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FOREWORD

Approximately five years ago, Dr. Yalamanchili asked me if I would be interested in working
with NASA to develop computational systems for the next generation of spaceborne vehicles.
The Remote Exploration and Engineering (REE) project at NASA had just finished a report
concluding that future unmanned exploration vehicles would have to operate autonomously
in order to be successful. These systems would have to capture large amounts of scientific
data, process it locally, and transmit the most significant information back to Earth. In
order to reduce development costs, NASA was interested in employing cluster computers
in the spaceborne vehicles to perform these computational evaluations. My contribution
to this effort would be to construct communication software that allows data to flow in a
reliable and efficient manner between the hardware components of the system. Being that
cluster computers are normally tucked away in the unwanted closets of a research building,
it was appealing to think that we would be setting a few free, to be clusters in the sky.
Aware of how this sounded similar to a Star Trek movie, I jumped at the opportunity.

After three years of work, we had constructed a functional communication library that
achieved the goals of the research project. In addition to implementing the functionality
commonly found in other communication libraries, our software allowed an intelligent server
adaptor card to interact directly with the network interface. Plus, it had a cool name:
GRIM (to which my advisor still rolls his eyes). After the initial release of GRIM, we
began investigating how the software could be improved to support other peripheral devices.
As this work evolved, we realized that we were really providing a new form of cluster
architecture. We refer to these clusters as resource-rich cluster computers, which are the
focus of this dissertation.

As fate would have it, a number of researchers in industry were working on similar prob-
lems for commercial network servers. Their effort resulted in the InfiniBand I/O standard.
Being that multimillion-dollar companies backed InfiniBand, we were initially concerned
that we would be swept away by this monumental effort. However, we continued on with
our work, following in the do-it-yourself style that has been the basis of the cluster com-
puting movement. Our effort was rewarded earlier this year, when an InfiniBand evangelist
stated in a keynote speech that the true threat to InfiniBand was from grassroots efforts
taking place in commodity networks such as Gigabit Ethernet. Being that GRIM is de-
signed to be applicable to any network substrate with intelligent network interface cards
(including Gigabit Ethernet), we recognize this as a small victory and an indication that
our effort has been worthwhile.

There are many organizations and people that have had a significant and positive impact
on this research. This work was financially supported through a fellowship from NASA’s
Jet Propulsion Laboratory as well as through grants from the National Science Foundation.
The cluster computer hardware utilized in this research was funded through large donations
by the Intel Corporation. This work certainly would not have been feasible without these
contributions, and we gratefully acknowledge the financial support of these organizations.

There are a number of professors that have had a significant influence on this work.
First and foremost, this work would not have been possible without the assistance of my
advisor, Dr. Sudhakar Yalamanchili. Sudha has been a constant source of encouragement
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and guidance over the years. Our weekly meetings always motivated me to push a little
harder, and to construct new functionality that went beyond our original goals. Sudha
helped transform a large amount of my text into actual (and concise) English. He did
this in a kind way, often suggesting that he only had to make “a few minor changes” to
something that I knew was poorly written. I am grateful for all the help and counseling
Sudha has given me over the years. I will truly miss our whiteboard-centered meetings,
where everything needed a block diagram no matter how irrelevant it was.

Dr. Kenneth Mackenzie also provided a great deal of assistance in this work. Ken’s keen
eye for detail motivated me to take a closer look into the low-level performance character-
istics of the hardware. Ken continually surprised me by answering my questions with real
performance measurements from programs he cooked up on the spot. Without his obsession
for optimality, GRIM would never have reached its current level of performance. Ken was
kind enough to allow me to use his cluster, even when he knew that I have a tendency to
disorganize or break things. Most importantly, Ken instantly saw the soul of my work and
enlisted me in the crusade to turn modern, boring computer architecture on its head. I can
only hope that Ken will continue the good fight, and not get tied down by the bureaucracy.

Other professors had a significant impact on this work. Dr. Leon Alkalai provided
encouragement and summer internships at NASA JPL. Leon supplied me with a valuable
view of the internals of JPL’s work, and helped open my eyes to solving problems that are
broader than just computer engineering. Dr. José Duato also assisted me in this work over
the years. While only briefly mentioned in this dissertation, the discussions of deadlock
freedom in irregular network topologies that took place with José, Sudha, and myself are
part of the work that I enjoyed the most in graduate school.

I am fortunate to have been surrounded by many high-quality researchers and co-workers
as a graduate student at Georgia Tech. Early on, Darrell Stogner, Santiago Abraham, and
Phivu Nguyen provided me with a drive to investigate new technical material. Emily
Crawford performed the initial backbreaking work with the Myrinet hardware that served
as a starting point for my work. Ivan Ganev meticulously answered my kernel questions,
no matter how silly they were. His shaved head also took Ken’s attention away from
my infrequent, self-induced buzz cuts. William Norton, Damon Love, and John Lockhart
supplied me with a constant stream of desirable distractions, and served as a reality check
for my work. I frequently harassed these people with painful implementation problems (“I
just shifted all of a host’s physical memory by 1024 bytes”). Thanks for frequently coming
out to the Original Pancake House to listen and provide useful suggestions (“Try not to
do that”). Finally, Amer Abufadel has been a constant source of knowledge and help. In
addition to answering my DSP questions, Amer and I went through many of the graduate
student anxieties at the same time.

This work would not have been possible without the support of my family. My brother,
Dr. Todd Ulmer, constantly pressed me to push on and finish. He also wrote a wonderful
“forward” in his own dissertation that has made it impossible for me to write a halfway
decent one myself. In any case, when I was young, Todd teased me by throwing my favorite
toy, a little red plastic hammer, out the widow of our dad’s moving car. While I will hold
that over his head forever, he should know he is a good older brother and I thank him for
all the help he has given me in school. I would also like to thank my parents for their love
and support over the years. Even though they never quite understood what exactly it was
I was working on, they always encouraged me to try harder. Hopefully, this dissertation
unravels the mystery of my work a little bit.
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Finally, I must thank my wife, Amy Pomerance, for her love and support. Amy patiently
waited for me to finish, never letting on that she did not believe me when I kept telling her
that it would “only be about a year now”. While all of this work seemed to take forever,
being with you during this time made it all fine. Thanks for everything.

Craig Ulmer
November 2002

2020 Editing Note: In 2020 I revisited this dissertation and converted it from its original
Microsoft Word format to LATEX. While I tried to remain faithful to the original version
of the document as much as possible, there are a number of formatting differences between
the original document and this one. For example, the title page has been reformatted with
an official Georgia Tech template, figures have been repositioned in the text and scaled
to make the text more readable, and some references that time has forgotten have been
updated. There are also minor edits in the text to fix wording. However, I have resisted
the urge to go back and change text as I consider this document a shapshot of my work at
a specific point in time (good or bad).
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SUMMARY

Cluster computing is an alternative approach to supercomputing where a large number of

commodity workstations are utilized as the processing elements in a multiprocessor system.

These workstations are interconnected by high-performance system area network hardware

and specially designed “message layer” communication software. In the current generation

of cluster computers, researchers have optimized message layers for communication between

the host CPUs in the cluster in order to provide scalable computing performance. However,

the recent development of a number of high-performance peripheral devices challenges the

notion that message layers should be designed in such a CPU-centric manner. Modern

peripheral devices feature powerful embedded processing and storage capabilities that can be

leveraged to boost the performance of distributed applications. These peripherals function

as sources and sinks of application data, and in some cases, as computational accelerators

for offloading host-CPU tasks.

As Moore’s Law continues its relentless trend, there will continue to be a migration of

computing power to peripheral devices. Future clusters will not appear anything like the

clusters of today. They will be rich in connectivity and computing power that is deeply

embedded in the distributed components of the cluster. We refer to this new generation of

systems as resource-rich cluster computers (Figure 1). These systems differ from traditional

clusters in that application processing takes place in both the host CPUs and the peripheral

devices. While the semiconductor industry continues to alter the economies of scale, the

system software that productively enables resource-rich clusters is sorely lagging. Specifi-

cally, current generation message layers are ill equipped to service the needs of resource-rich
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Figure 1: The architecture of emerging resource-rich cluster computers.

xx



clusters, as they are not designed to utilize peripheral devices as globally accessible resources

in a cluster. This thesis focuses on the challenge of designing extensible message layers for

this new generation of resource-rich clusters. We are specifically concerned with making

peripheral devices available as globally accessible resources in the context of a programming

model that permits applications to effectively and efficiently exploit the capabilities afforded

by resource-rich clusters. The key contributions of this thesis fall into two categories. The

first includes design concepts and programming abstractions for structuring messages layers

to integrate powerful peripheral devices into a globally accessible pool of resources. The

second class of contributions is engineering solutions to the challenging problems of effec-

tively and efficiently realizing these design concepts in a manner that tracks the evolution of

technology, that is, the continued migration of computing power to distributed resources.
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CHAPTER I

INTRODUCTION

1.1 Background

After years of escalating supercomputer costs, a number of researchers in the early 1990’s
began investigating alternative means of constructing high-performance computing plat-
forms that could satisfy the needs of both commercial and scientific parallel-processing
applications. One of the most successful results of this effort is the field of cluster comput-
ing. In cluster computing a large number of commercial workstations are interconnected
with a high-performance communication network so that the workstations can function as
the processing elements of a large parallel-processing machine. While cluster computers
typically lack the peak performance levels of traditional supercomputers, they provide an
excellent cost-to-performance ratio that has attracted the attention of many users.

A key technology that makes cluster computers possible is the message layer software
that implements inter-processor communication within the cluster. This software provides a
set of message-passing programming abstractions that are utilized to transport data between
communication endpoints in the cluster. Early message layer research efforts discovered that
end application performance is often sensitive to the latency and bandwidth characteristics
of a message layer’s implementation. Therefore a significant amount of research during
the 1990’s focused on improving the host-to-host communication performance of a cluster’s
message layer. This effort has resulted in message layers that are highly optimized for
transferring data between a cluster’s host CPUs.

However, modern workstations are designed and optimized for high-speed sequential
computation while accessing relatively slow peripheral devices. They are not optimized for
inter-processor communication. Current message layers are designed to be as efficient as
possible given these constraints and optimize transfers between host CPUs. The advent of
powerful, inexpensive embedded processors has produced a migration of computing power
to the peripheral devices “closer” to the sources and sinks of data. Media servers, content
processing clusters, and data-intensive scientific applications all rely on complex interac-
tions with peripheral devices to complete their objectives. These cards intelligently manage
network and disk activities on behalf of the operating system to reduce the workload of
the host. Other manufacturers have constructed powerful accelerator cards that utilize
specialized hardware to accelerate the computational performance of certain operations. A
cluster node now is comprised of multiple relatively powerful CPUs interspersed between pe-
ripherals, high-speed networks, and low speed intra-processor buses. CPU-centric message
layers ignore this migration of compute power and no longer effectively use communication
resources.

The inclusion of powerful peripheral devices into the cluster results in a new class of
clusters which we refer to as resource-rich cluster computers. In these systems application
processing takes places in both the host CPUs and peripheral devices. Traditional CPU-
centric communication libraries are rapidly becoming a bottleneck and they do not provide
the fundamental mechanisms that allow a peripheral device to be efficiently utilized as a
resource in the cluster’s distributed environment.
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The goal of this thesis is to investigate, implement, evaluate, and deliver a set of commu-
nication abstractions and the associated message layer for resource-rich clusters governed
by the principle of extensibility. In one dimension, extensibility refers to the ability to
easily add new peripheral devices to the message layer as sources and sinks of data. A
second dimension of extensibility refers to the ability to easily support multiple higher-level
abstractions, e.g., sockets.

1.2 The Thesis

The work presented in this thesis addresses this problem by defining key aspects of a message
layer that allow it to serve as a flexible means of interconnecting diverse endpoints in a
cluster. A central part of this work is the migration of core message layer functionality
into an intelligent network interface (NI) card. Performing management functions in the
NI simplifies the amount of work an endpoint must perform to interact with other cluster
resources, which in turn makes it easier to integrate new peripheral devices into the cluster.
Migrating functionality into the NI is also beneficial because it allows the message layer
to be utilized in an extensible manner. Extensible in this case refers to the ability for end
users to layer new functionality on top of the core message layer and utilize the software in
new and creative manners.

In this work we define three specific characteristics of a message layer required to support
the inter-processor communication needs of resource-rich clusters.

• Reliability: The transfer of data from one endpoint to another is reliably managed
using per-hop flow control. In this approach data moves from one stage to the next
in the communication path as buffer space becomes available. This approach removes
the need for end-to-end flow control being managed by endpoints that have historically
resided in host CPUs.

• Virtualization of Resources: Endpoints and the communication between them
should be decoupled from the underlying physical channels and hardware. Thus the
message layer is designed to support multiple logical channels of traffic. These channels
solve problems with multiple endpoints sharing a single NI and allow for different
traffic streams to be insulated from each other.

• Abstractions: Finally, the message layer is equipped with both active message and
remote memory programming interfaces. The active message interface allows remote
CPUs and peripheral devices to be controlled with a flexible API while the remote
memory interface allows large blocks of data to be transferred at high speeds between
endpoints.

