoints B and C. While node C is a leaf in the distribution tree, node B 

must forward the message to node D. Therefore, node B's NI copies the message into its outgoing 

multicast queue and transmits the message when the outgoing link becomes available. Node D 

receives the message and transfers it to its endpoint, completing the multicast operation. It is 

important to note that all network transactions in this process take place using per-hop reliable 

transmission mechanisms. 
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Figure 8.6: An example of the communication path for a multicast transmission. 

There are two observations that must be made bout the multicast communication path. 

First, at the injecting node a multicast message is buffered in an outgoing message queue before it 

is placed in the outgoing multicast queue. This buffering is necessary in order to guarantee that 

when endpoints inject multicast messages, the messages are properly inserted into the multicast 

queue. The downside of this approach is that compared to unicast messages, multicast messages 

always have a bit of added delay before they are transmitted into the network. A second 

observation of the multicast communication path is that there are multiple locations where a Nl 

must copy a message from one NT buffer to another. While it is possible to perform some of these 

transfers in a cut-through manner, NIs often have limited bandwidth for local memory transfers. 

A test program was constructed to measure the memory copy performance of the Myrinet cards. 

This program revealed that the LANai 4 and 9 cards v/ere only capable of transferring data at 19 

and 66 MB/s respectively. Because of this poor performance it should be expected that Nl-based 

recycling methods may not reach peak transfer levels observed in unicast procedures. 

8.1.7 Multicast Performance 

A series of benchmarks were constructed to observe the multicast performance of GRIM. 

In these tests multicast messages of variable sizes are transmitted to a set of receivers, which 

promptly transmit a null reply message back to the sender using unicast mechanisms. The sender 
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measures the amount of time required to inject the multicast message and the amount of time 

required to injected the message and receive replies from all destinations (i.e., the overall round-

trip time). The benchmark uses two methods for transmitting a multicast message: the native 

multicast interface and a unicast system where the injecting endpoint injects multiple copies of 

the message using unicast calls. 
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Figure 8.7: Performance of multicast and unicast messages for (a) 4 and (b) 8 
P4-1.7 GHz hosts using LANai 4 NI cards. 

The results of the benchmark are presented in Figure 8.7 for (a) four and (b) eight P4-1.7 

GHz hosts. LANai 4 NI cards were used exclusively in these tests due to a lack of LANai 9 cards. 

The first observation of these measurements is that the multicast operations in general require less 

overhead to inject but have higher round-trip timings than the unicast operations. The reduction in 

injection overhead can be attributed to the fact that the multicast operation only has to inject a 

single message while the unicast operation must inject as many copies of the message as there are 

hosts receiving the message. The increased round trip latency for the multicast operation is due to 

the relatively high overhead involved in performing Nl-recycling. 
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Figure 8.8: The measured round-trip times for different sized multicast groups. 

The timing experiments were repeated using multicast subscription sizes ranging from 

two to eight hosts. The round-trip timing measurements for the multicast transmission 

mechanisms are presented in Figure 8.8. In these tests, subscription sizes of 2-3 and 4-7 hosts 

were observed to converge in performance as the multicast message size was increased. This 

convergence can be attributed to the fact that the depths of the binary distribution trees for these 

subscription sizes were equal. 

8.2 Message Fragmentation and Reassembly Mechanisms 

In most packet-switching and wormhole-routed networks, messages are limited in sized 

to a fixed maximum transfer unit (MTU). Therefore, it is beneficial to extend a communication 

library with functionality that allows a large message to be fragmented into a series of smaller 

transmissions that can be reassembled at the receiver. In addition to simplifying the 

communication interface for end users, these fragmentation and reassembly mechanisms can be 

used as a means of providing increased communication performance through message pipelining. 

GRIM provides a built-in mechanisms for fragmenting and reassembling active messages, remote 

memory messages, and multicast messages. For each category of message the fragmentation and 

reassembly mechanisms had to be designed to allow the messages to be transported reliably to the 
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application in a transparent manner. Details of these procedures are provided in this section. 

Performance measurements are found in Chapter 5 for active messages and remote memory 

messages, as well as in the preceding section for multicast messages. 

8.2.1 Active Message Fragmentation in GRIM 

The first effort in providing fragmentation and reassembly procedures in GRIM is for 

active messages. Performing fragmentation on active messages is moderately challenging because 

of the manner in which the messages are processed by the receiver. In GRIM a receiver cannot 

execute an active message until all of its data has been transferred. Therefore, the fragmentation 

procedures for active messages must be designed such that the receiver buffers a message's 

fragments and then executes the appropriate active message handler when all fragments have 

arrived. These procedures have been implemented in GRIM using a small number of active 

message handlers. The handlers use three types of active messages: one message to initialize the 

receiver, several messages to transfer the body of the message, and a finalization message to 

complete the transfer. The fragmentation and reassembly process using these messages is 

depicted in Figure 8.9. 
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Figure 8.9: Fragmentation and reassembly of a large active message is performed by 
three types of active message handlers. 
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The first message transmitted for a fragmented active message is an initialization 

message, which is designed to prepare the receiver for the incoming message fragments. The 

initialization handler allocates a reassembly buffer large enough to house all of the fragments and 

then provides the receiver with basic information about the original message, such as its active 

message arguments and function identifier. Followmg the initialization message is a series of 

body messages that contain fragments of the original message's data. The active message handler 

for a body message locates the reassembly buffer being used for the transfer and then copies the 

body message's pay load into the proper offset of the buffer. The last message in the 

fragmentation process is a fmalization message. The function handler for this message copies the 

last block of data into the reassembly buffer and then invokes the original message's active 

message handler. Once this operation completes, the fmalization handler frees the reassembly 

buffer and clears the data structures used in reassembling the message. 

There are multiple characteristics of this implementation that are beneficial to end users. 

From a performance perspective this approach is designed to hide overheads incurred by the 

fragmentations process. Most notably, the initialization message is designed to be small so that it 

can be transferred to the receiver quickly. This property allows the receiver to begin allocating 

space for the reassembly buffer while the first body message is being transferred. Another benefit 

of the fragmentation process is that it is implemented using existing active message 

communication mechanisms. Therefore, fragmentation is easily layered on top of the system and 

operates in a transparent manner to end users. The use of active messages is also beneficial 

because end users can easily replace the fragmentation mechanisms with their own 

implementation by defining new active message handlers. This characteristic is particularly 

valuable when custom interactions with an endpoint are required by an application. 
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8.2.2 Remote Memory Message Fragmentation 

It is much easier to implement fragmentation and reassembly procedures for remote 

memory operations due to the manner in which these messages are executed at the receiver. From 

an application programmer's perspective, remote memory operation simply transfers a block of 

memory from one endpoint to another and then optionally updates a user-space lock variable. 

Therefore, a remote memory operation can easily be divided into a series of smaller transfers that 

are executed individually. If the user specifies that a lock update operation is to be performed at 

the end of a transfer, the last message in the series of fragmented messages can be configured to 

perform the operation. Because GRIM guarantees that remote memory messages are processed in 

order, the lock update takes place after all fragments for the transfer have been executed. 

8.2.3 Multicast Message Fragmentation 

Fragmentation and reassembly mechanisms for multicast messages in GRIM are similar 

to the mechanisms used for active messages. The key difference between these efforts is the 

manner in which endpoints maintain information about fragmented messages. In the active 

message procedures a unique id to reference a fragmented message is generated from the IDs of 

the sending and receiving endpoints and a counter value. For multicast messages this reference 

value had to be modified because message fragments are transmitted to multiple receivers. 

Therefore, fragmented multicast messages are references with an id generated by the sending 

endpoint id, the multicast tree id, and a counter value. 

8.3 Protocol Emulation: A Sockets Interface 

One of the challenges in constructing a communication library is addressing the issues 

involved in presenting users with a new API. Being human, application designers are naturally 

resistant to adopting new APIs. Additionally, new APIs generally prevent existing applications 

from being utilized with the communication library due to interface incompatibility. As there may 
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be a significant amount of work involved in adapting existing applications to work with a new 

programming interface, it is desirable to provide mechanisms that allow a communication library 

to directly support a legacy API. This work is referred to as protocol emulation because the 

communication library provides a programming environment resembling that of a legacy API. 

The GRIM communication library has been extended with functionality to support a 

basic emulation of the sockets API. In this emulation endpoints manage socket state in user-space 

and use a set of active message handlers to transfer socket data between endpoints. Macros are 

used to map socket API functions into the appropriate active message transactions. The emulation 

is able to detect whether a socket connection is for an internal cluster resource or an external host 

and provides the necessary connections in a transparent manner. Basic performance 

measurements have been made and suggest that while the sockets emulation is not as efficient as 

the SAN APIs, they are faster than traditional Ethernet-based mechanisms. These measurements 

indicate that legacy applications can directly use the communication library and benefit from its 

increased communication performance. 

8.3.1 Sockets 

The Berkeley sockets [97] interface is a well-understood mechanism for providing inter­

process communication between two applications located on the same or different networked 

computers. At creation time a socket is specified as being either reliable (TCP based) or 

unreliable (UDP based). A reliable socket opens a bi-directionai byte stream connection between 

two endpoints. While costly to establish, a reliable socket is suitable for long-term interactions 

between applications. An unreliable socket provides the user with a means of sending and 

receiving messages or datagrams between two applications. As the name suggests unreliable 

sockets leave the task of managing the reliable transport of data to the end application. While the 

extensions provided in GRIM are designed to only support reliable sockets, it is possible to 

implement an unreliable socket emulation in a similar manner. 
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Extending a communication library to support a reliable sockets interface can be 

beneficial for a number of reasons. First, since sockets-based programs are widely available, the 

application base for a communication library can be significantly increased through a sockets 

emulation. Second, the performance of sockets-based applications may be enhanced through the 

use of a properly equipped SAN communication library. In addition to using a high-performance 

SAN instead of a LAN, there may be performance benefits in this approach because the socket 

operations are performed in user space instead of kernel space [98]. Finally, a sockets emulation 

for a SAN communication library allows an application to use the sockets API at the same time as 

the library's native API. Therefore, users can construct applications that rely on the sockets API 

for routine endpoint interactions and then use the native SAN functions when increased 

performance is needed. 

Because of the benefits of the benefits of a socket-based API, researchers have 

constructed sockets protocol emulations for existing communication libraries. One of the first and 

more notable of these efforts is the Fast Sockets project [99]. In this work researchers extended 

the FM communication library [34] to support a sockets API. The software would intercept calls 

made to the socket library and determine if the operations could instead be performed using the 

high-speed SAN and specially designed FM mechanisms. This work demonstrated that sockets 

calls could efficiently be layered on top of an existing SAN communication library. The 

researchers noted that while performance did not reach the peak levels offered by FM, there were 

significant gains over the traditional LAN mechanisms. 