The General-purpose Reliable In-order Message layer (GRIM) has been constructed as a
means of investigating the low-level communication characteristics of a resource-rich cluster.
GRIM implements the functionality described in this thesis for a commodity x86-based
cluster of hosts interconnected by a high-performance Myrinet network. To demonstrate
extensibility, GRIM has been utilized for interactions with four different types of commercial
peripheral devices in the cluster: an intelligent LAN and storage adaptor card, an FPGA
accelerator card, a video capture card, and a generic video display device. Additionally,
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to demonstrate the extensible nature of the core GRIM library, it has been extended with
functionality to support multicast operations in the NI and provide users with a TCP
sockets programming interface. While other message layers may exhibit similarities to
some of GRIM’s functionality, GRIM is the only (known) message layer that supports
direct interactions with peripheral devices in a portable manner.

1.3 Organization of the Dissertation

The work presented in this thesis is organized as follows.

• Chapter 2: A brief background of cluster computers is provided to summarize how
clusters have emerged and evolved over the last decade. Fundamental description
of traditional cluster hardware is presented, as well as brief descriptions of existing
communication libraries for cluster computers.

• Chapter 3: This chapter provides information about the environmental characteris-
tics of resource-rich clusters. Based on these characteristics fundamental properties
of a communication library for these clusters is discussed.

• Chapter 4: The guidelines for designing a resource-rich cluster communication li-
brary are then applied to implement a real system. This chapter discusses the core
functionality of the GRIM communication library.

• Chapter 5: The performance characteristics of GRIM for traditional transactions
between host CPUs is examined and compared with existing work.

• Chapter 6: This chapter provides a description of how commercial peripheral devices
can be attached to the GRIM communication library. As an example of the horizontal
extensibility of GRIM, four commercial peripheral devices with different operating
characteristics are integrated into the GRIM library. Performance measurements are
provided for each device.

• Chapter 7: Integrating distributed, specialized computing resources into a unified
infrastructure for an application is the topic of this chapter. Specifically, this chapter
provides insight as to how peripheral devices can be utilized to construct distributed,
computational pipelines.

• Chapter 8: To demonstrate the vertical extensibility of GRIM, this chapter provides
implementation details of a multicast system that performs message replication in the
NI, general-purpose fragmentation and reassembly mechanisms, and an emulation of
a sockets API.

• Chapter 9: The thesis concludes with some summary remarks and directions for
future work.
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CHAPTER II

BACKGROUND

By the end of the 1980’s, the need for high-performance computing platforms in scientific
and military applications had resulted in the emergence of a small number of supercomputer
companies. These companies constructed large-scale systems that utilized massive amounts
of custom hardware to improve application performance. Unfortunately, because these
systems were extremely expensive, supercomputers were not a practical option for a large
number of end users. Therefore, researchers in the 1990’s began exploring alternative high-
performance computational platforms that could be constructed in a more cost-effective
manner. One of the results of this effort is the field of cluster computing. In cluster
computing a large number of commercial workstations are collectively utilized to function
as a single, multiprocessor system. Since system hardware is comprised of widely available
commercial components, cluster computers can be constructed at a fraction of the cost of
traditional supercomputers. As such, a considerable amount of high-performance computing
research in recent years has focused on improving cluster computer performance.

A key challenge in improving cluster computer performance is adapting commodity hard-
ware and software to function as part of a high-performance, multiprocessor system. Early
cluster computing efforts revealed that application performance is highly dependent on the
performance of a cluster’s communication facilities. From a hardware perspective, several
companies have addressed this issue by constructing system area networks (SANs) that pro-
vide an order of magnitude improvement over traditional local area networks (LANs). From
a software perspective, researchers have constructed specialized communication libraries, or
message layers, that are designed to deliver native SAN performance to end applications. In
addition to facilitating low-latency, high-bandwidth communication, these message layers
provide a programming abstraction where the cluster is viewed as a pool of host CPUs in
a large virtual parallel-processing machine. This abstraction has sufficed for numerous re-
searchers to effectively utilize a cluster computer’s hardware as a distributed multiprocessor
system.

2.1 Evolution of High-Performance Computing Platforms

Supercomputers are the computational systems that deliver the highest peak performance
of all computer systems available at a given point in time. These systems typically employ
large amounts of custom hardware to accelerate computational performance and often fea-
ture specialized computer architectures. Supercomputers have been primarily designed to
process complex scientific applications that frequently exhibit large amounts of data par-
allelism. A number of commercial supercomputer systems have been produced since early
groundbreaking work performed by the industry in the 1970’s. The evolution of this tech-
nology provides both insight into high-performance computing and a motivation to continue
the work in related research areas.
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2.1.1 A Brief History of Commercial Supercomputers

While numerous people have contributed to the field of supercomputing over the years,
perhaps the most influential individual in this effort is pioneer Seymour Cray. After leaving
the Control Data Corporation in 1972 to form Cray Research, Cray began work on a new
computer architecture that would provide significant gains in peak performance levels. In
addition to advances in high-speed circuitry, Cray investigated the use of sophisticated vec-
tor processing units that allow computations to be applied to a stream of data to achieve high
throughput. In 1976 the Cray-1 [81] was brought to market with a retail value of approxi-
mately nine million dollars and a record-breaking performance of 133 million floating-point
operations per second (megaflops). In addition to being a technological marvel, the Cray-1
demonstrated that there was a definite market for expensive high-performance computing
systems. Cray continued his work with vector processor systems, producing the 2 gigaflops
Cray-2 in 1985 and the 5 gigaflops Cray-3 in 1989. A number of other computers followed
the trend of vector processor systems, including the Meiko CS-2 [59], the NEC SX series
supercomputer [60], the Fujitsu VP series supercomputer [91], and IBM’s vector extensions
to the System/370 [69]. Currently, the fastest system in the world [32] is the NEC SX-6,
used in the Earth Simulator Center [102] in Japan. This system provides up to 8 teraflops
of performance and employs multiple single-chip vector processing units.

The supercomputing industry also explored other architectural techniques for increasing
the computational performance of a system. A key effort in this work is the use of a large
number of processors to perform computations in parallel. In the SIMD (single instruction
stream, multiple data streams) approach, a large number of identical processors perform the
same series of operations on different data sets. Multiple SIMD systems were constructed in
the early 1990’s, including the MasPar Computer Corporation’s MP-1 [17] and the Think-
ing Machines Corporation’s CM-2 [41]. Both of these systems housed up to 16,384 SIMD
processing elements, and could be used for parallel applications such as image processing.
Due to the programming complexity of SIMD, researchers began constructing MIMD (mul-
tiple instruction streams, multiple data streams) systems that employed a large number of
general-purpose CPUs. This work resulted in massively parallel processing (MPP) systems
such as the Intel Paragon [45] (up to 4,000 Intel 80860 processors), the TMC CM-5 [55]
(up to 16,000 SUN SPARC processors), and the Cray Research Cray-T3E [83] (up to 2,048
DEC Alpha 21164 processors).

2.1.2 Motivation for Alternate Computing Platforms

While the supercomputer companies of the 1980’s provided significant advances in the field
of high-performance computing, a large number of these companies withdrew from the su-
percomputer business in the 1990’s. In hindsight it can be said that a common vulnerability
for these companies was the large amount of custom design that was required to build a
supercomputer. Several of these companies operated with a vertical design methodology,
constructing all components of the system from the individual processors to the inter-
connection network. While having complete control over the design space gave engineers
freedom to innovate performance enhancements, product design times were increased and
complicated by the volume of custom hardware design that was required. Therefore, new
supercomputers were expensive, brought to market infrequently, and often could not be
designed in time to utilize the latest developments in state-of-the-art technology.

Additional issues make traditional supercomputers less appealing to researchers that
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need high-performance computing platforms. First, supercomputers generally are not scal-
able and therefore offer a limited lifetime of leading-edge use. An investment in a state-
of-the-art supercomputer depreciates rapidly in value due to Moore’s Law, thereby making
current systems obsolete within 18 months. Second, supercomputers require specialized
hardware and software maintenance that adds to the expense of ownership. These compo-
nents can be expensive to replace and there are generally few people that are trained to
perform such maintenance. Finally, it must be noted that a risk in purchasing a traditional
supercomputer is that the manufacturer might go out of business or otherwise abandon
support for a particular product. Maintaining and utilizing orphaned hardware is time
consuming and ultimately impedes end users.

Given the problems associated with using traditional supercomputers, a number of re-
searchers in the early 1990’s began exploring alternative methods by which high-performance
computational platforms could be constructed. This effort made several observations about
commercial technological advances and the global marketplace that would influence the con-
struction of future parallel-processing systems. These observations include the following:

• Commercial Off-the-Shelf (COTS) Parts: In industry there are numerous cor-
porations producing state-of-the-art hardware and software components. By using
COTS parts, designers leverage other people’s work and reduce the design time for a
system. COTS parts are also beneficial because components can easily be replaced or
upgraded from third-party products.

• Growth in the Workstation and Network Markets: Consumer demand for
personal computers has resulted in high-performance workstations that are available
at a low cost. Processor design in this market remains competitive, resulting in fre-
quent updates to peak performance levels. Likewise, consumer interest in the Internet
has resulted in advances in network hardware. The need for faster networks has re-
sulted in low-cost local area networks (LANs) that economically offer high-bandwidth
communication.

• A Rich Software Environment: An important aspect of commodity workstations
is the wide availability of software. Operating systems such as GNU/Linux provide
a UNIX-like environment with built-in network features. The open source nature of
Linux allows researchers to easily incorporate custom functionality into the operating
system kernel.

In summary, researchers observed that advances made in consumer markets in the 1980’s
and 1990’s had resulted in hardware that was widely available, economical, and offered re-
spectable levels of computational performance. These systems could be utilized to provide
impressive price-to-performance ratios and have benefited from considerable efforts to im-
prove the PC’s software environment.

2.1.3 Emergence of Cluster Computers

In the mid-1990’s, researchers began investigating the use of multiple commodity worksta-
tions to construct a new form of high-performance system. This work resulted in the notion
of a cluster computer, where a number of workstations are collectively utilized to function
as a single parallel-processing system. Through commodity network hardware and special-
ized communication software, a cluster computer can effectively appear as a large pool of
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Figure 2.1: A cluster computer constructed with commodity workstations and network
hardware.

host processors to the end user. Since workstations in the cluster are commercially available
products, cluster computing can leverage the performance gains achieved by the workstation
industry. The high-level architecture for a cluster computer is depicted in Figure 2.1.

One of the first cluster computing projects to receive serious attention from the scientific
community was NASA’s Beowulf Project [14]. In this work, researchers demonstrated that a
small number of dedicated workstations could collectively operate to perform computations
that were beneficial to scientific computing [13]. Utilizing commodity PCs equipped with
multiple Ethernet adaptors, the 16-node demonstration cluster achieved 60 megaflops in
1994. Later clusters in this project would expand the number of workstations to 199 nodes
and accomplish 10 gigaflops of performance for under $50,000. While researchers stated that
Beowulf clusters were a far step from true supercomputing, the price-to-performance ratio
was a significant motivator for building such clusters. After this work numerous research
institutes constructed Beowulf-style clusters out of Ethernet-connected PCs.

An observation made about the early Beowulf-style of cluster was that while some
applications performed well, others did not. An examination of this problem revealed that
these clusters were severely limited in terms of communication performance. Grossly parallel
applications that did not require significant amounts of communication between host CPUs
performed well because each task in the cluster could operate independently. However,
applications that required frequent exchanges of data between CPUs performed poorly due
to the low performance of the network. The conclusion to be drawn from this observation is
that ultimately, the communication performance of the cluster determines the granularity
at which parallel-processing applications can productively use a cluster.

Realizing that the poor communication performance limited the types of applications
a Beowulf cluster could run, researchers in the mid to late 1990’s began examining ways
in which the cluster’s communication performance could be enhanced. Several academic
projects focused on adding hardware to facilitate specific types of communication. In the
SHRIMP project at Princeton [18], workstations were extended with hardware that allowed
hosts to operate in a distributed shared memory (DSM) environment. At Purdue, the PA-
PERS project [31] utilized custom hardware to rapidly distribute barrier synchronization
information to host computers. However, the most significant advance for cluster comput-
ers came with the advent of commercially available system area networks (SANs). SANs
provide communication performance that is over an order of magnitude better than tra-
ditional LANs. This allows for significant improvements in fine-grain parallel processing
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performance. Current work in high-performance cluster computers involves delivering as
much native performance from a SAN as possible to end applications.

2.2 Using Workstations as a Cluster Computer’s Processing Elements

Multiprocessor systems are generally comprised of two types of hardware components: pro-
cessing elements that are used to perform computations, and a communication network to
distribute data in the system. In cluster computers, individual workstations function as
processing elements, while commodity SAN hardware performs communication tasks.

2.2.1 Workstation CPUs

A number of vendors have constructed different workstations that can be utilized in a cluster
computer. Historically, companies such as Sun Microsystems, Hewlett-Packard, SGI, and
Compaq/DEC have dominated the workstation industry with CPU architectures that offer
high performance at a relatively high cost. However, the workstation market for these
companies has eroded over the last decade as x86-based PCs and PowerPC-based Apple
Macintosh computers have steadily improved in performance and popularity. Because of
its impressive price-to-performance ratio, the x86 PC has become the workstation of choice
for the majority of cluster computing efforts. Therefore, the work presented in this thesis
specifically deals with clusters constructed from x86-based PCs.

While affordable, x86-based systems have some of the most limiting architectural char-
acteristics of any workstation when used for high-performance computing. First, the x86 is
based on a 32-bit architecture that may not be sufficient for the processing needs of scientific
applications that require 64-bit computations. Second, an x86 processor can only support
4 GB of physical memory. This trait limits the amount of state information an application
can have loaded at a workstation, and is becoming more of an issue as memory prices con-
tinue to decline. Finally, in order to obtain peak performance levels in x86-based hosts, it
is often necessary to utilize architectural extensions such as the MMX and streaming SIMD
(SSE) units. The performance of these units can vary greatly between different generations
of x86 processor.

2.2.2 Evolution of Workstation I/O Systems

A second key factor that affects the performance of a workstation as a processing element
is the architecture of its I/O system. In ideal multiprocessor systems, processing elements
are placed in close proximity to the NIs in order to allow fine-grained interactions between
applications and the network. Unfortunately, in most workstations the CPU and NI are
separated by a complex general-purpose I/O system. Transactions involving the I/O system
can be up to an order of magnitude slower than similar transactions with host memory.
While the computer industry makes improvements to x86 CPU performance multiple times
a year, PC I/O performance is improved on average once every three years.

Figure 2.2 highlights the history of I/O systems utilized in PCs. The peripheral compo-
nent interconnect (PCI) standard [71] provides reasonable performance and has become the
de facto standard for peripheral devices in current workstations. While this thesis targets
PCI-based systems, the implementation can be tuned to platforms with higher bandwidth
I/O systems.
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Figure 2.2: A history of PC I/O systems.

2.2.3 Peripheral Component Interconnect (PCI)

The peripheral component interconnect (PCI) standard was introduced in 1992 as a means
of allowing high-speed peripheral devices to be incorporated into the x86 PC architecture.
The architecture of modern host systems employing PCI is depicted in Figure 2.3. In this
architecture the system’s memory controller is responsible for routing data between the host
CPU(s), main memory, and peripheral devices on the PCI bus. At boot time the memory
controller assigns regions of the host’s 32-bit physical address space to both main memory
and individual peripheral devices. When a device driver for a PCI card is loaded into the
kernel, the driver can establish a memory translation that allows the card’s memory to
appear in the kernel’s virtual address space. The driver can then share this mapping with
user-space applications through the implementation of a memory map system call, handled
by the device driver. Doing so allows user-space applications to directly read and write the
on-card memory of a peripheral device.

In addition to memory mapped reads and writes from the host CPU, communication
involving peripheral devices can be facilitated by on-card DMA engines that are available
with bus-mastering PCI devices. These DMA engines adhere to the low-level PCI bus
standard and can be used to transfer blocks of data between a peripheral device and host
memory or other peripheral devices in the system. All memory references on the PCI bus are
in terms of the host’s 32-bit physical address space in the x86 architecture. Each PCI device
also controls an interrupt request (IRQ) line, which can be used to transmit an interrupt
to the host CPU. Due to a limited number of IRQs in a host, multiple peripheral devices
may share the same interrupt, requiring each card’s device driver to determine which card
initiated an interrupt.

A number of modern PCI devices support sophisticated DMA transfers through the
use of chained DMA operations. With chained DMA, a peripheral device is capable of
performing a series of DMA operations as specified by a linked-list of DMA descriptors.
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Figure 2.3: Architecture of a modern host utilizing PCI.

Each descriptor in a linked list specifies the length, direction, and addresses of a transfer.
Some implementations allow users to specify whether an interrupt should be generated for
the host at the completion of a transfer for a given DMA descriptor. The DMA engine
processes each descriptor linearly until an end-of-chain marker is specified in a descriptor.
While most cards employ a similar API for controlling chained DMA operations, it should
be noted that there is no standard and that each peripheral device driver must be outfitted
with custom functionality.

2.2.4 Architecture Tradeoffs

There are a number of architectural tradeoffs designers must face when considering how clus-
ter computer workstations can be used as processing elements in a multiprocessor system.
From the previous three subsections it is clear that host CPUs in a cluster computer incur
significant overheads when interacting with other CPUs in the cluster. This trait is a seri-
ous obstacle for application designers, especially when clusters are compared to traditional
MPP supercomputers that allow fine-grained network interactions. However, a workstation
by itself is a complete, self-contained system that features processing, memory, and stor-
age resources, as well as a sophisticated operating system for managing these resources.
Therefore, a processing element in a cluster computer is more likely to be better equipped
to perform diverse tasks than a processing element in a traditional MPP supercomputer.
The architectural tradeoffs of using workstations as processing elements therefore suggests
that cluster computers are better utilized for computations where operations can localized
to individual processing elements.

2.3 Cluster Computer Network Hardware

In addition to processing elements, multiprocessor systems must be equipped with com-
munication infrastructure that allows distributed processor elements to interact. In cluster
computers, this infrastructure is built from commercial network hardware. Several network
substrates have been used in cluster computers over the years. One of the most popular
approaches is to employ traditional LAN hardware such as Ethernet. While economical, the
drawback of Ethernet is that it only offers limited host-to-host communication performance
in a cluster environment. Therefore, a number of companies have constructed system area
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network (SAN) products that are better suited for cluster computers. These SANs fea-
ture multi-gigabit bandwidths and host-to-host transmission latencies that are less than
50 µs. SANs generally offer high levels of reliability and commonly utilize intelligent NI
cards to manage network interactions. Examples of SANs include Myricom’s Myrinet [19],
Compaq’s Servernet [42], Dolphin Interconnect Solutions implementation of the scalable
coherent interconnect (SCI) [2], and Quadrics’ QsNet [72].

2.3.1 Ethernet

The Ethernet network standard first created at Xerox Parc labs in 1976 [62] has grown
to become the most popular network ever utilized. The Ethernet standard has been pe-
riodically updated over the years, and now features link speeds of up to 10 Gbps in the
most recent standard [8]. Ethernet NI cards traditionally have employed a simple hard-
ware architecture where the NI only manages a pair of message queues for incoming and
outgoing transmissions. In this approach the host CPU formats and processes all messages
transferred to and from the network. In order to reduce the workload of the host CPU,
some high-end Ethernet NI cards feature more sophisticated processing engines that are
capable of managing network interactions on behalf of the host. These intelligent NI cards
are especially beneficial for Gigabit Ethernet networks where high-bandwidth transactions
are necessary.

While widely available, Ethernet is not the ideal communication substrate for cluster
computers. The primary issue is that Ethernet was designed for use in LANs. Since data in
LANs is transmitted over long distances, Ethernet is largely optimized for bandwidth but
not latency. Another consequence of Ethernet being designed for LANs is that the hardware
is not designed to facilitate reliable transmissions. Instead, workstations in the cluster must
implement reliable transmission protocols that can tolerate dropped messages. Finally,
Ethernet hardware can be criticized because currently there is a lack of high-performance
NI adaptors. In [40] researchers compare several commercial Gigabit Ethernet adaptors.
Tests using a host with 32b/33MHz PCI found that the maximum obtained bandwidth was
only 436 Mb/s, while most of the cards provided less than 200 Mb/s. In tests using a host
with 64b/66MHz PCI general performance rose to 650 Mb/s, with one card obtaining 928
Mb/s. While industry is steadily improving Gigabit Ethernet product performance, these
tests demonstrate that it is still challenging to obtain the peak performance levels of the
network.

2.3.2 Scalable Coherent Interconnect (SCI)

The scalable coherent interconnect (SCI) standard is a SAN for clusters that has gained
widespread use in Europe. SCI evolved out of the Futurebus+ project [1] in 1988 as a means
of developing a next-generation I/O infrastructure for high-performance workstations. SCI
is designed to allow a large number of hosts to function as part of a distributed shared
memory machine. In the programming model for this system, each host is allocated a region
of memory in SCI’s global address space. When a host reads or writes a region of the address
space that is not available at the local node, the SCI NI card forwards the transaction to
the memory system of the host that owns the memory. Distributed memory interactions
take place efficiently in SCI because shared memory protocols are implemented in hardware
in the SCI NI cards. Initial versions of SCI interconnected hosts in ring topologies similar
to token ring LANs. As the standard evolved SCI hardware was adapted to operate in
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Table 2.1: A history of Myrinet network interface cards.

Year Processor Clock Rate Memory Host I/O Link Speed

1994 LANai 3 25 MHz 128 KB 20 MHz SBUS 640 Mb/s

1996 LANai 4 33 MHz 1 MB 32b/33 MHz PCI 1.28 Gb/s

2000 LANai 9 100-200 MHz 2-8 MB 64b/66 MHz PCI
1.28 Gb/s
2.0 Gb/s

point-to-point network topologies using dedicated switches.
An advantage of SCI’s approach to communication is that it provides a specific set of

actions that the network hardware must perform. These actions can be implemented with
custom hardware that benefits from circuit-level optimizations. While this prevents the NI
from being extended with functionality by the user, it allows NI hardware to be simplified
and produced more economically. One of the largest vendors of SCI hardware is Dolphin
Interconnect [6]. This company’s implementation of SCI has an application-to-application
performance of up to 2.6 Gb/s in bandwidth and 1.4 µs in latency [7] (using IA64 Itanium
hosts).

2.3.3 Myrinet

Myricom’s Myrinet is one of the most commonly utilized SANs for cluster computers due to
its high levels of performance and programmability. Myrinet is a descendent of the Mosaic
[84] and ATOMIC [35] research projects. In these projects researchers developed a high-
performance network for multiprocessor systems that employed source-routed, wormhole
[29] messages to reduce switch latencies. These networks provided high levels of data relia-
bility and would only drop messages if deadlock was suspected. Myricom converted Mosaic
into a commercial product known as Myrinet for use with commodity workstations. Myrinet
in its current implementation consists of network switches, 1.28+1.28 to 2.0+2.0 Gb/s links,
and programmable NI cards. Network hardware is connected in a point-to-point fashion,
allowing the construction of both regular and irregular network topologies. In minimizing
switch latency, Myrinet designers have pushed network tasks out of switch hardware and
into the NI cards. A beneficial side effect of this design choice is that network functionality
(e.g., multicast or added fault tolerance) can be implemented by users in the form of NI
firmware. Myricom has released several generations of NI hardware as summarized in Table
2.1.

The organization of the Myrinet NI is depicted in Figure 2.4. In this architecture the
NI is situated between an interface to the host I/O system and an interface to the network
wire. High-speed SRAM is utilized to house both the executable firmware and data for the
NI. Firmware typically occupies less than 256KB of SRAM memory, allowing the remaining
memory to be used as needed by communication library designers. The SRAM is shared
between the LANai and DMA engines through a priority based memory controller.

While the architecture of the Myrinet NI is relatively simple, the NI is a powerful device
because it can support multiple data transfers at the same time. The NI can be configured
to simultaneously send data to the network, receive data from the network, and issue a
DMA transfer to or from host memory. In more recent versions of the Myrinet NI the NI
is also capable of supporting multiple DMA transfers between the NI and host using four

12



SRAM 

RISC 

CPU 
PCI 

Tx 

Rx 

Host 

DMA 

SAN 

DMA 

LANai Processor 

Myrinet NI Card 

Figure 2.4: Architecture of the Myrinet NI card.

PCI DMA engines. The programmable nature of the NI has allowed firmware designers
to construct efficient communication pipelines with the NI, where data is transferred in a
cut-through manner without buffering delays in the NI. Basic performance measurements
of the LANai 4 and 9 NI cards are provided in Appendix A.

2.3.4 Quadrics QsNet

The QsNet [72] interconnection network is a relatively new SAN product created by Quadrics
in Europe. QsNet is currently being utilized in high-end cluster computers such as the
Terascale Computing System [73] at the Pittsburgh supercomputer center (currently the
third fastest supercomputer in the world [32]). Similar to Myrinet QsNet uses wormhole
routing to efficiently transfer data between NI cards through a point-to-point network. How-
ever, QsNet differs in that communication resembles a virtual circuit approach as wormhole
transmission paths are not released until the receiver transmits an acknowledgement token.
Similar to SCI QsNet provides a means of allowing hosts in the network to share a global
address space. In order to accelerate remote memory operations, NI cards are equipped with
hardware engines that can dynamically translate virtual addresses into physical addresses.
Initial reports of QsNet indicate that it is capable of providing over 2.4 Gb/s of bandwidth
and approximately 2 µs of latency between user-space applications.