8.3.2 Planning a Reliable Sockets Emulation 

There are at least three areas of development required to allow a SAN communication 

library to support an emulation of the sockets API. First, a conceptual model of the flow of data 

must be defined for the emulation. Socket data may be buffered at the receiving endpoint, the 

sending endpoint, or a combination of the two. While receiver-based buffering is more traditional, 
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the other approaches may reduce the number of memory copies involved in transferring data in 

the emulation. Second, the communication library must be equipped with a set of functions for 

facilitating the emulation. These functions must be able to transport data between socket 

endpoints and maintain state information used in the emulation. Finally, wrapper functions must 

be constructed to allow the emulation to intercept calls to the sockets API. Wrapper functions 

translate socket functions into appropriate SAN transactions as well as convert traditional LAN 

information (i.e., IP addresses) into references that can be utilized with the SAN. 

8.3.3 Implementation of a Reliable Sockets Emulation 

The GRIM communication library has been extended with a software package that 

provides an emulation of the reliable sockets API. This software utilizes a small number of active 

message handlers for managing sockets and C-language macros to intercept a user application's 

socket operations. From a data transfer perspective this package is designed to buffer socket data 

at the receiving endpoint. This approach was selected for latency reasons, as buffering messages 

at the sender requires the receiver to perform a network fetch operation when an application 

attempts to receive data from the socket. 

Internally each endpoint in the emulation maintains a list of open socket connections. An 

endpoint marks a port in this database as being available when an endpoint performs a socket 

operation for accepting a new connection. A connection is established when another endpoint in 

the cluster attempts to open a connection to the endpoint at an available port. Once connected two 

endpoints allocate data structures for buffering incoming socket data. When an endpoint injects 

data into the socket, an active message is used to transport the data to the remote socket endpoint 

and append the data to its socket data buffer. The socket's read operation then examines the local 

buffer and extracts data as it becomes available. 

One of the hardships in constructing a sockets interface is distinguishing between sockets 

used for internal SAN interactions and sockets used for other operations. For example, an 
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application uses the same read and write operations to interact with a socket as it does a file. 

Therefore, if read and write operations are intercepted by the emulation, the emulation must be 

able to determine whether to use the SAN library or to use the traditional libraiy function. This 

task is performed in GRIM by intercepting all of the calls that manage file operations. When a 

new socket is opened, GRIM determines if the destination is a cluster resource and assigns these 

resources a specially marked file handler. The file handler returned for interactions with non-

cluster resources is simply the file handler returned by the initialization operation. At runtime 

when a socket or file is accessed, GRIM can determine whether to use its SAN functionality 

simply by examining the file handler. 

8.3.4 Performance 

A benchmark program was constructed to measure the performance of the GRIM sockets 

emulation. This program was written using the traditional sockets API and therefore can be used 

with both a GRIM-based Myrinet network and a TCP-based 100 Mb/s Ethernet network. 

Selecting the communication library and network to use in the benchmarks is performed by 

setting a switch in the compile process. The benchmark program is designed to establish a 

connection between two hosts and transfer a block of data between the hosts in a round-trip 

fashion. 
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Figure 8.10: Performance of the GRIM sockets emulation using LANai 4 NI cards 
compared to 100 Mb/s Ethernet for (a) P3-550 MHz and (b) P4-1.7 GHz hosts. 

Table 8.1: Comparison of the performance of TCP and GRIM Sockets. 

API Network 
P3-550 MHz 

Latency Bandwidth 
(lis) (MB/s) 

P4-1.7 GHz 
Latency Bandwidth 

(lis) (MB/s) 
TCP 100 Mb/s Ethernet 58.8 10.1 62.5 11.7 

GRIM Sockets LANai 4 Myrinet 22.7 55.6 22.2 103.3 

The results of the benchmark experiments are presented in Figure 8.10(a-b) and 

summarized in Table 8.1. As expected the GRIM sockets emulation outperformed TCP-based 

Ethernet for all transfer sizes due to the superior performance of the Myrinet SAN. GRIM 

provides roughly a third of the latency of TCP sockets and up to nearly nine times the bandwidth. 

The performance characteristics of the GRIM sockets API reveal that as messages become larger 

GRIM is able to provide better performance until a transfer size of approximately 64 KB. At this 

point GRIM begins fragmenting transmissions, resulting in a dip in performance. While 

performance begins to increase after this dip, it should be noted that the performance is not as 

high as that observed with the active message and remote memory interfaces. This characteristic 

can be attributed to the fact that the active message socket handlers allocate a new block of 

memory for every incoming socket fragment and add the block to a linked list. This differs from 

the fragmentation mechanisms in the active message interface where memory for a large transfer 
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is allocated one time in advance and then filled with a series of transfers. However, the 

performance of this approach is reasonably high and is therefore beneficial as a means of 

improving the performance of legacy applications. 
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CHAPTER IX 

CONCLUSION 

Resource-rich clusters are an emerging form of cluster architecture where both host CPUs 

and peripheral devices are utilized by distributed applications. While these clusters can be 

physically constructed from commercially available hardware, the enabling technology for these 

systems is specially designed message layer software. Current generation message layers are ill 

equipped to handle the communication needs of these clusters because they are by design CPU 

centric. Therefore, this thesis has addressed the design of new message layers that are able to 

support efficient interactions between applications and a cluster's host CPUs and peripheral 

devices. 

The work presented in this thesis advocates migrating communication functionality in the 

message layer from the communication endpoints into the NI when possible. This migration 

reduces the workload of the endpoint and simplifies the task of adding new peripheral devices to 

the cluster architecture. Three primary design characteristics for message layers have been 

discussed as a means of accomplishing this task. First, end-to-end flow control in the message 

layer is managed on a per-hop basis in order to simplify communication protocols for endpoints 

and provide better dynamic buffer management. Second, logical channels are employed in the NI 

to allow multiple endpoints in a host to efficiently share a singe NI. Finally, two programming 

interfaces are defined for the message layer to support a rich set of communication functions. An 

active message interface provides a powerful means of controlling peripheral devices while a 

remote memory interface allows users to perform low-level transfers of memory between cluster 

resources. 
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A critical characteristic of a message layer for resource-rich clusters is extensibility. 

Users of resource-rich cluster computers frequently need to perform custom operations and 

therefore need to be able to layer new functionality on top of existing message layer software. 

More precisely a message layer must be extensible in at least two dimensions. In a hardware 

dimension, the message layer must provide means by which new peripheral devices can easily be 

incorporated into the cluster environment. In a software dimension, a message layer must be 

designed to allow users to add new application-specific functionality. These additions can be 

made at the endpoint level (e.g., the sockets emulation) or at the NI level (e.g., NI support for 

multicast). 

GRIM is a message layer that has been constructed with the preceding design principles. 

GRIM has been utilized to integrate four different peripheral devices into a cluster architecture. 

The fact that these devices have a diverse range of capabilities illustrates that GRIM's 

communication mechanisms are flexible and sufficient for the needs of resource-rich cluster 

computers. Multiple application-specific extensions have also been constructed for GRIM. These 

extensions include methods for performing streaming computations in the cluster, Nl-supported 

multicast, fragmentation and reassembly, and an emulation of the sockets API. These extensions 

demonstrate that new functionality can easily be layered on top of GRIM's core communication 

operations. 

GRIM's performance has been evaluated and compared to existing message layers. For 

host-to-host transmissions GRIM obtains a maximum bandwidth of 146 MB/s (1.168 Gb/s) and 

exhibits latencies as small as 8 jus. This performance is comparable to existing message layers, 

indicating that it is possible to add resource-rich cluster functionality to the message layer without 

severely impacting the performance of traditional communication operations. Attempting to 

implement GRIM's functionality in other message layers is impractical and at the very least 

highly inefficient due to the manner in which these message layers are designed. 
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9.1 Implementation Challenges 

A significant portion of the work presented in this thesis deals with the challenge of 

overcoming the limitations of commodity hardware. Some of the more challenging aspects of 

working with commodity hardware, peripheral devices, and cluster computers in general include 

the following. 

• Low-level Operation: Peripheral devices operate as low-level hardware appended to the 

host system. Programming at this level can be challenging for a number of reasons. 

Errors at this level often have catastrophic effects on the host. For example, programming 

a DMA engine with bad pointers can result in the entire operating system being relocated 

in physical memory. These errors can be difficult to locate as it is more likely that a bad 

DMA will simply corrupt a random location of host memory that may not cause an 

immediate system crash. A key to working in this environment is to construct protective 

debugging mechanisms around functions that pose a risk to system stability. 

• Blind Debugging: Another programming difficulty in dealing with peripherals is that is 

often difficult to observe the behavior of firmware. While some high-end cards such as 

the I20 adaptor are equipped with a serial debugging connection, many cards have no 

other monitoring equipment other than LEDs and memory. A significant amount of the 

work in dealing with the peripheral devices used in GRIM involved constructing 

debugging frameworks, such as a journaling systems to record card operations. These 

facilities are essential to observing low-level card behavior. 

• Device Limitations: One of the most significant problems encountered in this work is 

simply dealing with the fact that peripheral devices are utilized in ways they were not 

originally intended for. Peripherals devices are typically built on the assumption that only 

the host CPU will communicate with the card. This assumption is often used to justify 
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minimizing peripheral device functionality when a host driver can perform the same 

functions. Therefore, work in resource-rich clusters often requires defining new 

mechanisms by which existing devices can be adapted. 

• Byte Endian and Alignment Issues: It is common for the processor of different 

peripheral devices to use a different byte endian order than the host processor. For 

example, network cards are often big endian (to match network byte order) while x86 

processors are little endian. All communication between the host and the NI must be 

translated to match the destination's endian order. Alignment is a similar issue in that 

some peripheral devices require data to be aligned on specific byte boundaries. For 

example, the LANai 9 NI's DMA units require memory address to be align on 64-bit 

boundaries. Therefore, communication software must be designed to place the right data 

in the right locations. 

• Limited Data Transfer Mechanisms: Each peripheral device generally has a card-

specific set of hardware for performing operations such as DMA transfers. To complicate 

matters, some peripheral devices do not provide all of the desired mechanisms for 

performing data transfers. For example, while the I20 card features DMA engines, the 

engines can only be initiated by the card. This adds to the complexity of transferring data 

to the device from entities such as the host CPU that do not have a built-in DMA engine. 

Therefore, it is beneficial to use a library such as TPIL to accelerate I/O operations. 

• An Evolving OS Kernel: Over the last five years, GRIM has had to be adjusted to 

operate with three different versions of the Linux kernel (2.0, 2.2, and 2.4). Each of these 

transitions required a number of modifications to the device drivers built for GRIM. 

While it is natural and desirable for an OS to evolve with improvements, maintaining 

both a working knowledge of the kernel and a functional custom device driver can 

require a significant amount of effort. One method of dealing with a changing kernel is to 

move application functionality from the kernel-level device driver to user-space software. 
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Poor Documentation: A universal problem with working with peripheral devices is that 

usually there is a lack of decent documentation. Vendors often do not release low-level 

details for a peripheral device to prevent competitors from leveraging their work. 