2.4 Cluster Computer Network Software

After early work in Beowulf-style clusters, researchers observed that the high latency of
traditional communication libraries for LANs precluded fine-grained cluster applications.
Given the raw performance available in SAN hardware, a considerable amount of cluster
computing research in the late 1990’s focused on techniques for harnessing this communi-
cation performance. This work resulted in the development of a number of custom com-
munication libraries or message layers that offered mechanisms for reducing communication
latency and increasing bandwidth between host-level applications. The most commonly
utilized SAN in this effort is Myrinet due to its open source software and well-documented
hardware. A large number of message layer packages have been implemented for Myrinet,
including Active Messages (AM, AM II) [23],[23], Fast Messages (FM) [70], PM [89], Link-
level Flow Control (LFC) [12], Trapeze [101], Virtual Memory Mapped Communication

13



(VMMC) [33], GM [64], and BIP [75].

2.4.1 Limitations of LAN Protocols

Early Beowulf-style cluster computers utilized traditional LAN hardware and software to
provide reliable communication between workstations in the cluster. These clusters typically
employed Ethernet network hardware and communication software based on the transmis-
sion control protocol (TCP). While leveraging existing LAN equipment allowed large cluster
to be constructed easily in a cost-effective manner, researchers observed that these Beowulf-
style clusters offered limited performance in some parallel processing applications. The
fundamental issue observed with using LAN equipment is that it is primarily designed to
transmit data over long distances using an error-prone medium. Therefore LAN software
such as TCP must perform a number of complex transmission management operations in
order to guarantee that messages are reliably delivered in the proper order to a destination.

Cluster computers have different operating conditions than LANs. In cluster comput-
ers, workstations are separated by small distances and utilize dedicated network switches
for local communication. Under these conditions messages are dropped or reordered by
the network infrequently. Therefore TCP’s reliable transfer mechanisms are not optimal
for cluster computers and are in general too heavy weight for high-performance applica-
tions. Transmissions using Ethernet and TCP can suffer communication latencies greater
than 100 µs for host-to-host deliveries. By comparison, inter-processor communication in
a symmetric multiprocessor (SMP) node takes place in only a few microseconds. This dif-
ference in communication performance is enough to significantly limit the effectiveness of
cluster computers in the case of fine-grained, communication intensive parallel programs
[58]. Therefore researchers in the late 1990’s began investigating custom communication
libraries or message layers that were better suited for cluster computers.

2.4.2 Message Layer Characteristics

Message layers for cluster computers serve as a means of transferring application data be-
tween communication endpoints in the cluster. Naturally there are many ways in which
message layers can be designed. Therefore a first step in understanding how message layers
function is to consider a few of the key characteristics of message layers. These character-
istics include the following.

• Programming Interface: One of the most defining characteristics of a message
layer is the programming interface that is provided to end users. Message layers
generally employ one of three types of programming interface. First, active message
[93] systems utilize an interface similar to remote procedure calls (RPCs) [16] where
an application can invoke an operation at a remote endpoint simply by transmitting
a message. Second, in rendezvous approaches sending and receiving endpoints are
tightly synchronized and require the receiving endpoint to post requests to extract
certain messages from the network. Finally, systems using a shared memory program-
ming interface use remote memory operations to manipulate data located at different
hosts in the cluster.

• Buffer Management and Flow Control: NI cards have a limited amount of buffer
space for housing in-flight messages. Therefore an important aspect of a message layer
is the means by which it manages the reliable transfer of messages from one endpoint
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to another. In some message layers flow-control schemes are applied at either the host
or NI levels in order to prevent messages from being dropped due to insufficient buffer
space at the receiver. Other message layers do not implement such mechanisms, either
for performance reasons or because they are not necessary. For example, in a shared
memory system the receiving NI always accepts and processes an incoming message
and therefore buffer management is not necessary.

• Delivery Order: In a strictly ordered system, messages are processed by a receiver in
the same order they were injected into the network by the sender. When messages are
dropped in the network, a message layer with ordered delivery performs retransmission
and reordering to maintain consistent data flow. In systems where network messages
can carry priorities, some message layers allow higher priority messages to bypass
lower priority messages by relaxing ordered delivery constraints.

• Receiver Notification: Another characteristic of a communication library is the
manner in which the receiving application is notified that a new message has arrived.
In message layers that notify the receiving endpoint, either an interrupt mechanism
or polling is utilized. While interrupts allow applications to interact with the message
layer only when new data has arrived, the interrupts can take place at any time and are
therefore challenging to manage. Polling techniques require application to periodically
examine the message layer for new data, but can generally provide better performance
than interrupts. Shared memory systems do not necessarily need to utilize any explicit
form of notification as this task is implicitly performed by the receiver application.

2.4.3 Common Message Layer Optimizations

Researchers often utilize a number of common techniques for improving the performance
of a message layer. One of the earliest and most widely used techniques is to construct a
message layer in user-space. This technique is beneficial because it allows an application
to interact with the NI card without invoking expensive system calls. Another common
technique used in many message layers is to make use of the reliable nature of SAN hard-
ware. Since SAN hardware can operate for months at a time without a single bit error,
researchers often simplify message layer protocols by assuming the common case of error-
free transmissions. Finally, with the observation that the host CPU is much more powerful
than the NI processor, a number of researchers have minimized the amount of work NI pro-
cessors perform in the message layer. While these optimizations have boosted performance
in message layers, such approaches have resulted in CPU-centric message layers. As will
be discussed in the following chapter, these message layers are inappropriate for resource-
rich cluster computers which require both host CPUs and peripheral devices to function as
communication endpoints.

2.4.4 Myrinet Message Layers

A number of message layers have been constructed for Myrinet over the years. An excellent
survey of several of these message layers is provided in [15]. The more influential of these
message layers are summarized as follows.

• Active Messages (AM, AM-II) [28], [23]: The active messages project was one
of the first academic message layer packages for Myrinet hardware. In addition to
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demonstrating the active message programming paradigm, AM software illustrated
that communication libraries implemented in user space could provide significant per-
formance improvements. AM utilizes host-based flow-control mechanisms to manage
buffer space in the library.

• Fast Messages (FM) [70]: The FM library was released shortly after AM and ex-
tends AM concepts by providing mechanisms for increased performance, stability, and
usability. FM utilizes an active message programming interface and includes mecha-
nisms for registering and managing application function handlers. Another feature of
FM is its ability to efficiently fragment and pipeline large message transmissions, which
allowed for significant gains in communication performance. While FM originally em-
ployed NI-based flow-control mechanisms, these mechanisms were later deferred to
the host due to poor NI performance.

• BIP [75]: The BIP message layer is an effort to construct a lean message layer that
can provide high performance for higher-level programming interfaces such as MPI
[61]. BIP uses a rendezvous communication model where a receiver must provide the
NI with information that specifies where the NI should store a particular incoming
message. BIP provides no reliability guarantees and has been reported to have the
best communication performance of any Myrinet message layer.

• Virtual Memory Mapped Communication (VMMC) [18]: The VMMC layer is
designed to support shared memory operations on cluster computers. In this software
the library provides efficient means of transferring blocks of data from the virtual
memory of one application to the virtual memory of another application located on a
different host. These operations take place with remote DMA operations and require
no flow-control mechanisms. VMMC NI firmware is equipped with mechanisms to
perform virtual to physical address translation, as well as facilities to cache translation
results.

• GM [64]: GM is an industrial strength message layer from Myricom that provides
good performance and is supported on a wide variety of cluster platforms. Like
BIP, GM utilizes a rendezvous programming interface that works well with MPI. GM
provides rich functionality at both receiving and sending endpoints and uses callback
functions to notify applications that message layer operations have completed. GM
requires that all data transferred with the message library be loaded in a block memory
that is registered with the library. Registered memory allows the NI to efficiently DMA
data between the host and card, with virtual memory translation performed through
a simple table lookup.

2.5 The Virtual Parallel-Processing Machine

In addition to providing low-level mechanisms for transferring data between cluster work-
stations, SAN message layers provide a programming abstraction that allows end users to
control a cluster’s computational resources. This abstraction presents the cluster as a virtual
parallel-processing machine that is capable of running parallel and distributed applications.
An example of such a virtual machine is presented in Figure 2.5. In this example the
message layer maintains information about the workstations in a cluster and provides an
interface where applications can globally reference any host CPU in the cluster. Therefore
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Figure 2.5: The virtual parallel-processing machine architecture provided to end users in
current message layers.

an application running at one host CPU transmits data to another CPU by providing the
message layer software with a message that is labeled with the reference identifier for the
destination. In current generation message layers, host CPUs are the only resource included
in the virtual machine architecture.

While there are many ways in which a virtual machine can be realized for a cluster,
a common approach is to load each host in the cluster with an executable program that
is part of an overall parallel-processing application. Each executable contains user-defined
functionality for the local host as well as message layer library functions and information
about the cluster’s global resources. After all hosts in the cluster have executed message
layer initialization functions, the virtual parallel-processing machine becomes operational
and each host begins processing the application code defined in its local executable program.
Maintaining the appearance of a virtual machine is a relative straightforward process in the
message layer after this point, as the message layer must simply service application queries
regarding cluster resources and route transmissions to the appropriate cluster resources.
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CHAPTER III

MESSAGE LAYERS FOR RESOURCE-RICH CLUSTER
COMPUTERS

As discussed in the previous section, cluster computers provide a cost-effective platform
for processing distributed applications. If a cluster computer’s communication library is
visualized as a means of providing a virtual parallel-processing machine for distributed
applications, there is one component of the virtual architecture that current generation
communication libraries omit: peripheral devices. Traditional cluster communication li-
braries are designed to transfer data only between host CPUs, not peripheral devices. For
these libraries it is assumed that cluster interactions with a peripheral device are performed
by a host-level application that resides in the same host as the device. Therefore in order
to interact with a remote peripheral device, an application must communicate with the
remote host’s CPU and request an operation be performed on behalf of the application.
This method of controlling a peripheral device through a proxy incurs costly overheads that
limit the dynamic use of peripheral devices in distributed applications.

The fact that peripheral devices can strongly influence a cluster computer’s performance
challenges the notion that communication libraries should be designed in such a CPU-centric
manner. Peripheral devices are becoming increasingly more powerful and therefore repre-
sent a valuable opportunity for accelerating cluster computer applications. The inclusion of
powerful peripheral devices in the cluster architecture results in a new category of cluster
computer that we refer to as resource-rich cluster computers. Since these clusters exhibit dif-
ferent communication requirements than traditional clusters, it is beneficial to examine the
design of new communication libraries that are well suited to these clusters. These libraries
specifically allow both host CPUs and peripheral devices to be efficiently utilized as com-
putational resources by distributed applications. The resulting virtual parallel-processing
machine provided by the communication library is depicted in Figure 3.1.

This chapter provides the groundwork for designing message layers that are well suited
for resource-rich cluster computers. As a first step in this effort, definitions of the hardware
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Figure 3.1: Including peripheral devices in the virtual parallel-processing machine archi-
tecture provided by the communication library.
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environment are provided as well as motivating examples of how these clusters can be
beneficial to end users. This work is followed by a discussion of fundamental concepts
that influence the construction of the communication library. These concepts are then
individually elaborated. Finally, this chapter is concludes with a listing of research projects
that are related to resource-rich clusters.

3.1 Emergence of Resource-Rich Cluster Computers

Resource-rich cluster computers are clusters where individual workstations are supple-
mented with powerful peripheral devices. It is important to examine the characteristics
of these clusters in order to determine how message layers should be designed for these
systems.

3.1.1 Availability of Powerful Peripheral Devices

In recent years commercial hardware vendors have constructed a number of powerful pe-
ripheral devices that are designed to perform a variety of application-specific operations.
One of the key motivations for this effort has been the need to produce high-performance
network servers for the Internet. In answer to market demand developers have constructed
a number of intelligent I/O cards for both LAN and storage operations. For LANs, develop-
ers have constructed high-performance network cards that feature embedded processors and
multiple physical links to the network. Some of these cards are equipped with firmware that
allows common network operations such as TCP connection management to be performed
on the network card as opposed to the host. Storage controller cards are also becoming
increasingly more powerful due to the active disk [77] and network-attached storage (NAS)
[65] efforts. Modern intelligent storage adaptor cards are capable of managing a disk’s file
system at the controller in a self-contained manner. These storage cards provide a file-
level interface to end applications and do not require the assistance of the host’s operating
system.

Another area where peripheral devices are becoming more powerful is in multimedia ap-
plications. Driven by consumer interest in high-quality video and audio editing, developers
have made significant improvements to multimedia peripheral devices. Modern audio and
video capture devices can be configured to automatically push high-resolution data samples
directly into host memory, allowing data streams to be captured in real time. Some of
these cards feature hardware to perform desirable operations such as compression, clipping,
and filtering. Other multimedia cards are available for rendering high-quality output for
people to observe. Audio playback and video display cards generate output signals from
large on-card buffers that can be written to by applications. Some of these output cards
feature processing devices that are capable of performing significant computations in real
time.

A third area where peripheral devices have become more powerful is in the field of
computational accelerator cards. These cards are designed to utilize custom hardware to
improve the performance of certain types of computations. Typically these cards employ dig-
ital signal processors (DSPs), field-programmable gate arrays (FPGAs), or even dedicated
application-specific integrated circuits (ASICs). Often these cards feature large amounts
of high-speed memory for storing large data sets on the card and function as a form of
co-processor for the host. The common procedure for utilizing a hardware accelerator card
is for the host application to pass data to the card, have the peripheral device process the
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data, and then have the results transferred back to the host. Custom hardware accelerator
cards are often useful for processing large streams of data such as multimedia traffic.

3.1.2 Categorizing Peripheral Devices

Based on the previous examples it is possible to broadly categorize peripheral devices by
the manner in which they are utilized. Three common categories include the following.

• Data Sources and Sinks: Peripheral devices are often utilized to produce data for
the host (i.e., a data source) or store data from the host (i.e., a data sink). Some
peripheral devices such as storage adaptor cards are capable of performing both of
these operations. Typically these devices do not perform elaborate computations on
incoming or outgoing data.

• Intermediate Processing Elements: Peripheral devices such as the custom hard-
ware accelerators are primarily designed to process data for the host. Data is typically
injected into these cards, processed, and then ejected back to the host system. Incom-
ing and outgoing data rates for these cards do not have to be equal and are dependent
on the application.

• System Bridges: A peripheral device can also be designed to serve as a form of
bridge between two separate systems. The bridge device therefore manages communi-
cation between the two systems, performing protocol translations when needed. One
example of a bridge is a LAN adaptor card that is utilized to connect the cluster to
an application running at a host that is not part of the cluster. The cluster side of
the bridge communicates with a SAN protocol while the external side utilizes a LAN
protocol (such as TCP).

3.1.3 Characteristics of Resource-Rich Cluster Computer Hardware

A resource-rich cluster’s hardware architecture is similar to traditional cluster computers,
with the exception that workstations are equipped with powerful peripheral devices. Phys-
ically adding these devices to the cluster is relatively simple, as cards are placed in the
available PCI slots of a cluster’s workstations. Figure 3.2 depicts the physical architecture
of a resource-rich cluster computer. Each workstation features various peripheral devices
and is connected to the cluster through a high-performance SAN. This SAN functions as
a backbone for communication in the cluster and can be accessed by both host CPUs and
peripheral devices.

While resource-rich clusters are not a radical departure from traditional cluster archi-
tectures, there are several unique characteristics that communication library designers must
be aware of. The more significant characteristics include the following.

• Two-levels of Communication Infrastructure: Communication within a resource-
rich cluster takes place in two distinct levels: in the local host context (intra-host)
and between hosts using the SAN (inter-host). Intra-host communication can be
facilitated with software that intelligently utilizes the host’s local I/O system. Inter-
host communication requires software that transfers data through both the local I/O
system and backbone SAN substrate.
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Figure 3.2: The inclusion of peripheral devices in the resource-rich cluster architecture.

• Globally-Shared Peripheral Devices: Resource-rich clusters feature a number of
peripheral devices that can be utilized by end applications. While each device in the
cluster is owned and managed by the operating system of the workstation in which it
resides, it is beneficial for devices to be accessible in the global context of the cluster.
The ultimate goal is for any resource to be able to efficiently utilize any other resource
in the cluster.

• Differences in Peripheral Device Capabilities: Peripheral devices are generally
designed to perform specific functions using minimal amounts of hardware resources.
While some devices feature programmable embedded processors and large amounts of
on-card memory, others may only be equipped with low-speed ASICs configured with
simple state machines. Therefore different peripheral devices have different capabili-
ties. These differences influence the extent to which a device can be integrated into
the resource-rich cluster environment and made available as a global resource.

• Limited Local I/O Capacity: Workstations have a fixed capacity for local I/O
operations. In addition to being limited, local I/O bandwidth is generally shared
among all peripheral devices in a host. Therefore it is important that data transfers
involving the local I/O system be orchestrated in an efficient manner. For example, if
data is being moved from one resource to another in a host, it should be transferred
directly with a single copy as opposed to a two-copy approach where the data is first
transferred into an intermediate host buffer.

3.1.4 Resource-Rich Cluster Computer Applications

There are a number of applications that can benefit from the use of resource-rich cluster
computers. One motivating example can be found in the field of high-performance network
servers. As depicted in Figure 3.3, a resource-rich cluster could be used to implement a
tightly synchronized web server that is capable of sustaining high network loads. In this
example each host in the cluster utilizes an intelligent LAN adaptor card to service incoming
requests from external clients and an intelligent storage adaptor to house portions of a large
database. In order to service incoming requests, the LAN adaptors communicate directly
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Figure 3.3: An example of a resource-rich cluster functioning as a network server.

with the appropriate storage controller card using the SAN and the communication library.
This form of large-scale server is particularly useful for applications such as digital libraries,
where the database is enormous and cannot simply be replicated at each host.

Resource-rich cluster computers can also be utilized for applications that process large
multimedia data streams. In a full-scale multimedia task, audio and video data is acquired
by multimedia capture devices, streamed through various computational resources in the
cluster, and then ejected to either storage or output devices. In this application the com-
munication library must efficiently transfer data between cluster resources in order to meet
real-time requirements. A variant of this task is to utilize host CPUs to generate the data
streams instead of capture devices. An example of this task is illustrated in the WireGL
project [43], where multiple hosts in a cluster generate objects that are combined and ren-
dered to a grid of output displays. These types of operations can be beneficial in scientific
applications where a small cluster is utilized to graphically render the computational results
of a larger cluster [26, 76].

3.2 Design of Message Layers for Resource-Rich Clusters

Physically constructing a resource-rich cluster is a relatively straightforward task: individual
components of the architecture can be purchased and assembled from commodity parts
that are widely available. A more challenging task is constructing software that allows
the hardware to function as part of a single system. Utilizing commodity software such as
the open source GNU/Linux operating system is a significant first step in this effort. Linux
provides well-defined APIs and built-in device drivers for managing many different hardware
devices. However, current generation commodity operating systems are only designed to
control a local host, not a cluster of hosts. What is needed is a communication library that
is located in or directly above the operating system to provide an application with a means
of utilizing the resources that are distributed throughout the cluster. As discussed in the
previous chapter, this communication library serves as a means of presenting end users with
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a form of virtual parallel-processing machine for distributed applications.
Existing communication libraries are inappropriate for resource-rich clusters because

they do not provide mechanisms for accessing peripheral devices in the global context. Ex-
tending these communication libraries to provide such access is nontrivial or impossible
because the libraries are optimized under the assumption that the NI is controlled exclu-
sively by the host CPU. Therefore it is necessary to consider how a communication library
can be designed with fundamentals that support the needs of resource-rich cluster comput-
ers. In this effort it is beneficial to examine both system level issues as well as practical
features that assist end users. These factors influence the design of the communication
library and must be addressed in order for a resource-rich cluster to function efficiently.

3.2.1 Definition of a Communication Endpoint

One of the first tasks in designing a message layer is defining what constitutes an endpoint
in the cluster. In this thesis, a communication endpoint is a programming abstraction that
allows a resource in the cluster to be connected to the message layer. This abstraction
enables the resource to send messages to and receive messages from other resources that
are available in the cluster. For resource-rich clusters, host CPUs and peripheral devices
are allowed to function as communication endpoints.

There are three components of a general communication endpoint implementation.
First, an endpoint utilizes a block of its local memory to serve as a place for housing
queues for incoming messages. These queues allow other resources in the local host (e.g.,
the NI and other local endpoints) to pass messages directly to the endpoint’s address space.
Second, an endpoint is equipped with methods for interpreting and processing messages
from the incoming message queues. These methods allow the endpoint to react to the stim-
ulus of a new message. Finally, an endpoint features mechanisms for ejecting an outgoing
message to another resource in the local host (e.g., the NI or a local endpoint). These
mechanisms allow the endpoint to interact with other resources in the cluster.

While desirable, it is not necessary for a communication endpoint to implement all three
of these message-passing components. Designers may omit one or more of these components
based on the characteristics of the resource. For example, a peripheral device that functions
as a data source only needs to be equipped with mechanisms for ejecting outgoing messages.
Likewise, a data sink only needs to be able to accept and process incoming messages. The
advantage of implementing all three components of the communication endpoint software
is that doing so allows users to better customize their interactions with the resource. Users
can send data requests to these resources and receive feedback or data results.

3.2.2 Architectural Design Issues

The architectural characteristics of a resource-rich cluster have a strong influence on the
way that communication library software should be designed for these clusters. Key issues
that must be addressed include the following.

• End-to-End Flow Control: Flow control is utilized as a means of preserving buffer
space in the communication library implementation. Resource-rich clusters typically
employ a large number of communication endpoints, many of which have limited
computational facilities. Therefore it is infeasible for each endpoint to manage end-to-
end flow control for delivering messages. Instead, resource-rich cluster communication
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libraries should utilize per-hop flow control schemes that simplify the workload of the
endpoints.

• Shared NI Access in a Host: In resource-rich clusters a host may be equipped with
multiple communication endpoints at both the host CPU and peripheral device levels.
Each of these endpoints must access the NI to communicate with other endpoints in
the cluster. Therefore the communication library must provide efficient means of
sharing the NI among multiple endpoints. These mechanisms must allow multiple
endpoints to coherently inject data into the NI. For this task we propose the use of
NI-based logical channels.

• Flexible and Powerful Programming Model: The communication library must
provide a programming model that is flexible enough to serve the diverse needs of
cluster users. This programming model must be able to support traditional host-
to-host communication mechanisms as well as means of interacting with peripheral
devices in the cluster. The model must also be extensible, allowing new functionality
to be added by end users when necessary. We propose the use of two APIs in the
communication library: one for active messages and the other for remote memory
operations.

• Simple Standardized Endpoint Interface: A variety of diverse cluster resources
must implement communication endpoint software. For robustness and portability it
is useful if the endpoint interface adheres to a standard form that is universal for all
endpoints. Since there is a large amount of diversity in the capabilities of peripheral
devices, it is important that this interface be designed in a manner that allows it to
be implemented on even the simplest of peripheral devices.

• Optimizations: Modern communication libraries are expected to deliver high levels
of performance for traditional host-level transactions. While a communication library
for a resource-rich cluster trades some performance for increased functionality, the
library should still be able to provide reasonable amounts of host-level performance.
Therefore it is necessary to include optimizations in the library when possible for
improving performance.

3.2.3 Design Overview

Designing a communication library for a resource-rich cluster requires the construction of
appropriate mechanisms to address the preceding design issues. While there are certainly
many possible solutions, we define a list of four key design characteristics that can be utilized
to provide a suitable communication library. These characteristics are discussed in detail
in the following sections and summarized as follows. First, per-hop flow control can be
utilized to address the need for dynamic buffer management in the communication library
without complicating the communication endpoint software. Second, the use of multiple
logical channels in the NI allows communication endpoints in a host to share a NI without
heavyweight synchronization protocols. Third, an active message style programming inter-
face provides a uniform means by which end users can efficiently utilize peripheral devices.
Finally, the programming interface can be supplemented with methods for interacting with
remote endpoint memory in order to improve the flexibility of the library as well as its
performance.
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Figure 3.4: Endpoint-managed flow control schemes typically require send/reply messages
to be transferred between endpoints to manage flow control credits. The dark buffers in the
NIs represent buffer space that is reserved until the send/reply transaction completes.

3.3 Per-hop Flow Control

Reliable communication libraries utilize flow control mechanisms to manage buffer space
in the library. Without flow control an incoming message can erroneously overwrite an in-
flight message that has not yet been processed. For simplicity several reliable message layers
implement flow control at the host level. This approach can be labeled as endpoint-managed
flow control, and requires an endpoint to acquire a flow control credit for the intended
destination before it injects a message into the NI. The credit represents a reservation of
buffer space along the entire communication pathway in the library (i.e., the sending and
receiving NIs and the receiving endpoint). Endpoints must maintain flow control state
information and communicate with other endpoints when updating this information.

Endpoint-managed flow control is inappropriate for resource-rich clusters because it
complicates endpoint responsibilities. A more appropriate mechanism recommended for
resource-rich clusters is to manage flow control on a per-hop basis. In this approach a mes-
sage can progress along its communication pathway when enough buffer space is available
to receive the message in the next communication stage. While this adds complexity to the
design of the communication library it simplifies the work a communication endpoint must
perform in order to interact with the library. A key element of this design is managing flow
control between NI pairs. An optimistic approach is suggested for this effort in order to
reduce communication latency.

3.3.1 Disadvantages of Endpoint-Managed Flow Control

In an endpoint-managed flow control schemes an endpoint must secure a reservation of
buffer space for a message from all of the network elements that will be used to transfer
the message before the message can be injected into the network. Rather than perform
reservations on-demand, most endpoint-managed flow control schemes use a credit-based
reservation system, where network buffers are allocated in advance and assigned to the
endpoints in the system. An endpoint has a limited number of credits to communicate
with each endpoint in the system and must spend a credit before the communication can
begin. After receiving a message an endpoint must transmit a credit-replenishing reply to
the sender. An example of this scheme for a single transaction is depicted in Figure 3.4.
The shaded regions in the message queues represent buffer space that is allocated for a
transmission during the time between when the message is first transmitted and the reply
is received.