Therefore, the only options for developers are reverse engineering and methods based on 

trial and error. Discussing driver issues with other Linux developers can greatly help in 

this work. 

Deadlock: Deadlock is an important issue that needed to be addressed at all levels of 

GRJM's development. Any time new functionality is added to a message layer the 

designer should check to observe whether the operation holds one resource while waiting 

for another. Deadlock prevention techniques do not have to be complicated and can often 

be implemented with sufficient buffering. 

9.2 Future Directions 

The work presented in this thesis provides the first steps in constructing extensible 

message layers for resource-rich cluster computers. This work can be continued in multiple 

directions. 

9.2.1 GRIM Enhancements 

The current version of GRIM provides a basic, flexible substrate for allowing cluster 

resources to communicate efficiently. However, there are a number of improvements that can be 

made to the implementation. First, since GRIM is designed to operate with both the old and new 

versions of the LANai NI processor, the NI firmware does not take advantage of hardware 

features found in the new card. GRJM's performance could therefore be enhanced by making use 

of card-specific functions such as the PCI doorbells. Second, like many Myrinet message layers, 

GRIM only allows one host-level application in a host to be connected to the network at a time. 
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GRIM could be modified to support multiple applications at a time by allocating each application 

a separate logical channel in the NI. Finally, GRIM can be enhanced by adding new and different 

peripheral devices to the communication model. Given the flexibility of GRIM and the four 

existing peripheral device examples, this work can be performed in a relatively straightforward 

manner. 

9.2.2 Gigabit Ethernet Substrates 

It is useful to consider how the Myrinet SAN currently used in GRIM could be replaced 

with commodity Gigabit Ethernet LAN equipment. Gigabit Ethernet is in general more affordable 

than Myrinet hardware and is widely utilized for clusters. Adapting GRIM to support Gigabit 

Ethernet would therefore provide an opportunity for a large number of existing clusters to 

function as resource-rich clusters. The first task in this effort is selecting a Gigabit Ethernet NI 

card that can be programmed with GRIM's low-level NI functionality. Multiple Gigabit Ethernet 

cards can be utilized in this effort, including the Alteon AceNIC [100] card, the Intel Pro/1000 

series [101] cards, and network cards based on the Intel IXP processor [102]. Emerging IXP cards 

provide the most promising environment for this work as the cards are very powerful and are well 

supported by Intel. The IXP cards feature multiple Gigabit Ethernet ports, up to 256 MB of 

memory, and multiple threaded microengine processors. 

Adapting GRIM's NI software to a Gigabit Ethernet NI platform would require changes 

to some of the basic functions of the NI. At a fundamental level, message data structures would 

have to be modified to meet the formatting requirements of the new network. A more challenging 

aspect however is dealing with the communication differences between the Myrinet SAN and a 

Gigabit Ethernet LAN. While Myrinet provides highly-reliable data transmissions, messages may 

be dropped or reordered in Gigabit Ethernet LANs. Therefore, it is necessary to modify GRIM's 

reliable transmission mechanisms to account for these factors. While GRIM's in-order delivery 

mechanisms can be utilized to sort out-of-order messages, extensions are necessary to protect 
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against dropped messages. These modifications involve adding timeouts mechanisms for data 

message transmissions so that dropped messages are automatically retransmitted. Once a reliable 

network transmission protocol is established for Gigabit Ethernet NIs, adapting the remaining 

portion of GRIM's functionality should be a relatively straightforward process. 

9.2.3 Active SANs 

Another direction for future research related to this thesis is in the field of active SANs. 

As the streaming extensions of this thesis have demonstrated, it is possible to utilize FPGAs as 

processing elements in a cluster's network substrate. The next step in this effort is to reduce the 

distance between the FPGAs and the NI. One such approach is to include an FPGA on a NI card. 

The advantage of this architecture is that the FPGA can process network messages without costly 

traversals of the PCI bus. Since the FPGA can process messages at a finer granularity, it is 

possible for the FPGA to play a more pivotal role in streaming computations. 

Emerging FPGA architectures provide another opportunity for research exploration 

related to active SANs. Recently announced FPGA chips such as the Xilinx Virtex-II Pro [103] 

include large amounts of reconfigurable logic, network transceivers, as well as dedicated 

processor cores. These chips will be capable of directly interacting with the physical links of 

networks such as InfiniBand. Therefore, these FPGAs can be visualized as the next generation of 

high-performance NI chips. In these chips a portion of reconfigurable logic and CPU processing 

time will be utilized to implement network interactions. The remaining resources of the chip can 

be utilized to implement custom computations for streaming operations. Since the NI and FPGA 

are implemented in a single chip, it is expected that constructing a streaming computational 

system will be much more efficient and straightforward than the effort required to incorporate the 

RC-1000 FPGA card as a coprocessor. However, the system for performing streaming 

computations on network messages presented in this thesis is applicable to this architecture and 

provides a starting point for future research in this field. 
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APPENDIX A 

SUMMARY OF MYRINET NI 

PERFORMANCE CHARACTERISTICS 

The following are architectural and performance characteristics for the Myrinet LANai 4 and 9 NI 

cards utilized in this work. 

Feature LANai 4 LANai 9B 
NI Clock Frequency 33 MHz 133 MHz 
NI Memory 1MB 2MB 
NI PCI Interface 32b/33MHz 32-64b/33-66MHz 
SAN Interface SAN-1280 SAN-1280/M2000 

Operation Min/Max LANai 4 LANai 9B 
PCI DMA time Min 2 us 2 jus 
SAN DMA time Min 3 us 1 [IS 

Interrupt service time Min 6.5 us 6 us 
On-card memory copy bandwidth Max 19MB/s 66 MB/s 

PCI bandwidth 
32b/33MHz 

Max 
131 MB/s 132MB/S 

PCI bandwidth 
64b/66MHz 

Max 
- 303 MB/s 

SAN bandwidth 
SAN-1280 

Max 
132 MB/s 149 MB/s 

SAN bandwidth 
M2000 

Max 
- 200 MB/s 

Scan N logical channel 
data structures 

1 
Min 

1 us 0.5 |LLS 
Scan N logical channel 
data structures 

8 Min 5.5 us 1.5 us 
Scan N logical channel 
data structures 

16 
Min 

9 us 3 us 
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APPENDIX B 

THE FPGA FRAME API 

Field-programmable gate arrays (FPGAs) have steadily evolved over the last decade as a 

means of accelerating a number of computational tasks through the use of reconfigurable 

hardware. Given the potential for this technology it is beneficial to investigate methods by which 

FPGAs can be integrated into the cluster computer architecture and efficiently utilized by end 

applications. Unfortunately, integrating an FPGA into a cluster can be extremely challenging due 

to the limited types of resources these cards employ. Most commercial FPGA cards employ one 

or more FPGAs, a cache of on-card memory, and a simple PCI controller. Because these cards 

often lack a general purpose CPU, it is often necessary to construct a state machine in the FPGA 

that serves as an interface between a user's computational circuits and external resources such as 

on-card memory or the host CPU. 

In order to integrate the Celoxica RC-1000 FPGA card into a cluster computer utilizing 

the GRIM communication library, it was necessary to design and implement a block of FPGA 

circuitry that managed interactions between the FPGA's computational circuits and end 

applications. This block of logic is known as the FPGA's static frame because it allows a canvas 

of user-defined computational circuits to be insulated from the card-specific features of the RC-

1000 device. This section describes the low-level mechanics of the frame and provides an API by 

which end users can interact with the FPGA device. While the frame is designed to operate 

specifically with the RC-1000 card, it is possible to adapt this work for use with other similar 

FPGA cards. 
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B.l Architecture Overview 

As depicted in Figure B.l, the RC-1000 implementation of a GRIM communication 

endpoint is divided into two contexts: the static frame unit and the dynamic circuit canvas. The 

frame serves as a reusable block of hardware that allows different computational circuits to be 

dynamically plugged into one of the cluster's FPGA devices. The frame provides three specific 

interfaces to insulate a user's circuits from the device specific characteristics of the target FPGA 

card. First, the frame implements a communication library API that is responsible for handling 

messages coming from or going to the communication library. Second, the frame provides an 

interface to the dynamic circuit canvas that allows multiple user-defined circuits to be connected 

to the frame. Finally, the frame provides an interface that allows applications to access a region of 

on-card memory known as the scratchpad. 

FPGA Card Memory 

Input 
Queues 

Output 
Queues 

Scratchpad 
Memory 

Communication Library API jiMemory API 

Frame 

W Dyn amic Circuit API > 

User-Defined 
Computational 

Circuit 

Circuit Canvas 
FPGA 

Figure B.l: The three interfaces managed by the FPGA frame. 

B.1.1 Data Path of the Frame 

A simplified view of the Celoxica RC-1000 frame's low-level data path is depicted in 

Figure B.2. The four SRAM banks available on the RC-1000 are allocated as follows. Bank 0 

houses incoming message queues for the communication library as well as runtime information 

for the frame. SRAM banks 1 and 2 are utilized as scratchpad memory for storing application 
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data. SRAM bank 3 houses the outgoing messages for the communication library. The 

control/status port on the RC-1000 provides a simple means of transferring 8-bit data values with 

the host. This port can be configured to transmit an interrupt to t:.Q host and is used to pass simple 

state information between the host and card. 

Figure B.2: The internal structure of the frame for the RC-1000 implementation. 

The individual units in the frame architecture are described as follows: 

• Fetch/Decode unit: This unit fetches the next message to be processed by the frame and 

establishes the necessary data paths through the frame to process the message. A message 

can originate from either the endpoint's message queues (housed in SRAM bank 0) or 

from a recycle buffer which contains the previously generated outgoing message. 

• Scratchpad controller unit: This unit is used to exchange data with the scratchpad 

memory (SRAM banks 1 and 2). A single SRAM bank can supply both input vectors and 

accept the output vector of the user-defined circuit if needed. Vector data is fetched and 

stored linearly starting at memory offsets provided in the incoming message's header. 

• Results cache: The results cache is used to buffer the output of a computation until the 

frame is able to write the data into its proper destination. The cache is utilized only when 
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an operation needs to fetch and store data with the same scratchpad memory bank, or 

when input data is fetched from an incoming message and output is written to the recycle 

buffer. 

• Message generator: This unit takes results generated by the computational circuit, 

formats the data into an outgoing message, and inserts the data into an outgoing message 

queue (located in SRAM bank 3). 

• Vector data ports: The frame provides three vector data ports, to which all user-defined 

circuits are connected. Ports A and B provide input streams to the circuits while port C 

receives output data generated by the circuits. 

• Built-in Ops: The frame provides a simple built-in computational circuit that can 

perform a variety of common vector operations, including add, subtract, multiply, min, 

max, invert, and pass. 