There are several negative aspects of endpoint-managed flow control for both traditional
and resource-rich clusters. First, endpoint-managed flow control schemes perform injection
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Figure 3.5: Per-hop flow control utilizes synchronization in the communication path to
allow messages to progress when buffer space is available.

policing at a coarse granularity. It is possible that an endpoint will delay injecting a mes-
sage into a NI that has buffer space for the message, simply because buffer space has not
yet been reserved for the entire communication path. Second, endpoint-managed flow con-
trol schemes require credit information to flow between endpoints. This information adds
to the network traffic and may be redundant. Finally, in endpoint-managed flow control
schemes each endpoint is responsible for dynamically managing its own flow control cred-
its. This requirement adds to the work that individual endpoints must perform in order to
communicate. As the number of nodes increases in the system, this management becomes
a substantial effort that requires larger memory and compute resources. These resources
may exceed the capabilities of some peripheral devices, thereby preventing their use in the
cluster.

3.3.2 Per-hop Flow Control

An alternative approach to endpoint managed flow control is for the communication library
to perform buffer management on a per-hop basis. In this approach a message is transmitted
to the next stage in the communication path as soon as buffer space is available to receive the
message. As illustrated in Figure 3.5, the communication library moves data in three phases:
sending-endpoint to sending-NI, sending-NI to receiving-NI, and receiving-NI to receiving-
endpoint. Each of these phases employs flow-control mechanisms to guarantee that data
is transferred reliably from one stage to the next. This approach is commonly referred to
as NI-based flow control because the most challenging aspect of the implementation is the
transfer of data between NI pairs.

For resource-rich cluster computers the primary advantage of per-hop flow control is
that it can greatly simplify the software for communication endpoints. In this scheme
an endpoint simply injects a message into its local NI as soon as buffer space becomes
available in the NI. From the endpoint’s perspective the communication process completes
after the injection because the individual network elements in the communication path are
guaranteed to reliably transport the message to its destination endpoint. Unlike endpoint-
managed flow-control schemes, the per-hop approach does not require endpoints to maintain
state information for in-flight messages. This property simplifies the amount of work an
endpoint must perform to communicate in a reliable fashion, and is particularly valuable in
case where peripheral devices with limited capabilities are being used as endpoints.

Another benefit of a per-hop flow control scheme is that buffer space can be managed
dynamically. In this approach a communication element such as a NI makes a decision to
accept or reject an incoming message based on whether the element currently has enough
buffer space to house the message. Therefore the hardware devices that propagate a mes-
sage allocate buffer space on demand as needed by applications. An example of how this
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trait can be beneficial can be found in a scenario where two endpoints are communicating
exclusively with each other at a particular point in time and are not receiving data from
other endpoints in the cluster. In this situation the NIs of the elements effectively allocate
all of their buffer space for the communication between the two nodes. This buffer space
allows more messages to be in-flight between the endpoints at the same time, which im-
proves overlap in the communication pipeline. Endpoint-managed flow control schemes do
not allow such dynamic use of resources because allocations are managed at a high level
with coarse granularity.

3.3.3 Optimistic NI-NI Flow Control

NI-based flow control mechanisms can be implemented in a variety of manners. A popular
approach is to employ a credit-based scheme where each NI has a limited number of credits
for communicating with other NIs in the cluster. As observed in the endpoint-managed flow
control case, this approach may result in a NI unnecessarily delaying a transmission because
acknowledgements have not propagated back to the sender. Another approach is to utilize
a scheme where the sending NI requests a reservation of buffer space from the receiving NI
before a message is transmitted. This approach is useful in times of high network loads
because data messages are only transmitted when they can be received. However, this
approach has poor performance for the common case where the network is not saturated
because a reservation must be acquired before a data message can be transmitted.

An alternative approach to NI-based flow control is to utilize an optimistic transmission
scheme. In an optimistic approach the sending NI transmits a message with the expecta-
tion that the receiving NI will be capable of accepting the message when it arrives. The
receiving NI transmits a positive or negative acknowledgement to the sender depending on
whether the message could be accepted or not. If the sending NI receives a positive ac-
knowledgement the buffer space allocated for housing the in-flight message is deallocated.
If a negative acknowledgement is received the sender performs a rollback on the outgoing
message queue and retransmits the message and all of the following messages that are to
the same destination.

An optimistic NI-based flow-control protocol has several benefits. First, similar to a
credit-based scheme, an optimistic protocol allows a newly detected message to be trans-
mitted without delay. Second, the optimistic approach does not require any form of credit
management. Instead messages must be identified and tracked by the NIs. However, this
work is normally required by any NI-based flow control scheme. Third, the NIs naturally
allocate buffer space in this approach to meet runtime needs. This trait takes place auto-
matically without explicit signaling between NIs. Finally, the optimistic approach allows
the network’s delivery latency to be overlapped with useful work. The sending NI can begin
transmitting a message at a time when the receiving NI cannot accept it. By the time the
message arrives at the receiver it is possible that the receiver will be able to accept the
message, thereby reducing the latency of delivery.

3.4 Logical Channels

An important characteristic of resource-rich clusters is that there are multiple communi-
cation endpoints in a host that need to interact with the SAN. Since a host generally has
more endpoints than NI cards, it is necessary to construct mechanisms that allow the end-
points to share the NI. In traditional approaches, this sharing is performed in the kernel
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Figure 3.6: The traditional approach to providing shared access to a network device through
the use of the kernel.

by constructing multiple virtual network interfaces for end applications. Unfortunately this
approach is inefficient for resource-rich clusters because it is difficult to present these virtual
interfaces to peripheral device endpoints in an efficient manner.

Without kernel-based NI management, it is necessary to implement synchronization
mechanisms in the individual endpoints to guarantee that the NI is accessed in a mutually
exclusive manner. Utilizing explicit signaling between endpoints is complex and impedes
performance. Therefore we propose moving the task of managing shared access to the
network into the NI. In this approach the NI employs multiple message queues that are
referred to as logical channels. Each endpoint has exclusive ownership of a small number of
the NI’s logical channels. The endpoint utilizes these logical channels as virtual interfaces
for communication with the network. The task of mapping the logical channels onto the
physical network is dynamically performed by the NI. In addition to providing a sharable
means of low-latency communication, logical channels can also be utilized by applications
to provide isolation between different types of network data streams and allocate bandwidth
among peripheral devices.

3.4.1 Sharing Network Access through Kernel Management

For traditional networks such as Ethernet, the kernel is utilized as a means of sharing
a physical NI card with multiple applications. As depicted in Figure 3.6 the kernel has
exclusive ownership of the NI and provides virtual communication interfaces for multiple
application endpoints. The kernel therefore must merge the messages injected by endpoints
into a single outbound NI queue and distribute incoming messages from the network to
the proper endpoints. In addition to providing a scalable means of sharing the NI, this
approach protects end applications from each other by insulating the applications from the
low-level hardware.

Utilizing the kernel as a means of sharing the NI is impractical for resource-rich clusters
due to the types of network interactions that are utilized in these clusters. The primary
problem with relying on the kernel to manage the NI is that the communication interfaces
provided by the kernel are designed to operate with host-level endpoints, not peripheral
device endpoints. Adapting a peripheral device to operate with these interfaces is difficult
and inefficient. The peripheral device would have to route all of its network transactions
through the kernel and utilize costly interrupts to invoke the necessary kernel operations.
This process requires extra data copies and taxes the memory and I/O systems of the host.
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Figure 3.7: Utilizing multiple logical channels in the NI to provide shared access to the
network.

Another disadvantage of utilizing the kernel to manage the NI is that host-level endpoints
must invoke kernel calls for network operations. Since kernel calls can be relatively expensive
operations, it is beneficial if shared access to the NI can be accomplished without involving
the kernel driver.

3.4.2 Sharing Network Access through Logical Channels

Another means of sharing the NI with multiple endpoints is simply to remove the depen-
dencies that exist between endpoints that interact with the NI. One such approach is to
implement a small number of independent message queues or logical channels in the NI.
Each of these logical channels is assigned to an endpoint in the host when the system is ini-
tialized. Because an endpoint has exclusive ownership of its logical channel(s), it can send
and receive message without having to synchronize with other endpoints in the system.
The NI in this approach is responsible for mapping the logical channels onto the physical
network at runtime through the use of a simple scheduling algorithm. An example of this
approach is illustrated in Figure 3.7.

There are several benefits to using logical channels as a means of providing shared access
to the NI. First, this approach removes the need for any form of direct synchronization
between endpoints that are interacting with the NI. An endpoint can begin injecting data
into the NI as soon as buffer space is available in its logical channel. Second, endpoints
interact directly with the NI. Unlike kernel-managed approaches, an endpoint transfers data
directly into the NI without intermediate buffering. Finally, this approach provides a simple
interface for communication that can be implemented for many peripheral devices without
complex management mechanisms.

There are two primary disadvantages to utilizing logical channels in the NI. First, there
is a finite amount of buffer space available in the NI for implementing logical channels. As
the number of logical channels in the NI increases, the buffer capacity of each logical channel
decreases. Therefore it is expected that most resource-rich cluster users will allocate only
a few logical channels in the NI (i.e., roughly one per endpoint). Second, the presence
of multiple logical channels in the NI has a negative impact on the performance of the
NI. Because the NI must spend time managing each logical channel, the NI’s workload
increases as more logical channels are added to the NI. Additionally, NI firmware becomes
more complex when it is switched from servicing a single queue to multiple queues. This
complexity results in extra NI operations which detract from performance.
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Figure 3.8: Utilizing multiple logical channels to prioritize messages.

3.4.3 Application Level Use of Logical Channels

In addition to allowing multiple endpoints to share the same NI, logical channels can be
utilized by end applications as a simple means of separating traffic streams. For this use an
application requests two or more logical channels from the NI and assigns different traffic
streams to each channel. Data streams on different logical channels are isolated from each
other due to two properties of logical channels. First, each logical channel has a private
allocation of buffer space in the NI. Therefore if one traffic stream saturates its logical
channel’s buffer space, other logical channels are not affected. Second, in-order delivery in
the communication library is guaranteed only for messages that belong to the same logical
channel. This property is necessary in order to allow the NI to implement a fair scheduling
algorithm where each logical channel has equal access to the NI. The result is that a message
injected into an empty logical channel does not have to be delayed until all of the messages
in other queues are transmitted.

An example of how the presence of multiple logical channels in the NI can be exploited
by an end application is illustrated in Figure 3.8. In this example an endpoint obtains two
separate NI logical channels for two types of network traffic. The network bandwidth made
available for each logical channel is controlled through a scheduler implemented in the NI.

3.5 Active Message Programming Interface

One of the defining characteristics of a communication library is the programming interface
that is provided to the end user. Users of resource-rich clusters require a flexible program-
ming interface that can easily be extended to support new functionality. As a means of
addressing this need we propose constructing the communication library with two types of
programming interfaces: one that employs active message style processing (described in this
section) and another that provides a means of interacting with remote memory (described
in the following section). For the active message interface each communication endpoint is
equipped with various function handlers for processing incoming messages. Whenever an
endpoint injects a message it specifies the function handler the receiving endpoint should
use to process the message when it arrives. In addition to providing a powerful means of
controlling computations in a distributed processing environment, the active message pro-
gramming interface is well suited to controlling peripheral devices in a resource-rich cluster.
In this effort peripheral device functionality is encapsulated as a set of active message func-
tion handlers that all endpoints in the cluster can utilize.
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3.5.1 Active Message Operation

The fundamental concept of active messages is that a message contains both application
data and information describing how the receiver should process the message. While active
network research [88] has discussed encoding complex processing instructions into active
messages, a more common approach is for endpoints to be equipped with predefined methods
for processing messages. These methods are commonly referred to as function handlers.
When the communication library is initialized each endpoint publishes a list of its function
handlers to other endpoints in the system. At runtime when an endpoint injects a message
into the communication library it must specify the function handler the receiver should use
to process the message. Endpoints are responsible for monitoring incoming message queues
and processing new messages with the appropriate function handler.

The appeal of an active message interface is that it provides basic programming mecha-
nisms that are both powerful and flexible. As opposed to simply transferring data between
endpoints active messages provide a means of invoking actions at remote endpoints. These
actions can be utilized in an active manner to remotely control the behavior of an endpoint.
For example a message handler can be designed to spawn, modify, or terminate a compu-
tation in an endpoint. With these types of operations a user can directly control the flow
of computations in a distributed system. Active messages can also be utilized in a passive
manner where a remote endpoint’s state is not affected by the execution of a handler. For
example, a handler can be designed to simply return the remote endpoint’s current dataset
to the sender of the message. From the remote endpoint’s perspective the processing of
the function handler takes place in the background and does not affect the endpoint’s main
thread of execution.

The original active message specification [27] is not directly applicable for resource-rich
clusters because it is only designed to operate with homogeneous endpoints. Therefore it is
necessary to construct a more robust specification that allows diverse endpoints to interact
with the active message interface. Three issues must be addressed in this specification. First,
function handlers must be managed in a dynamic fashion by the communication library. It
is not practical to statically configure endpoints with a list of the cluster’s handlers because
endpoint software would have to be recompiled every time a new application defined new
handlers. Second, handlers should be referenced with useful labels, such as string and
integer identifiers. In addition to being portable, these identifiers help make programs
more readable (e.g., referencing a handler by the string “handler compute PI” has more
meaning than a pointer to the handler’s virtual memory address). Finally, active messages
should be formatted in a manner that is interpretable by endpoints with different byte
orders and word alignments. Constructing a single message format that takes into account
these characteristics provides standardization among endpoints and allows an endpoint to
transmit a message without having to know the processing characteristics of the destination
endpoint.

3.5.2 Utilizing Active Messages with Peripheral Devices

The active message programming abstraction is particularly useful for resource-rich clusters
because active messages can be used as a simple but powerful means of controlling peripheral
devices. In this approach a set of active message function handlers are defined for all of the
actions that a peripheral device can perform. Endpoints in the cluster can therefore trigger
an operation at a peripheral device by transmitting a properly formatted active message to
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Figure 3.9: Active messages can be used to facilitate an API for a peripheral device.

the device containing a reference to the function handler that needs to be invoked. Figure 3.9
illustrates an example of how a host-level endpoint can interact with an intelligent storage
controller at a remote host using the active message programming interface. In order to
obtain data from a desired file, the host CPU transmits an active message that contains the
name of the file and the function handler id am fetch file(). Upon receiving this message
the storage controller accesses the file and generates an active message with the handler
am return file data() and the requested data. The transaction completes when the host
CPU endpoint receives this reply and stores the data accordingly.

Using an active message programming interface to control a cluster’s peripheral devices
is beneficial for a number of reasons. First, it is relatively easy to integrate new peripheral
devices into the cluster using this interface. Designers simply construct a series of card-
specific active message function handlers for a peripheral device and provide references
for the handlers to application designers. Second, the active message interface serves as
a universal communication substrate upon which multiple APIs can be layered. In this
system each peripheral device has its own API that is comprised of card-specific active
message handlers. Endpoints therefore invoke a peripheral device’s API operations by
transmitting the corresponding active messages using the communication library’s message
passing functions. Finally, the active message interface is beneficial for controlling peripheral
devices because it allows an endpoint to utilize a peripheral device no matter where the
resources are physically located. Since API operations are separated from communication
mechanisms, users can issue API operations knowing that the communication library will
automatically perform any routing in the cluster that is necessary.

3.6 Remote Memory Programming Interface

The second programming interface proposed for a resource-rich cluster’s communication
library is one that allows an endpoint to directly interact with the memory of a remote
host. This remote memory interface is designed to provide an efficient means of transferring
data from one endpoint to another. A remote memory programming interface can also be
utilized as a means of performing custom interactions with a cluster’s peripheral devices.
This functionality is especially beneficial because it can be used to allow an endpoint to
control a peripheral device for which it is impossible to construct endpoint software. Issues
involved in implementing a remote memory interface include integrating the interface into
a library that also supports active messages, and providing the functionality to translate
an endpoint’s virtual address space into a physical address space.
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3.6.1 The Need for a Remote Memory Interface

While active messages provide a flexible communication interface for end users, there are
certain operations for which active messages are not ideal. For example, consider the case
where an application needs to transfer a large block of data from one endpoint to another.
In the active message approach the data is encapsulated in an active message that is marked
with a data transfer function handler. The receiver processes this message by copying the
message’s payload data to the memory location specified in the message’s arguments. This
process is inefficient because two transfers are involved in the receiving endpoint: one from
the NI to the endpoint’s incoming message queue and another from the message queue to
the target address. With a remote memory programming interface it is possible for the NI
to transfer the data directly to the message’s target memory address.

Remote memory operations are also valuable in resource-rich clusters because they can
be used to support low-level interactions with remote peripheral devices. The architecture
of several peripheral devices makes it impossible to construct endpoint software that would
allow these devices to participate as intelligent resources in the cluster. For example, video
display adaptors are generally designed as data sinks and therefore it is unlikely that end-
point software can be constructed for such adaptors. However it is still desirable for other
resources in the cluster to be able to interact with the adaptor. With a remote memory
interface it is possible for an endpoint to transmit image data into the video adaptor’s frame
buffer. These forms of direct memory transactions can be useful in a number of resource-
rich cluster applications where data must be deposited into distributed memory locations
in an efficient manner.

3.6.2 Remote Memory Interface

From an end user’s perspective a remote memory interface is relatively straightforward. The
user supplies the interface with the source and destination addresses, the direction and size
of the transfer, and the identifier of the remote endpoint. The communication library is then
responsible for transferring the block of data utilizing the most efficient means available. In
the case of multiple transactions, remote memory transfers are completed in the order that
they are issued. Remote memory interfaces generally allow both read and write operations.
Write operations are simpler to implement as data is simply streamed from the sender’s
address space to the receiver’s. Read operations are more complex as the sender must issue
a message that fetches data from the receiver’s address space. Results are returned in a
reply message and written into the sender’s address space.

A host system operates with two related address spaces: virtual memory addresses and
physical (or bus) memory addresses. The API for a remote memory interface must be
designed to allow users to universally reference memory distributed throughout the cluster.
As a means of simplifying the interface for end users utilizing virtual memory references are
preferred since a memory reference is the same in both the host where the memory resides
and remote endpoints. As a consequence it is necessary for the communication library to be
capable of internally transforming virtual addresses to physical addresses that the NI can
utilize. The library must also provide mechanisms to prevent a memory region from being
moved by the kernel (e.g., a page fault) during a memory operation. Finally, it is beneficial
for a remote memory interface to be able to operate with physical addresses, in order to
provide efficient direct access to memory-mapped devices.
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3.7 Related Work

Various aspects of this thesis are related to themes found in other research projects. A com-
mon goal of all these efforts is to enhance cluster computer performance by incorporating
powerful peripheral devices within the hosts. Researchers have designed custom I/O ar-
chitectures to support this functionality as well as specialized software to integrate specific
peripheral devices into the communication model. This thesis is distinguished from past
work in that it provides a general framework for integrating all manner of peripherals into a
low-latency message layer. Device-specific functionality is separated from network-specific
functionality to produce an extensible design and significantly improve the productivity of
the application designer with minimal sacrifices in performance. The following efforts rep-
resent state-of-the-art research being performed involving resource-rich cluster computers.

3.7.1 InfiniBand

Industry is currently developing a new generation of I/O fabric called InfiniBand (IB) [44]
that can potentially serve as a means of constructing resource-rich cluster computers. IB is
primarily designed as a turnkey solution for a number of high-end server issues. It provides
a high-performance communication substrate that functions as a system area network, a
storage area network, and a distributed I/O system. In addition to featuring expandable
multi-gigabit links, IB defines a protocol for efficient communication between peripheral
devices and host CPUs. This protocol could therefore be utilized by end users to allow
peripheral devices to be integrated into the cluster’s computational model. Therefore IB
represents a promising communication substrate for resource-rich cluster computers in the
near future.

A fundamental difference between the work presented in this thesis and InfiniBand can
be found in the hardware architectures used for these systems. In the work presented in this
thesis, it is assumed that cluster computers will be constructed with commodity hardware
that is currently available. This approach utilizes existing hardware and defines flexible
mechanisms for addressing the performance obstacles of the hardware. In contrast, IB is
a complete overhaul of the I/O architecture found in current generation clusters. With
the freedom to redesign the low-level architecture of the cluster computer, IB designers
constructed a new hardware environment that is conducive to high-performance communi-
cation. The difficulty in this approach is public acceptance: the success of IB as a commu-
nication substrate depends on the generation of new hardware products that provide better
performance than current products. In comparison, the work in this thesis utilizes current
generation hardware and can be adapted to exploit gains in faster network substrates as
they become available.

3.7.2 Extensions to the GM Message Layer

In recent years Myricom’s GM message layer has become the de facto standard for tra-
ditional clusters interconnected with Myrinet hardware. GM exhibits a number of basic
characteristics that make it a desirable starting point for constructing a message layer for
resource-rich clusters. In addition to utilizing NI-based flow-control mechanisms, GM sup-
ports multiple concurrent users of the NI through the use of multiple work queues. While
GM does not specifically support active messages, it provides a generic programming inter-
face that allows other APIs to be layered on top of it. GM also provides mechanisms for
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low-level interactions with the virtual memory system, which can be extended to provide
remote memory operations.

While GM can be extended we note that there are fundamental design issues that make
the adaptation of the message layer to resource-rich clusters non-trivial. The primary dif-
ficulty is that the basic means for a communication endpoint to interact with the message
layer is through a work queue. In this approach an endpoint inserts a reference to a message
that needs to be injected. When the NI is ready it processes the work entry by pulling the
message into the NI. It then inserts a notification message into the endpoint’s completion
queue that specifies that the host memory housing the message can be reused by the ap-
plication. While suitable for host-level endpoints, this process may not be appropriate for
some peripheral devices because it requires the peripheral device to maintain a block of
data until the NI has retrieved it. Peripheral devices generally have limited memory and
resources to manage such interactions.

3.7.3 OPIUM

GM has been extended in previous work to allow the NI to directly interact with multiple
peripheral devices. In the OPIUM [20] project researchers examined the extension of GM
to support SAN interactions with a specific SCSI card. The goal of this work is to minimize
the number of traversals that take place across the PCI bus for servicing network requests
for file data. The researchers accomplished this task by modifying the storage card’s device
driver so that it could issue DMA operations to route file data directly to a buffer located
in NI card memory. In later work opium was modified to allow the NI to directly write data
into a video display card’s frame buffer [38].

While Opium provides the first steps in allowing peripheral device interactions with
the SAN, the work is directed at providing an ad hoc solution for two specific devices.
While the modifications that allow the host to control SCSI interactions with the network
is certainly useful for network attached storage efforts, the work is card-specific and may
not be suitable for other peripheral devices that could be used in the cluster. Likewise,
the work with integrating a video display card into the communication library does not
demonstrate an interaction with an intelligent peripheral device, because a display card’s
frame buffer can trivially be written by any PCI device in a host. This work however does
provide a motivation to improve the flexibility of the communication library in order to
allow peripheral devices to be utilized in an efficient manner by cluster applications.

3.7.4 Adaptive Computing Machines

Another area of work that is related to this thesis is the field of Adaptive Computing Ma-
chines (ACMs). In ACMs a number of field-programmable gate arrays (FPGAs) are utilized
as a means of processing an application with dedicated hardware [30]. In this approach the
FPGAs are configured to emulate application-specific circuitry that can rapidly perform
an application’s computations. Unlike ASICs which cannot be reprogrammed, FPGAs can
easily be configured to emulate different circuits as needed by the application. While ACMs
are not particularly useful for general-purpose applications, they can be valuable for appli-
cations that require complex computations be performed in real time [92, 57].

Initial work in ACMs resulted in custom hardware that employed arrays of FPGAs
[39]. Observing that these systems were expensive to construct, researchers in the late
1990’s began investigating the use of multiple commercial FPGA cards to function as an
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ACM. In the Tower of Power project [52], sixteen x86 workstations were equipped with
commercial FPGA cards and linked using a Myrinet SAN. The researchers investigated the
use of existing Myrinet software to allow data to be transmitted between FPGA cards [11].
This effort resulted in the computational environment where researchers could effectively
utilize the distributed FPGA cards as part of an ACM.

One of the hardships that researchers had to face in the Tower of Power project is
transporting data between FPGAs in the cluster. Rather than implement new communi-
cation software the researchers layered their programming interface on top of a Myrinet
implementation of MPI. The researcher’s software therefore utilizes the host CPU to man-
age application interactions with an FPGA card. While simplifying the design effort, this
approach delays communication and results in extra traversals of the host’s I/O bus. Ad-
ditionally, selecting MPI as the base programming interface makes it challenging to modify
the system to support direct interactions between the FPGA card and the NI. MPI endpoint
software is complex and therefore nontrivial to implement for an FPGA card. However, this
work indicates that there is a definite interest in utilizing peripheral devices in a cluster to
perform custom computations.
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CHAPTER IV

MESSAGE LAYER IMPLEMENTATION: GRIM

The design considerations outlined in the previous chapter have driven the implementation
of an extensible message layer for resource-rich clusters. This message layer is known as
GRIM: the General-purpose Reliable In-order Message layer. GRIM has evolved consid-
erably since its initial development in 1997, but has always provided three basic features:
NI-directed flow-control, NI-based logical channels, and an active message style program-
ming interface for interactions between cluster resources. This work was extended in later
versions to provide an additional remote memory interface for efficiently transferring data
between endpoints. GRIM has been used to incorporate multiple peripheral devices into
the cluster computing environment. This chapter examines the core functionality of the
GRIM library, specifically focusing on low-level implementation details that shaped the li-
brary. The core’s end-to-end performance for host-CPU interactions is presented in the next
chapter, which is followed by details of the library’s use in peripheral device interactions.