B.2 Communication Library Interface 

The first interface that the frame provides allows the FPGA to interact with the 

communication library. This interface is responsible for managing incoming and outgoing 

message queues, and must be designed to work with the message format specified for a given 

communication library. The RC-1000 implementation of the frame utilizes messages formatted 

for the GRIM communication library, although it is possible to adjust the implementation to 

operate with other libraries. 

B.2.1 GRIM Message Format 

The RC-1000 implementation of the frame processes messages that are formatted for the 

GRIM communication library. Like other communication endpoints found in GRIM, information 

included in the header of each message is used to specify how the RC-1000 should process a 

message. The active message function handler identifier for the RC-1000 corresponds directly to 
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the globally unique user-defined circuit that is used to process the message. Because of the 

flexibility that the frame provides in processing a message, it is necessary to encapsulate 

additional information in the message header. This information resides in the arguments section 

of the active message header and is used to configure the frame's data paths to meet an 

application's needs. The fields used to configure the FPGA are listed in Table B.l. 

Table B.l: The data fields in an active message header that control the operation of 
the frame and the corresponding bit lengths.  

Arg [0] Forward ID 
(8) 

A Driver 
(1) 

B Driver 
(1) 

C Driver 
(1) 

Reserved 
(7) 

Sub-Op 
(4) 

Op-Length 
(10) 

Arg [1] Port A Virtual Address (29) 

Arg [2] Port B Virtual Address (29) or Port B Constant (32) 

Arg [3] Port C Virtual Address (29) 

B.2.2 Message Queues 

The frame implements three different types of message queues. The first category of 

message queue is used to house incoming messages for the card. These queues are located in 

SRAM bank 0 and adhere to the append-style of queuing utilized throughout GRIM. The current 

implementation of the frame provides two separate incoming message queues, with the intention 

that one queue is for the host CPU and the other for the NI. The frame periodically polls each of 

these queues to determine if new messages are available. This polling operation takes place every 

300 FPGA clock cycles and requires less than a dozen clock cycles to poll for new data. 

The second place where messages can be stored is in the recycle buffer. This buffer is 

housed in SRAM bank 0 and has room for exactly one message. This buffer is utilized when an 

application needs the FPGA to perform a series of operations on a set of data. Users can specify a 

message be recycled by setting the C-Driver bit in the message's header to zero. The frame will 

then route the results of the computation into the recycle buffer and insert the proper header from 
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the forwarding table. The frame provides a guarantee that if a message is placed in the recycle 

buffer, it will be selected as the next message processed by the FPGA. This guarantee is 

necessary to prevent multiple messages from being inserted into the recycle buffer. Therefore, it 

is imperative that users prevent endless recycling loops in the forwarding table. 

The third type of message queue controlled by the frame is for outgoing messages. 

Currently there are two outgoing message queues that are housed in SRAM bank 3. In order to 

simplify the task of managing these queues, the frame implements a slotted queuing system. 

Because the FPGA card cannot directly trigger the DMA engines, the frame must notify the host 

when data is available in the message queues. This operation is performed by updating the RC-

1000's status register, which the host periodically polls. When the host detects new messages in 

the card's outgoing message queues, it can perform the necessary transfer of data to the proper 

endpoint. 

B.2.3 Forwarding Registers 

A key design point for the RC-1000 frame is that it is able to process incoming messages 

and generate outgoing messages. This allows the card to be utilized as an intermediate 

computational stage as opposed to simply a unit that sinks data. Therefore, mechanisms have to 

be present in the frame to allow messages to be ejected by the frame into the communication 

library. Like other peripheral devices in the GRIM environment, it is expected that the card will 

generate messages only in response to a stimuli, such as the detection of a new incoming 

message. The hardship in implementing such a system is providing an interface where users can 

specify the types of response messages that the frame generates. The implementation of the RC-

1000 frame utilizes a set of forwarding registers to solve this problem. 

The term forwarding registers in the GRIM environment refers to a database in a 

communication endpoint that contains information used to format outgoing messages. For the 

RC-1000 frame this database is implemented as a large table of user-programmed message 
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headers. All incoming messages have a field in the message header that specifies which table 

entry (if any) the frame should reference to generate an outgoing message. The frame copies the 

information from the specified entry to the outgoing message and places the results of the 

computation in the payload section of the message. Users can adjust the forwarding register table 

entries through a set of built-in active message handlers for the frame. The set_pipeline handler 

simply copies 64 bytes of payload into the specified forwarding register entry. It is the 

responsibility of the user to allocate and manage forwarding registers in this table. 

The forwarding registers for the RC-1000 are located in SRAM bank 0 starting at address 

0 in the current frame implementation. The table contains 256 entries, with each entry housing a 

single message header (64-bytes). The frame is designed to reference the forv/arding registers 

only when a header needs to be placed on a message that is generated. For these situations the 

frame operates as follows. First, the frame processes a message in a normal manner. The message 

header is fetched, the frame data paths are established, and data is streamed through a specified 

computational unit. The results of this computation are routed to the payload section of the 

generated message, whether the generated message is assembled in an outgoing message queue 

slot or the recycle buffer. Next, the frame uses information from the incoming message to 

generate an index into the forwarding register table. The message header located at this entry is 

then streamed into the header section of the generated message. Finally, the frame updates the 

sender id and the payload length fields of the message header to guarantee that the generated 

message is properly identified. 

B.2.4 Active Message Circuit Identification 

Once the frame receives an incoming message it must determine which user-defined 

circuit is utilized to process the data. Conceptually, user-defined circuits are similar to function 

handlers found in any other communication endpoint in GRIM. Therefore, each user-defined 

circuit is labeled with a unique active message handler identifier that end applications can 
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reference to perform a desired computation. However, unlike other function handlers used in 

GRIM, user-defined circuits are statically assigned active message identifiers. When creating a 

new circuit, a user must define a new static active message handler identifier for the circuit in the 

grim_handlers.h file. This file contains a static list of handler IDs for various functions utilized in 

the GRIM library. Once identified, users can reference a user-defined circuit with a simple 

constant as opposed to locating an identifier for the circuit through the runtime handler database. 

An advantage of this approach is that it simplifies the task of forwarding data between FPGA 

computational circuits because all circuit identifiers are known in advance. 

At runtime the frame must be able to determine which user-defined circuit is utilized to 

process an incoming message. In the RC-1000 implementation of the frame this is accomplished 

by comparing an incoming message's active message handler id to a list of the FPGA's user-

defined circuits. This list is managed by the host and updated whenever the FPGA's configuration 

is updated. Specifically, the host stores the list of a configuration's user-defined circuits in the 

card's SRAM before a configuration is loaded into an FPGA. After the FPGA is reset, the frame 

loads this list of functions from SRAM into an internal set of registers. When the frame observes 

an incoming message, it compares the active message handler to the list of available circuits. If 

the requested circuit is available the frame establishes the data path necessary to connect the user-

defined circuit to process the message. If the circuit is not available, the host is notified of the 

problem with a function fault. 

B.2.5 Function Faults 

A function fault is when an incoming message requests an active message handler that 

cannot be satisfied with the user-defined circuits that are currently available in an FPGA. The first 

phase in a function fault is for the FPGA to store all of its runtime state information in on-card 

SRAM. This data includes the id of the function that caused the fault as well as the frame's 

current set of message queue pointers. Future versions of the frame may also include the runtime 
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state information of individual user-defined circuits in this operation. After runtime information is 

stored the frame notifies the host of the function fault through the card's status register. The 

frame then suspends operation until the host passes an activation signal to the frame through the 

control register. 

Once the host detects a function fault it must load the id of the missing user-defined 

circuit and determine how the FPGA should be reconfigured. In the current implementation the 

FPGA is reconfigured in its entirety. Therefore, the host simply locates an FPGA configuration in 

its database that features the missing hardware and loads the configuration onto the FPGA. This 

process includes writing the new FPGA configuration's list of user-defined circuits to the card's 

SRAM, loading the FPGA with the new configuration, and triggering the FPGA reset. The FPGA 

then loads its runtime state information from SRAM and continues processing where it left off. 

B.3 Computational Circuit Interface 

The frame allows multiple user-defined computational circuits to exist in the dynamic 

circuit canvas, as illustrated in Figure B.3. Each user-defined circuit is connected with two vector 

inputs (labeled as ports A and B) and one vector output (labeled as port C). For simplicity the 

frame is designed to allow only one user-defined circuit to be active at any given time. When the 

frame detects a new incoming message, it sends an activation signal to the user-defined circuit 

specified in the message's header and then routes data into and out of the vector data ports. 

Vector data ports are asynchronous and provide sequential streams of data using a simple control 

protocol. Circuit designers are free to utilize these ports in any manner they desire, as long as 

unused ports are properly grounded. 
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Figure B.3: The interface between the FPGA's frame and circuit canvas. 

B.3.1 Vector Data Port Signaling 

Vector data ports are designed to operate in an asynchronous fashion. A simple 

valid/acknowledge handshaking protocol is utilized to allow either the sender or receiver of a 

vector data port to stall the passing of data. By design the sender and receiver of a vector data port 

operate on opposite clock edges. The frame inverts the clock supplied to user-defined circuits so 

both units have the appearance of operating on the rising edge of the clock. Because the sender 

and receiver are on opposite clock edges it is possible for a new data value to be transferred every 

clock period. The interface for a port is depicted in Figure B.4. 

Sender 

Port A 

Receiver 
• data_valid 
- data(31:0) 

— ack 
— on 

Figure B.4: The signals for a vector data port. 

The signals for a vector data port are as follows. 

• On: The user-defined circuit must assert the on signal for the entire time it needs to 

transfer data with the port. Therefore, the first action a user-defined circuit must perform 
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when it is activated by the frame is asserting the on signals for all data ports that will be 

used when processing a message. Once the on signal is turned off the frame will stop 

attempting to transfer data with the port. All vector port on signals must be set to low 

before job_done can be triggered. 

• Valid: The transmitter for a port signifies that the next word from the vector port has 

been placed on the data lines. Valid remains high until the receiver of a port asserts an 

acknowledgement. Note that because sender and receiver are on opposite clocks, it is 

possible for the valid signal to remain high for multiple clock periods if the receiver can 

accept data every clock signal and assert the acknowledgement signal. 

• Data: The data lines provide the next 32-bit data value when valid is asserted. 

• Acknowledge: The acknowledge (ack) signal is asserted for a single cycle when the 

receiver reads a valid data value. An acknowledgement triggers the sender to set the valid 

signal to low, unless the next vector data value can be placed on the data lines 

immediately. 

B.3.2 Circuit Interface Signals 

The signaling API for a user-defined circuit is depicted in Figure B.5. In addition to the 

three vector data ports, a user-defined circuit must manage a set of control signals in order to 

properly communicate with the frame. The failure to correctly generate these signals can result in 

either erroneous data or the entire frame being suspended in an endless loop. All signals for a 

user-defined circuit are active only on the rising edge of the provided clock signal. Data presented 

to the user-defined circuit is generated on the clock's falling edge. 
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Figure B.5: The interface for a user-defined circuit. 

The control signals passed between the frame and the user-defined circuit are as follows. 

• elk: This is the clock signal provided to the unit. A user-defined circuit must assert 

signals on the rising edge of this clock. Note that this clock is an inverse of the clock used 

in the frame, so that both the frame and user-defined circuits can operate with rising edge 

clocks. 

• reset_h: This signal is an active high reset for the unit. After observing a reset the user-

defined circuit must initialize itself and move to a state where it waits for notification 

from the host that it is to perform a computation on a message. 

• job_new: The job_new signal is activated for a user-defined circuit when the circuit is 

the unit that is needed to processes a new message. This signal remains asserted until the 

unit completes its task and the frame completes all message processing tasks. 

• job_subop: This 4-bit signal is an optional field that can be used to allow a user-defined 

circuit to perform different operations. For example, a cryptography circuit may be 

capable of performing encryption and decryption operations. The user can specify which 

of these operations to perform with the subop field. 
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• job_ints: This 10-bit signal specifies how many 32-bit words of processing the user 

expects the circuit to perform. 

• job_done: When the user-defined circuit completes all of its operations it asserts the 

job_done signal to notify the frame that it is finished processing a message. The job_done 

signal must remain asserted until the frame pulses the operation_complete signal. It may 

take several cycles for the frame to issue the operation_complete signal because it may 

need to flush cached data. 

• operation_complete: This signal indicates that the frame has completed all processing 

necessary for a message. After receiving this signal all user-defined circuits must revert 

back to an initial wait state where they wait for job_new to be triggered. All control 

signals for a user-defined circuit must be set low after receiving an operation_complete in 

order to prevent any false starts in the system. 

B.3.3 Example Operation 

The timing diagram in Figure B.6 provides an example of the signaling required for a 

user-defined computational circuit. In this example, the circuit is designed to simply read four 

values from vector data port A and then signal its completion. The clock signal provided in this 

example is from the user-defined circuit's perspective. 
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Figure B.6: An example timing diagram for an asynchronous data vector port. 

Details of the signaling for this example are as follows. 

1. The first phase of operation is for the user-defined circuit to be activated. In this process 

the frame asserts the job_new signal and waits for the circuit to respond with the A_on. 

2. Once activated the port can begin exchanging data values. In the first transfer the frame 

asserts the A_valid signal and places 'A' on the A_data bus during a falling clock. After 

some time the user circuit acknowledges the transfer by pulsing the A_ack signal. In this 

case the frame does not have the next data value ready so the A_valid signal is set to low. 

This example illustrates how the user circuit can delay the transmission of data. 

3. After some time the frame has two data values to transmit. The frame begins the transfer 

by placing 'B' on the A_data bus and setting A_valid. The user circuit is able to accept 

this data and replies by setting A_ack high. This process is repeated immediately for ' C . 

This transfer illustrates that the protocol can transfer multiple data values, with each 

transfer taking a single cycle. 

4. The final transfer is for the single data value 'D'. In this example, both the frame and user 

circuit are ready to transfer the value, resulting in a total transmission time of two clock 

periods. 

5. The final task is for the circuit to complete its operations. After the circuit has completed 

all of its computations it sets A_on low. The circuit must then wait for the 
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operation_complete signal to be pulsed, which signifies that the frame has finished 

storing the results of the computation. After this point the user circuit resets itself to a 

state where it waits for a job_.new signal. 

B.4 Scratchpad Memory Interface 

The third interface that the frame provides allows user-defined circuits to access data 

located in a block of on-card memory defined as the scratchpad. The scratchpad is designed as a 

temporary storage space for housing large sets of application data on the FPGA card. Its primary 

benefit is that it allows application data to be stored in close proximity to the FPGA. This locality 

can improve the computational performance of user-defined circuits by decreasing the latency at 

which data can be supplied to the inputs of the circuits. A second benefit of the scratchpad 

memory is that it increases the flexibility of the FPGA as a computational resource in the cluster 

architecture. The frame is designed to be able to connect the scratchpad to a user-defined circuit's 

input and output vector data streams. Therefore, the results of one computation can be stored in 

the scratchpad for use in future computations. This mode of operation allows the FPGA to be 

utilized in a more practical manner since the scratchpad can be used as a means of storing 

dynamic state for an application. 

There are a number of design issues involved in constructed a scratchpad memory 

interface. Primarily these issues are related to two challenges: defining fundamental elements of 

operation for the interface and mapping these elements into card-specific architectures. This 

section discusses three aspects of the design of the scratchpad interface for the RC-1000: meeting 

the needs of user-defined circuits, maintaining correctness in the flow of data, and providing 

expansion mechanisms to overcome the limitations of the architecture. 
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B.4.1 Supplying and Sinking Circuit Data 

The first requirement for the scratchpad memory system is that it is able to meet the 

needs of user-defined circuits. Fundamentally this task is a relatively straight-forward procedure 

due to the API of user-defined circuits. The worst-case scenario under this API is when the 

scratchpad is connected to both input ports and the output port of a computational circuit. 

Because of this case the scratchpad must be capable of concurrently supplying two vector data 

input streams to and accepting one vector data output stream from a user-defined circuit. The 

challenge in implementing such a system is managing each of these data streams in an efficient 

manner using the resources that are available on a card. 

The RC-1000 implementation of the frame utilizes the card's multi-channel memory 

architecture to improve the performance of the scratchpad interface. In this system SRAM banks 

1 and 2 are dedicated exclusively to housing scratchpad data. A benefit of this approach is that the 

scratchpad interface can simultaneously service two vector data streams if the streams are located 

in different memory banks. On the other hand if two streams are located in the same memory 

bank, the scratchpad interface must take turns servicing each of the data streams. Therefore, it is 

beneficial for users to strategically stripe data sets in different memory banks in order to improve 

performance. A state machine was written to implement the necessary flow of data into and out of 

a bank of scratchpad memory. This state machine was replicated for the second bank of 

scratchpad memory, illustrating that this approach can be easily extended to card architectures 

where several separate banks of memory are available. 

B.4.2 Maintaining Correctness in Scratchpad Data Streams 

An important element of the scratchpad interface is maintaining data correctness for a 

computation. In the scratchpad API a user specifies the starting address and length for each data 

vector utilized in a computation. Therefore, it is possible for a user to specify an input vector and 

an output vector that overlap in scratchpad memory. The hazard here is that it is unclear whether 
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the user intended for the input vector to be fetched in its entirety, or whether the user is 

constructing a form of feedback loop where output values are utilized as inputs. In order to 

resolve this ambiguity, the scratchpad interface adheres to a simple rule: for an individual FPGA 

computation, input and output data streams are isolated until the computation completes. As a 

consequence feedback loops are not permitted within a computation. 

The RC-1000 implementation utilizes simple mechanisms to guarantee that an output 

data stream does not overwrite either of the input data streams. In this system a FIFO buffer is 

utilized to cache the outputs generated by circuits until all inputs data values are read from the 

scratchpad. Once a circuit notifies the frame that it has read all input values, the scratchpad 

interface will begin streaming data values out of the FIFO into memory. Currently the system 

utilizes the FIFO for any computation that utilizes the scratchpad for both input and output. 

The FIFO approach has both positive and negative aspects. From a positive perspective 

the FIFO satisfies the scratchpad rule and also simplifies the state machines for the scratchpad 

controllers. This simplification is based on the fact that the controller performs read operations in 

their entirety until write operations begin. As for negative aspects, the system cannot overlap 

reads and writes and therefore suffers in performance. Additionally, a computation is limited in 

size to the capacity of the FIFO (currently 1,024 32-bit words). This system can be improved 

through a more sophisticated implementation which determines where outputs and inputs overlap 

and dynamically manages these regions. 

B.4.3 Virtual Scratchpad Memory 

FPGA cards have a limited amount of physical, on-card memory that can be utilized to 

house scratchpad data. Additionally, it is possible that multiple applications may utilize the FPGA 

card at the same time and require different sets of data be stored in the scratchpad. Therefore, it is 

beneficial if the scratchpad interface provides a means of transparently managing scratchpad 

memory for different applications as needed by the runtime environment. This form of 
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management is similar to traditional virtual memory operations found in modern operating 

systems. 

Reserved 
(3) 

Virtual Page Number 
(8) 

Reserved 
(2) 

Page Word Offset 
(19) 

Figure B.7: The fields of a scratchpad virtual memory reference. 

The RC-1000 implementation provides a simple virtual memory system for on-card 

scratchpad memory. SRAM banks 1 and 2 on the FPGA card serve as 2 MB jage frames that 

house application data. The host in this system maintains a database of scratchpad pages that are 

not in use. When a page is swapped out of a card's page frame, it is buffered in host memory until 

it is required again by the FPGA. In order to facilitate the virtual memory system, all references 

to scratchpad memory must be based on the 29-bit virtual memory address shown in Figure B.7. 

The bottom 19-bits of this address provide an offset into a scratchpad page. Since SRAM banks 

are 32-bits wide, the bottom 2-bits of an 21-bit memory reference are always zero. The top 8-bits 

of the virtual address refer to a unique virtual page number. A memory location in on-card SRAM 

is used to identify the pages numbers that are currently loaded in the page frames. The host must 

update this location any time a page is loaded or swapped out. The FPGA pulls this information 

into internal registers after being reset or when signaled by the host. At runtime the frame 

compares the scratchpad references in a message header to the IDs of the currently loaded pages. 

If the message's scratchpad requirements can be satisfied with the currently loaded pages, the 

frame establishes all of the necessary data paths and configures both of the scratchpad controller 

units. 

If the frame detects that an incoming message cannot be processed due to missing 

scratchpad pages, the frame must perform a page fault operation. The first step in this process is 

for the frame to store the missing page numbers in an SRAM memory location, halt operation, 

and notify the host through the status register. After the host detects the page fault it loads the 

missing page number(s) from SRAM. The host performs the necessary evictions, copying one or 
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two of the scratchpad pages from the SRAM banks to the host memory page database. One or 

more scratchpad pages can then be copied to the card to satisfy the request. The host completes 

the operation by updating the page number values in the card's SRAM and triggering a resume 

operation with the control register. The frame loads the new page numbers and continues 

processing the message that originally caused the page fault. 

B.5 GRIM Function Calls 

Multiple function calls have been added to the GRIM communication library to simplify 

the amount of effort a user must perform to utilize the computational units connected to an FPGA 

frame. These function calls are layered on top of existing GRIM calls and format the arguments 

of the message header to match what is required by the FPGA frame. Host-level functions are 

listed in Table B.2. 
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Table B.2: GRIM API for interactions with the Celoxica RC-1000 card. 
grim_celoxica_send( u32 grim_resource_id, 

ul6 function, 
u8 function_sub_op, 
u8 pipeline_stage 
u8 C,A,B 
u32 write_addr, 
u32 ReadO addr 
u32 Readl_addr or constant 
ul6 calculation_words 
ul6 payload_words, 
u32* payload__starting_address 

grim_celoxica_ldMem( u32 grim_resource_id, 
u32 card_memory_address, 
u 16 number_words, 
u8* payload_starting_address 

grim_cleoxica_setPipeline( u32 grim_resource_id, 
u8 pipeline_id, 
u8 next_pipeline_id, 
u8 next C, next A, next B, 
u32 next_write_addr, 
u32 next_readO._addr, 
u32 next_readl_addr_or_const 
ul6next calculation words 

;;rim_celoxica_killPipeline( u32 grim_resource_id, 
u8 pipeline_id )  

grim_celoxica_alu_local( u32 grim_resource_id, 
u8 alu_op, 
u32 dest_addr, 
u32 srcO_addr, 
u32srcl_addr, 
u 16 calculation._words ) 

These API functions are briefly described as follows. The grim_celoxica_send() function 

is used to send a user-defined active message to a specified RC-1000 endpoint. This function 

allows users to set all of the frame parameters for the outgoing message and is utilized by other 

calls in this API. The grim_celoxica_ldMem() function is designed as a simple means of loading 

data from an application into the scratchpad. The grim_celoxica_setPipeline() and 

grim_celoxica_killPipeline() calls are used to set and clear the forwarding registers of an RC-

1000 endpoint. Finally, the grim_celoxica_alu_local() function is used to transmit a message to 
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an RC-1000 endpoint to perform an operation using the frame's built-in ALU using scratchpad 

memory references. 

B.6 Debugging Infrastructure 

One of the more challenging aspects of working with FPGA cards is the process of 

debugging an application. Because an endpoint software is implemented as hardware in the 

FPGA, it is difficult to observe what exactly an FPGA is doing at any particular time. Therefore, 

it is beneficial to construct environments that can be utilized to assist circuit designers in 

debugging their applications. 

B.6.1 Simulation Environment 

Simulation is by far the quickest and most revealing method by which hardware 

designers can debug their FPGA applications. Modern hardware description language (HDL) 

packages such as Active-HDL provide a graphical environment where a design's signals can be 

traced in a cycle-by-cycle manner. Because these tools take design input from the same HDL files 

that are used for synthesis, there is a relatively high-level of confidence that fundamental design 

errors can be caught by designers in simulation, 

In order to assist users in the debugging process, a test bench has been constructed that 

simulates the card-specific units of the Celoxica RC-1000. This environment allows the user to 

examine how an FPGA design will perform when utilized on the card. The test bench simulates 

the SRAM banks, SRAM arbitration signaling, clock generation, and the control/status registers 

of the RC-1000. The benefit of this environment is that users can load the SRAM banks with 

application data to determine how an FPGA will react to different settings. The common mode of 

operation is to store multiple GRIM formatted messages in the incoming message queues of 

SRAM bank 0 to examine the device's reaction. 
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As a means of automating the simulation debugging process, a special library was 

constructed to allow GRIM formatted messages to be captured directly by applications and 

statically passed to the simulator. This library was written as a functional replacement for the 

GRIM library and simply records data that a host application attempts to inject into the Celoxica 

card. The recorded information is then used to generate data files that can be read into the 

simulation environment. While this process is relatively simple and static, it has been found to be 

an exceptionally useful means of debugging FPGA applications. 

B.6.2 Localized Debugging 

After a designer has thoroughly examined an FPGA design in simulation, the next step is 

to examine the design with actual hardware. This process can be complicated because it is 

difficult to extract useful information from the live hardware. In order to assist users in this task, 

instrumentation code is added to the basic framework of the FPGA design. This infrastructure 

provides eight data signals that are routed to an LED on the RC-1000 card. These signals are 

commonly utilized to display both frame state information and provide a heartbeat display to 

indicate that the card has not locked up. Users can attach information to these signals to observe 

internal information. In a similar manner, users can route debug information out of the FPGA 

using the RC-1000's user I/O pins or the control/status registers. 

Due to the complexity of monitoring FPGA signals, the most common means of 

debugging a non-simulated FPGA on the RC-1000 card is accomplished by simply monitoring 

information stored in on-card SRAM. In this approach, a user constructs a host level application 

that injects a series of messages into a local RC-1000 device (using a local card simplifies the 

communication process and reduces the number of locations that errors can be generated). After 

the messages are injected, a user can use multiple command line tools written for GRIM to probe 

the card's memory. The tool dump_celoxica utilizes information about the card's memory layout 

to provide useful information such as the card's front and back message queue pointers. Other 
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tools have been constructed to allow users to clear card memory and reset and load the FPGA 

with a user-specified configuration file. 

B.7 Future Frame Work 

The RC-1000 frame presented in this appendix represents a first generation 

implementation of an interface that allows an FPGA resource to be integrated into a cluster 

computing environment. This work is beneficial because it provides a portable API that both 

circuit designers and application programmers can reference. Additionally, the frame simplifies 

the amount of effort an end user must perform when operating with the FPGA because the frame 

implements a large amount of commonly required functionality. There are multiple ways in 

which this first-generation work can be improved. 

B.7.1 Enhancements to the RC-1000 Frame 

The RC-1000 implementation can be enhanced in multiple ways. The primary weakness 

of the current frame is that its memory interface only allows for sequential reads of vector data 

ports. It is often desirable for more random access mechanisms to be utilized in these interfaces, 

as it allows user circuits to fetch and store data as needed by the application. A simple extension 

for such operation would be to add a "skip" signal to each vector port. This signal could be 

designed to allow a circuit to instruct the memory interface to skip ahead in the vector data stream 

by a variable number of words. This signal only requires the addition of a small number of lines 

and therefore should not significantly impact the routing of the frame. From an application 

perspective it is more desirable for the user-defined circuit to be able to specify the offsets given 

to the memory units as needed. However, this approach has a number of drawbacks. Primarily, it 

requires the addition of a large number of signals for each vector port of each circuit. Second, it 

increases the amount of work each user circuit must perform in managing its vector data streams. 
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Finally, it is difficult to pipeline the fetching of data from memory in this approach as data can be 

accessed in a random fashion. 

A second area of improvement for the frame is in the chaining of vector units. While the 

current frame allows a series of computations to take place within a single FPGA, it stores 

intermediate results between computational stages in a recycling buffer. This approach simplifies 

the frame's complexity but results in a store-and-forward form of computation. It is desirable to 

implement a system that is similar to the traditional chaining operations found in high-

performance supercomputers. In this approach, data could be routed directly from one unit to 

another without significant intermediate buffering. The hardship of this approach is designing a 

memory interface that can satisfy all requests for data efficiently. After the first stage, each 

computational unit is likely to add another vector data tap to the memory interface. In this work it 

would be interesting to compare the design of a frame that could route data between multiple 

stages to a system where designers simply created custom FPGA images that statically connected 

a series of stages and presented the pipeline as a whole to the end user. 

Finally, the FPGA frame could be enhanced to allow better concurrency in the processing 

of messages. In the current implementation the frame operates only on a single message at a time. 

As a result both user-defined circuits and parts of the frame are placed in idle states as other units 

complete their portion of the message processing task. A more efficient system would allow these 

idle units to begin processing the next message in order to create a better pipeline of operations. A 

simple approach would allow the frame to begin processing the next message as soon as it 

finishes handing off data to computational units. A more complex approach would involve 

scheduling multiple messages to be processed by different user-defined circuits. As with 

chaining, this approach requires additional constraints on the memory system that might be 

difficult to implement in a practical manner. 
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B.7.2 Future Work with Other FPGA Cards 

Another important area for future work is adapting the frame to operate on different 

FPGA cards. Conceptually, the frame serves as a means of insulating end users from the card-

specific characteristics of a commercial FPGA peripheral device. This environment allows 

designers to construct complex computational circuits that can easily be incorporated as 

processing units in the cluster architecture. Adapting the frame to operate on different FPGA 

cards allows circuit designers to easily migrate a computational circuit from one FPGA card to 

another, without having to redesign the circuit. 

The main challenge in adapting the frame to operate on different FPGA platforms is 

addressing the architectural characteristics of each card. At a high level most FPGA cards exhibit 

similar architectures. In general an FPGA and PCI controller share access to a large block of on-

card memory. However, there is a wide amount of variety in the manner in which each of these 

units are connected depending on the card. For example the Celoxica RC-1000 card provides four 

independent memory banks. This feature was heavily exploited in the implementation of the RC-

1000. Adapting the frame to operate on an FPGA card with only a single memory bank would 

require the frame be modified to multiplex memory transfers onto a single memory channel. For a 

card with more than four memory banks, it is possible that the frame could be enhanced so that 

the additional banks are utilized to house extra scratchpad pages to reduce paging. 

Another aspect of a card's architecture that affects the design of the frame is the hardware 

that provides communication with the host. The RC-1000 card uses a custom 8-bit control/status 

port for simple communication with the host. The frame uses these registers to notify the host of 

runtime events, such as a page or function fault or the presence of outgoing messages. This 

method of communication is inefficient and utilized only because the card cannot initiate a DMA 

transfer. A more desirable means of communication is for the card to DMA information into the 

host's memory. In general most peripheral devices allow this form of operation. Therefore, while 
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porting the frame to a new FPGA card will require the construction of mechanisms to support 

card to host communication, it is expected that these mechanisms will be more flexible than those 

found in the RC-1000. 

In summary, adapting the FPGA frame to operate on different cards is a challenging but 

beneficial task. This work involves translating card-specific operations from one card to another. 

While the unique hardware environment of each peripheral card prevents the frame from simply 

being moved from one platform to the next, it is expected that the functionality from the RC-1000 

implementation can serve as a guide to constructing a frame for other architectures. Performing 

such adaptations can be extremely beneficial because they allow a user's designs to be easily 

moved between platforms. 
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APPENDIX C 

THE GRIM API 

GRIM is a communication library that allows designers to easily construct applications 

that utilize a cluster's distributed resources. GRIM provides a relatively simple but powerful API 

that feature two separate programming interfaces that can be utilized concurrently by an 

application. The first of these interfaces is for active messages. In active messages a sender 

specifies a function handler that is invoked at the receiver when the message arrives. This 

interfaces allows users to trigger actions at remote endpoints and is particularly well suited for 

interactions with remote peripheral devices. The second interface provided by GRIM is one for 

remote memory transactions. These operations allow an endpoint to send or fetch a block of 

memory from a remote endpoint. Remote memory transactions are useful for efficiently moving 

large blocks of memory in the cluster with minimal overhead. GRIM is constructed as a linkable 

C library that can optionally support POSIX threads. Users can tailor GRIM's behavior through 

the manipulation of configuration files without having to recompile the application. This 

appendix describes the basic characteristics of the GRIM API. 

C.l Configuration Interface 

GRIM utilizes a small number of configuration files to specify the hardware environment 

for the virtual parallel processing machine. There are two types of files utilized to specify the 

configuration. First a single application configuration file serves as a top-level means of 

configuring the system. This file contains basic high-level information such as the number of 

nodes to use for the application and the configuration of each node. It is expected that end users 

will commonly adjust this file to meet the needs of the application. The second category of 
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configuration files is for static information that does not frequently change in the cluster. These 

files define routing tables for the cluster as well as available hardware resources. 

C.l.l Application Configuration 

From a user's perspective there is one configuration file that is central to specifying how 

the GRIM environment is defined. At initialization time GRIM reads a file specified by the 

GRIM_CONFIG environment variable to determine its configuration. In the current release this 

configuration file is located in grim/config/grim_config. This file contains the following 

variables: 

• NUM_NODES: This specifies how many hosts are available in the system. 

• LCP_FILE: This variable specifies a file that contains the routing information for the 

Myrinet network. 

After these initial constraints users define the configuration for their cluster, including the 

resources that are to be utilized in each host. A cluster must be defined with a cluster name, a 

configuration file for the cluster, and a list of resources to be utilized in the cluster. For example a 

cluster with two hosts (pans and metz) with a Celoxica card could be listed in the configuration 

file as: 
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#~The French Cluster-
CLUSTER French_c luster 
CLUSTER_RESOURCE French_c luster_config.txt 
ROUTING_MYRI grim_routes_myri.txt 

HOST paris 
USE MYRI 
USE CELOXICA 

HOST metz 
USE MYRI 

It is possible for multiple cluster configurations to be listed in the configuration file in 

order to allow users to easily migrate an application between different clusters without adjusting 

the configuration file. Before GRIM parses this file it determines the name of the host that it is 

operating on. It then selects the proper cluster to use from the configuration file by selecting the 

configuration that contains the host the program is running on. 

C.1.2 Cluster Resource Configurations 

GRIM utilizes multiple configuration files to specify various information for cluster 

resources. The application configuration file specifies the location of each of these files. GRIM 

parses the resource configuration files based on whether the resources are utilized by the cluster. 

The following files are utilized; 

• Myrinet Routing Table: Because Myrinet uses source routing it is necessary to define 

all of the routing information for the cluster in advance. Routes must be selected in a 

deadlock free manner. Each line in the configuration specifies the source node and the 

paths to all other nodes in the cluster. 
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• Myrinet Host Mapping File: This file contains the listing of hosts utilized in the cluster 

and the physical ID of each host. The physical ID is the number that is referenced with 

the Myrinet routing table because it reflects the port number in which the host is 

physically connected to the Myrinet switches. 

• Celoxica Circuit File: The software that manages the Celoxica card requires information 

describing the FPGA configuration images that can be loaded into the FPGA card. This 

file lists all of the available FPGA configuration files and notes which circuit is loaded in 

which user-defined computational slot. Incorporating additional user-defined circuits in 

GRIM requires that the circuits be identified in the grim_handlers.h header file. 

C.2 Initialization: grim_enable() 

The GRIM communication library is initialized through the g r i m _ e n a b l e () 

procedure. This function performs a number of startup operations for the library and should only 

be called once by an application. This function must be called before any of the library's 

variables or functions can be accessed. The g r i m _ e n a b l e () procedure performs the following 

internal operations: 

• Reset variables: The GRIM library begins operation by allocating and resetting all 

variables. These variables include node information as well as various databases. 

• Parse configuration files: Each node in GRIM must load information from configuration 

files to determine information about the global cluster environment. This information 

contains both general information (e.g., routing tables and host names) and application-

specific information (e.g., the number of hosts used in application). 

• Construct a local database of resources: Each node in the cluster utilizes configuration 

file information to construct a database for resources in the cluster. This database 
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contains both local and global information, and is referenced by end applications to 

determine the location of requested resources. 

• Initialize local devices: The next step for a node in the cluster is to initialize the local set 

of peripheral devices that are to be utilized in the cluster environment. These 

initializations are device specific, performing operations such as loading a peripheral 

device with firmware. 

• Allocate host incoming message queues: Next GRIM interacts with a device driver to 

open a block of memory that is both pinned and contiguous. The library obtains both a 

virtual and physical address for the memory so that it can be accessed by the user-space 

application and the peripheral devices. This memory is utilized to house incoming 

message queues. 

• Initialize and link message queues: After all local peripheral devices and host memory 

is available, GRIM must establish message queues and initialize message queue pointers 

for the resources in the local host. The size of each message queue is based on the amount 

of memory available in the resource to house messages and the number of queues that 

must share this space. Users can request particular sizes for message queues in the 

configuration files, although this information is ignored if it exceeds queue capacities. 

After queues are allocated, the library stores pointer information in the appropriate 

outgoing message queue registers for each resource. 

• Handler library initialization: Next, GRIM initializes both the local and global handler 

databases. Once initialized the database is loaded with a set of built-in function handlers 

that are available at all nodes. 

• NI synchronization: All of the NIs for the nodes used in the cluster perform 

synchronization. In this procedure a NI alerts all other NIs that it is reset and waiting to 

hear from the other nodes. A NI must wait until it receives a reset notification from all 
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other NIs before it can proceed in a normal mode of operation. This process is necessary 

in order to reset the sequencing information used by NI pairs and to guarantee that a NI 

will not transmit data to a node that has not been initialized. 

• Peripheral device activation: The final step in initialization is to notify all peripheral 

devices that the node is fully initialized and that operation in the cluster is to begin. 

Once g r i m _ e n a b l e () completes, host applications can begin utilizing the library. 

C.3 Runtime Information 

After initialization, users can obtain basic information about the host an application is 

running on. Each host in the cluster is assigned both a physical node number (PNN) and a virtual 

node number (VNN). The PNN is a constant number that is assigned to a particular host. It is 

utilized internally by the library to manage routing tables. The VNN is a number that is assigned 

to a host at runtime based on the cluster's configuration file. GRIM assigns VNNs linearly to 

hosts in the configuration file, starting with VNN 0 for the first host in the file. This approach 

allows users to easily specify which nodes in the cluster are utilized in the virtual machine, 

without having to change the files containing physical routing information. End users should 

always reference host nodes with the VNN in applications for portability. 

Table C.l: API for obtaining cluster host information. 
u32 id grim_getVNNFromName(string name) 
string name = grim_getVNNName(u32 id) 
u32 id grim_getMyVNN() 
string name = grim_getMyName() 

grim_printVNNConfiguration() 

Users can obtain basic information about the local host an application is running on 

through the commands listed in Table C.l. The first four of these functions provide either a 32-bit 

VNN identifier for a host or the host's name. The last command prints out information about the 

runtime configuration of hosts utilized in the system for an application. 
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C.3.1 Referencing a Cluster Resource 

In addition to referencing hosts in the cluster, users must be able to reference individual 

communication endpoints. A reference to a communication endpoint is constructed with three 

pieces of information: the VNN of the endpoint's host, the type of communication device the 

endpoint is (e.g., host-CPU level, Celoxica card, I20 card, etc.), and a logical channel identifier to 

associate transmissions to the endpoint. 

Table C.2: Functions for generating a reference to a communication endpoint. 
u32 = grim_getDestID( u32 destination node VNN, 

u8 destination device, 
ul6 logical channel ) 

u32 = grim_getResource( u32 destination node VNN, 
u8 device type, 
ul6 logical channel ) 

As listed in Table C.2, GRIM provides two functions for generating a reference to a 

communication endpoint. First, g r i m _ g e t D e s t I D () can be utilized to obtain a 32-bit 

reference to an endpoint if the location of the endpoint is known in advance by the user. The user 

must supply the VNN and device type of the endpoint, as well as the desired logical channel for 

communication with the endpoint. This function is useful for referencing well-known endpoints, 

such as the host-level endpoint that is available at every node. The second function for generating 

a reference to an endpoint is g r i m _ g e t R e s o u r c e ( ) . This function is designed to allow users 

to query the cluster's resource database in order to locate a desired resource. Users can specify a 

particular VNN with which to restrict the search, or specify that any VNN can be utilized. 

C.4 Active Message Interface 

The first of two programming interfaces provided in the GRIM communication library is 

for active message style interactions with endpoints. In this system the sender includes 

information in each message that specifies how the message is to be processed at the destination 

endpoint. Each endpoint contains a set of active message function handlers that are used to 
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process incoming messages. An endpoint must register a handler with the communication library 

before the handler can be utilized by other endpoints in the cluster. During registration users 

associate a string identifier with a handler and are returned an integer identifier that can be 

utilized to reference the handler in subsequent API calls. Endpoints invoke actions in other 

endpoints simply by sending active messages that are properly encoded. Each endpoint is 

responsible for periodically invoking a polling operation that extracts messages from incoming 

message queues and processes the messages accordingly. 

C.4.1 Handler Registration 

Each communication endpoint in the cluster can be equipped with a different set of active 

message handlers. Therefore, it is necessary to provide functions in the cluster that allow 

endpoints to register their own unique handlers and publish this information to the global cluster 

context so that other endpoints can reference and utilize the handlers. This process takes place in 

three phases with the functions listed in Table C.3 

Table C.3: The functions utilized to register and reference active message function handlers. 
grim_register_handler( handler_call_t function, 

string name)  
grim_syncHandlers() I 

u32 == grim_resolveHandler(string name)  

The first part of handler registration takes place when an endpoint registers its function 

handlers locally with the g r i m _ r e g i s t e r _ h a n d l e r () function. With this function an 

endpoint updates a local table that associates a string identifier with a virtual memory pointer to a 

function handler. This information does not leave an endpoint until the 

g r i m j s y n c H a n d l e r s () function is executed. The g r i m _ s y n c H a n d l e r s () function 

transmits the local list of function handlers to an endpoint in the cluster which is responsible for 

managing a global database of function handlers for the cluster. This node will merge the 

incoming list of handlers into the global database and transmit a copy of the global list of 
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handlers to the endpoint requesting the synchronization. The requesting endpoint will then update 

its local tables and assign a global integer identifier to every local function handler. Once 

equipped with this information, an endpoint can call the g r im__reso lveHandle r () function 

to determine the global integer identifier of a function handler in the cluster. This ID can be 

utilized in active message transmissions with other endpoints. 

C.4.2 Send and Receive Operations 

As listed in Table C.4, GRIM provides a g r im_send () operation for transmitting an 

active message to a destination and a g r i m _ p o l l () function for receiving and processing 

incoming messages. In the g r im_send () function the sender must provide a resource reference 

id for the destination endpoint, the handler id, four active message arguments, and an optional 

payload. The GRIM communication library will take this message, transfer it in its entirety 

(performing segmentation and reassembly if necessary), and execute the function at the receiving 

endpoint using the information provided. 

Table C.4: The functions for sending and receiving active messages. 
>rim_send( u32 

ul6 
s32 
s32 
s32 
s32 
ill 6 
u32* 

destination resource id, 
function handler id, 
handler argument 0, 
handler argument 1, 
handler argument 2, 
handler argument 3, 
payload length, 
payload starting address 

grim_pollQ 

The g r i m _ p o l l () function must be performed regularly at the receiving endpoint in 

order to facilitate the processing of active messages. This function detects that new messages are 

available for processing in the endpoint's incoming message queues, extracts the message, and 

performs the specified computation. When POSIX threads support is enabled in GRIM, it is not 

necessary for end applications to execute grim_jpoll () operations. Instead a thread is 

dedicated to periodically performing the poll operation. 
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C.5 Remote Memory Interface 

The second programming interface provided in the GRIM communication library is one 

for interacting with memory located at a remote node. Because host applications and peripheral 

devices operate with different address spaces (i.e., virtual and physical), the remote memory API 

must be specific about the types of addresses that it operates with as well as provide mechanisms 

for translating between address spaces. In GRIM the primary means of referencing a block of 

memory for end applications is a virtual memory address. Like many communication libraries 

that perform remote memory operations, GRIM users are only allowed to utilize virtual address 

spaces that are created with special allocation function calls. These calls allocate and pin the 

requested memory regions and supply the NI with memory translation information. The GRIM 

library also provides mechanisms for remote memory transactions with physical addresses. These 

mechanisms operate with low overhead because address translation is not necessary, but offer no 

protection if a user supplies the mechanisms with bad addresses. 

C.5.1 Managing Memory 

The first part of the remote memory interface is designed to assist users in managing 

memory that can be accessed by the NI. The first call listed in Table C.5 is the 

g r i m _ m a l l o c _ p i n n e d () function. This function interacts with GRIM's pinned memory 

device driver to allocate a sufficient block of memory that is guaranteed to be pinned. Internally 

GRIM allocates large blocks of contiguous memory and then allocates memory requests from 

these blocks in order to simplify the number of virtual to physical memory address translation 

entries loaded in the NI. The result of this function is a virtual address that an application can use 

as a regular pointer and pass as a reference to other endpoints in the system. When an application 

finishes using a block of pinned memory it can call the gr im_f r e e _ p i n n e d _ v a () call to 

free the allocation. 
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Table C.5: Function calls for managing memory used by the remote memory interface. 
u8* = grim_malloc_pinned( u32 number of bytes)  

I grirri_free_pinned_va( u8* pinned virtual address) 
u8* = grim_get_pinned_pa( u8* pinned virtual address) 

|u8* = grim_get_pinned_va( u8* pinned physical address) 

In addition to allocating and freeing pinned memory, the GRIM library provides 

mechanisms for translating addresses. The grim_get_jpinned__pa () function translates the 

virtual address of a block of memory allocated by grim__malloc_pinned () into a physical 

address. This address can be used for physical memory transactions that bypass address 

translation in the NI. The g r i m _ g e t _ p i n n e d _ v a () similarly can be utilized to translate a 

physical address reference of a pinned memory block into a virtual address. This function is 

primarily provided for completeness. 

C.5.2 Remote Memory Operations 

GRIM is designed to provide both send and fetch operations for interactions with a 

remote endpoint's memory. Both of these operations can be supplied with an optional lock to 

provide a simple form of notification. A lock is simply the virtual address of a 32-bit integer that 

is allocated from GRIM's pinned memory. In the grim_sendMemory () call the sender 

specifies the ID of the destination endpoint, the source and target virtual addresses of the block of 

data to transfer and the size of the block of memory. If a virtual address of a lock is supplied, the 

receiving NI will DMA the value specified in the call's lock value variable into the address after 

the entire block of memory has been transferred. The gr im_f etchMemory () function 

operates in a similar manner, but transfers data from the remote endpoint to the local endpoint. 

Once the operation completes the NI of the node initiating the fetch operation will transfer a zero 

into the local endpoint's lock address, if specified. 
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Table C.6: Functions for transferring data between an endpoint and a remote endpoint. 
grim_sendMemory( u32 destination resource id, 

u32* target virtual address, 
u32* source virtual address, 
u!6 number of bytes )  

grim_sendPhysicalMemory( u32 destination resource id, ^ 
u32* target physical address, 
u32* source virtual address, 
u!6 number of bytes ) | 

GRIM also supports an interface for transferring data directly to a physical address in the 

remote endpoint's system. When the NI of the receiving endpoint receives such a message it 

transfers the data directly without any form of virtual memory translation, as none is needed. 

While this mechanism allows for the operation to take place without the overhead of translation, 

users must be aware that there is no memory protection employed with this function. Supply 

erroneous information to this function can easily cause the NI to write data into an unknown 

memory address in the system, which is likely to crash the host system. The physical memory 

interface however is useful for interacting with devices such as a video display device's frame 

buffer. 

C.5.3 Reserving NI Memory 

Additional functions are provided in the GRIM library to allow NI memory to be directly 

utilized by applications. While it is expected that most applications do not need such 

functionality, it is conceivable that some applications may need a temporary place to store data 

close to the wire (e.g., supporting a frame buffer in the NI). The first function listed in Table C.7 

is gr im_reserveNIMemory () and is designed to allocate a block of memory in the NI. This 

function must be called before the g r i m _ e n a b l e () function is called. After 

g r i m _ e n a b l e () is called the gr im_getReservedNIMemory () function can be utilized 
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to gain both virtual and physical memory address pointers to the region of memory allocated in 

the NI. 

Table C.7: Functions for reserving memory in the local NI card. 
grim_reserveNIMemory( u32 size ) ___ 
grim_getReservedNIMemory( u8** virtual memory address, 

u8** physical memory address ) 

C.6 Multicast 

GRIM provides support for multicast and broadcast operations. The current 

implementation is tree based and performs message replication in the NI cards. A multicast tree is 

referenced in GRIM by a string and an integer value. Once a multicast tree is defined an endpoint 

can subscribe or unsubscribe from its data distribution. All endpoints in the cluster are allowed to 

inject messages into a multicast tree. 

C.6.1 Multicast Tree Management 

Table C.8 lists the API provided in GRIM for managing the multicast distribution trees. 

The function gr im_f i n d M u l t i c a s t T r e e () is used to determine a unique integer value to 

reference a particular multicast tree in the cluster. If the requested tree name has not been 

referenced, the library constructs a new tree and assigns ownership of the tree to the endpoint that 

first attempted to locate the tree. After a tree has been identified an endpoint can specify that it 

whishes to be a part of the tree and subscribe to multicast traffic. An endpoint can use the 

g r i m _ s u b s c r i b e M u l t i c a s t () function if a multicast tree has been identified or the 

gr im__subscr ibeMul t icas tByName () function if the tree id is not yet known. In both 

cases the use must specify which NI logical channels will be subscribing to the multicast 

messages. The channel list is a Boolean mask. The g r i m _ u n s u b s c r i b e M u l t i c a s t () 

function is utilized to remove the endpoint from the multicast distribution tree. 
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Table C.8: Functions for managing multicast distributions. 
u32 = grim_findMulticastTree( string name)  
u32 = grim_subscribeMulticase( u32 multicast id, 

u8 channels ) 
u32 = grim_subscribeMulticaseByName( 

string name, 
u8 channels )  

grim_unsubscribeMulticast(u32 multicast id, 
u8 channels )  

C.6.2 Sending Multicast and Broadcast Messages 

Table C.9 lists the functions utilized to inject messages into the broadcast and multicast 

trees. These functions are identical to the normal active message send functions except that the 

grim_sendMC () function requires the specification of the multicast tree id instead of the 

destination endpoint, and the g r i m _ b r o a d c a s t {) does not require the specification of a 

destination endpoint. All endpoints are allowed to utilize these functions, whether they subscribe 

to a multicast tree or not. Any active message function handler can be utilized with these 

functions, although users must be aware that the sending of a multicast active message may result 

in the invocation of the function handler at multiple nodes. Therefore, users must be cautious 

when designing active message function handlers that are intended for multicast operations. In the 

current implementation, the original sending endpoint identification information is not accurately 

provided to the endpoint invoking the function handler. Therefore, if such information is required 

it is necessary to include it in one of the active message function arguments that are passed with 

the message. 
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Table C.9: Functions for injecting multicast and broadcast messages 
grim_sendMC( u32 multicast id, 

ul6 function handler id, 
s32 handler argument 0, 
s32 handler argument 1, 
s32 handler argument 2, 
s32 handler argument 3, 
ul6 payload length, 
u32* payload starting address ) 

grim_broadcast( ul6 function handler id, 
s32 handler argument 0, 
s32 handler argument 1, 
s32 handler argument 2, 
s32 handler argument 3, 
ul6 payload length, 
u32* payload starting address ) 

C.7 Advanced API Functions: TPIL 

As a means of provided accelerated performance for applications injecting data into 

peripheral devices a library has been constructed for x86 host endpoints named TPIL: the tunable 

PCI injection library. TPIL provides basic mechanisms for transferring data to a PCI device using 

hardware units that have evolved in the x86 architecture. When users need to add new peripheral 

devices to the GRIM communication library, it may be beneficial to utilize the TPIL API in order 

to enhance performance. 

Table CIO: The TPIL API for accelerating injections of data into a peripheral device 
from a host CPU. 

Tdev = tpil._create( u32 
u8* 
u32 
u32 

device_file_id, 
device_mmap, 
mmap_size, 
device_ioctl ) 

tpil_h2c( Tdev* 
u8* 
u8* 
u32 

tpil_device, 
destination, 
source, 
number_bytes ) 

Tcfg = tpil_benchmark(Tdev* tpil_device ) 

tpil_configure( Tdev* 
Tcfg* 

tpil_device, 
tpil_configuration ) 

The function t p i l _ c r e a t e () is utilized to initialize TPIL and generate a reference 

that can be utilized in subsequent API calls. This function provides pointers to the file handler of 
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the device and its memory map, the size of the memory map, and a reference to the ioctl() 

functions that TPIL can utilize to transfer data with the assistance of a kernel driver. The ioctlQ 

calls are optional and are a means of utilizing a card's DMA engines. The t p i l _ h 2 c ( ) 

function is utilized to perform host-to-card transfers of data. The user must supply a pointer to 

where data is to be written (i.e., a pointer to somewhere in the card's memory map), a pointer to 

the data that is to be injected, and the size of the transfer. TPIL will utilize internal information to 

determine which transfer mechanism is the best option. 

TPIL provides mechanisms for configuring how transfers are performed. First the 

t p i l _ b e n c h m a r k () function can be utilized to examine the characteristics of the host 

machine. Generally this operation is performed offline as it performs several lengthy tests to 

determine how long it takes to inject data into a peripheral device. The results of these 

measurements can be exported for use in other programs. The t p i l _ c o n f i g u r e () function is 

utilize to configure the transfer mechanisms for a particular device. Users can either utilize the 

information obtained from the benchmarking operations or supply custom settings. These settings 

are simply the cutoffs in which different transfer mechanisms are employed. 
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