4.1 Overview of GRIM

GRIM is a message layer for resource-rich cluster computers that in the current version
utilizes a Myrint SAN for interconnecting host systems. The GRIM communication li-
brary is comprised of user-space software, kernel-space device drivers, and peripheral device
firmware. The library currently utilizes the Linux 2.4 kernel, although previous kernels have
been used during GRIM’s evolution. In order to minimize the impact of an ever-changing
Linux kernel, the majority of GRIM’s functionality is constructed in user-space software and
NI-based firmware. In recent versions of GRIM, the LANai 4 NI firmware has been ported
for use with the newer LANai 9 version of the Myrinet NI card. This adaptation has resulted
in significant performance improvements due to advances in the LANai’s architecture.

The organization of GRIM’s core components is depicted in Figure 4.1. Starting at
the lowest level of the software, GRIM utilizes a NI-based reliable transmission protocol
for delivering messages in order between NIs. This protocol is optimistic in that messages
are transmitted with the expectation that the receiver can accept the message. Messages
are supplied to the reliable transmission protocol from a small collection of logical channels
located in NI memory. Each logical channel provides a virtual communication interface for
an endpoint in the host and serves as a place for buffering messages that are in transit. At the
application level an endpoint can utilize two programming interfaces for interacting with a
logical channel. The active message interface allows the sender to mark an outgoing message
with the function handler the receiver should use to process the message. This interface
provides a queue in the endpoint for buffering incoming message that cannot be processed
immediately by the endpoint. The second programming interface is for remote memory
operations. Memory used with this interface must be registered with the communication
library. This interface provides multiple mechanisms for translating virtual addresses to
physical addresses, and allows the NI to process incoming remote memory messages directly.
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Figure 4.1: GRIM utilizes logical channels and a reliable transmission protocol at the NI
and provides two different programming interfaces for end applications.

4.1.1 Message Structure

The fundamental unit of communication in the GRIM communication library is a data
message. GRIM uses a single message format for all of its operations and therefore it is
instructive to examine the common message format. A data message in GRIM comprised
of two portions: a message header and payload data. The message header consists of eight
32-bit words that are formatted in network byte order (i.e., big endian). The first four
words contain information necessary for delivering the message. These words are arranged
in a manner that allows a receiver NI to begin processing an incoming message as soon as
possible with consequent reductions in overall latency. The remaining four words allow users
to supply up to four user-defined 32-bit data values in each message. While the inclusion
of these fields in every message header increases GRIM’s minimum message size, the fields
are frequently used in a variety of manners and simplify the interface for the end user.
Following the message’s header is payload data. This region is defined entirely by the user.

Figure 4.2 provides the format of a GRIM data message. The individual fields in a
message are defined as follows.

• GRIM ID: This field identifies a message as belonging to the GRIM communication
library. A NI in GRIM only examines messages that are labeled with this identifier.
GRIM is registered with Myricom and has been assigned the identifier 0x0636.

• NI Token: The token ID is supplied by the NI and utilized to reference an in-transit
message.

• NI Sequence Number: The sequence number is created by the sending NI and uti-
lized by the receiving NI to verify delivery order in the reliable transmission protocol.
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Figure 4.2: GRIM uses a single message format for all transactions in the communication
library.

• Message Type: The type field is used to distinguish between different forms of
messages used in the library. Message types include active messages, remote memory
operations, NI control messages (e.g., ACK or NACK), and multicast operations.

• Payload Correction: Internally GRIM aligns payload data on 32-bit boundaries.
The payload correction value is used to truncate the length of the payload to match
the number of bytes specified by the sending endpoint.

• Multicast Tree: This value is used in multicast operations to identify the multicast
tree to which a message belongs. Multicast operations are discussed in Section 8.1.

• Source Endpoint: The source field identifies the endpoint that created the message.

• Payload Word Length: This field specifies the number of 32-bit words that are in
the payload section of the message.

• Destination Endpoint: This value identifies which endpoint in the cluster to which
the message should be delivered.

• Logical Channel: An endpoint that transmits a message can assign a 16-bit logical
channel identifier to the message. This identifier is used to group messages that must
be delivered in order by the message layer.

• Active Message Function Handler: This value identifies which active message
function handler should be used to process the message at the receiving endpoint.

• User Arguments[0-3]: Users can specify up to four 32-bit arguments to be included
in an active message. These fields are utilized in remote memory operations to specify
the addresses to be utilized in a data transfer.

Internally GRIM uses an abbreviated version of the message header for control messages
(ACKs and NACKs). Control messages are only 8 bytes long and contain basic information
to allow updates in the reliable transmission protocol.
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4.2 NI-Based Reliable Transmission Protocol

One of the key characteristics of GRIM is the use of a reliable transmission protocol for
transferring messages between NIs in the cluster. GRIM utilizes a variation of the “go-
back-n” protocol that optimistically transmits a message with the expectation that the
receiver will be able to accept the message when it arrives. If the receiver cannot accept the
message, the protocol automatically performs rollback on the sender’s message queue and
retransmits messages as needed. In order to facilitate this operation GRIM utilizes control
messages and maintains state information for each message queue. Since control messages
utilize the same network as data messages, it is possible for a poorly designed system to
reach deadlock. GRIM avoids this condition by buffering outgoing control messages when
a response to an incoming message cannot be transmitted due to a busy outgoing link.
Performance measurements of GRIM suggest that the NI-based reliable delivery protocol
is advantageous over other approaches. When compared to system employing host-based
flow control, GRIM allows endpoints to inject a greater number of outstanding messages,
thereby reducing the sending endpoint’s injection overhead.

4.2.1 Protocol

The NI-based reliable transmission protocol implemented in GRIM is a variant of the tradi-
tional “go-back-N” protocol [87] for retransmissions and operates as follows. The successful
transmission of a message is depicted in Figure 4.3(a) with three steps. (1) When a sending
NI observes a new message to send it marks the message with the next sequence id for the
destination NI and a token id that can be used to reference the message. It then transmits
the message to the destination and increases the sequence number register for the desti-
nation. (2) When the message reaches its destination NI, the receiver NI verifies that the
message’s sequence number matches the expected value for the sender. If it does and the
receiver has enough buffer space, the message is accepted and a positive acknowledgement
(ACK) with the data message’s token id is transmitted to the sender. (3) When the ACK
reaches the sender NI, the NI uses the token id to mark the corresponding message in the
message queue as acknowledged. If the message is the oldest outstanding message, the NI
walks through the queue structure freeing buffer space for all acknowledged messages until it
reaches an unacknowledged message, a message that has not been transmitted, or the back
of the outgoing queue. With this protocol the sender is allowed to have multiple messages
to a destination in-flight at the same time as illustrated in Figure 4.3(b).

In the case where the receiver cannot accept an incoming message due to a lack of
buffer space, the protocol uses a negative acknowledgement (NACK) control message to
force the sender to retransmit messages. Figure 4.3(c) illustrates such a case where a sender
optimistically transmits three messages with sequence numbers and token ids of 0, 1, and
2. After the first message is accepted the receiver is unable to accept data due to a lack of
buffer space and must transmit a NACK for message 1. The receiver at this point drops
incoming messages from the sender until message 1 is received and buffer space is available.
When the sender receives a NACK it must rollback the outgoing queue to the message
referenced in the NACK. It then retransmits the message and all following messages in the
outbound queue that are for the same destination. Messages for other destinations are not
retransmitted. The procedure is repeated until all messages are reliably delivered.

The implementation of this protocol in GRIM takes advantage of Myrinet’s reliability
guarantees and the fact that source routed messages do not get reordered in the network.
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Figure 4.3: (a) Acknowledged transmission of a single message between NI pairs. (b)
The optimistic transmission and acknowledgement of three messages. (c) The optimistic
transmission of three messages with retransmission due to the lack of buffer space.

While other network substrates do not exhibit these characteristics, the implementation can
be extended to function under different operating conditions without significant changes to
the protocol. For networks that can re-order messages (such as an Ethernet LAN with
multiple routers), the sequencing portion of the protocol preserves in-order delivery. The
arbitrary dropping of packets on the other hand requires the protocol to be modified with
timeout mechanisms. These mechanisms automatically retransmit data and control mes-
sages after a specified amount of time under the assumption that the network has lost a
message.

4.2.2 Managing In-flight Messages for Different Queue Mechanisms

An important part of implementing a NI-level reliable transmission scheme is constructing
mechanisms that allow the NI to manage multiple in-flight messages. These mechanisms
require the sending NI to maintain a database of in-flight messages that is populated with
information that can be used to coherently perform rollback on a message queue when a
message needs to be retransmitted. This work is highly dependent on the types of queuing
mechanisms that are used to buffer messages in the sending NI. Over its evolution, three
different styles of queuing have been used for GRIM, as illustrated in Figure 4.4(a-c). In a
slotted approach (a), queue buffer space is evenly divided into fixed-sized slots for housing
individual messages. An append-style approach (b) differs in that messages can be placed in
the queue without any gap between successive messages. Finally, in a hybrid-approach (c),
a combination of the previous two mechanisms is used. In this approach a message’s header
is stored in a slotted message queue while its payload is stored in a separate append-style
queue.

The advantage of a slotted approach to queuing messages is that messages always begin
at specified locations in the queue. In addition to simplifying the management of the
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Figure 4.4: Three approaches to queue buffer management include (a) a fixed-sized slot
queue buffer, (b) an append-style approach, and (c) a hybrid approach.

queue, the NI can easily store a message’s state information in its message queue slot. For
example, the first word in a message slot can be reserved for housing the message’s current
acknowledgement status (e.g., not sent, sent, acknowledged, or unused). The sending NI can
then easily walk through the queue structure when rollback is performed and make necessary
state updates by modifying specified values in each slot. The downside of this approach is
that queue buffer space is not used efficiently when messages are not the maximum transfer
size. Because of the limited amount of NI buffer space, this approach is not utilized in
GRIM.

The append-style message queue makes more efficient use of a queue’s buffer space
by allowing messages to be placed in the queue without wasting space between messages.
The difficulty with this approach is that messages are not stored at fixed locations in the
queue. Therefore accessing a particular message in the queue is non-trivial because the
NI must sequentially walk through the queue, examining each message to determine the
starting address of the next message. This operation is expensive and makes storing state
information in the message queue impractical. Instead, state information for in-transit
messages can be stored in a separate data structure by the sending NI. Recent versions of
GRIM employ an append style of queuing and store message information in a structure
called a scoreboard. When a NI detects a new message in the outgoing queue it records
information about the message (such as its memory location) in a new scoreboard entry.
Because scoreboard entries are at fixed offsets, the NI can easily walk through the scoreboard
when processing incoming control messages.

The last style of message queue used in GRIM is a hybrid-approach where a slotted
queue is used to store a message’s header and an append-style queue stores a message’s
payload. This approach is advantageous because in-flight messages can easily be managed
using information in the slotted header queue while at the same time message payloads are
stored efficiently. Although the hybrid approach was used in early versions of GRIM, it
had to be abandoned due to a few shortcomings. The first issue is that endpoints in this
approach must maintain two sets of queue pointers to interact with an outgoing message
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Figure 4.5: The use of control messages can result in deadlock. A cycle is formed in (a)
when two nodes transmit data messages to each other at the same time. Deadlock can be
prevented by buffering control messages (b) when the outgoing link is not available.

queue. This requirement complicates endpoint software and does not match the design
goals of a resource-rich cluster. A second and more serious issue is that it is difficult to
protect against deadlock. Since a message is housed in two separate memory regions, the NI
must perform two separate DMAs of the message to the network. If the NI firmware blocks
the transmission of the second DMA until the first DMA completes, a cyclic dependency is
formed and it is possible to reach deadlock. This form of deadlock was observed in the early
versions of GRIM and therefore the hybrid approach was dropped in favor of the previous
append-style approach. The append-style approach allows a message to be transferred to
the network with a single DMA.

4.2.3 Avoiding Deadlock Caused by Control Messages

An important aspect of implementing a communication protocol is constructing it in a
manner that does not lead to deadlock. While the network itself may be deadlock free,
poorly designed reliable transmission protocols for the NI may result in cyclic dependencies
between the NIs that prevent forward progress in the system. The primary hazard is that
a NI must inject an ACK or NACK message back into the network upon receiving a data
message. If the NI cannot accept a new message until the control message is dispatched,
a dependency is formed between incoming and outgoing network links. An example of
how this dependency can lead to deadlock is pictured in Figure 4.5(a). In this example
two NIs transmit data messages to each other at the same time in a congested network.
Both NIs accept their incoming messages and must transmit reply messages for the receive
process to complete. However, because one NI cannot proceed until the other completes the
injection of the control message, neither can make progress and the result is deadlock. This
phenomenon was infrequently observed in early versions of GRIM, even with small network
configurations.

One means of deterring this form of deadlock is to provide buffering within the cycle. As
illustrated in Figure 4.5(b), GRIM employs a special queue for buffering control messages
that cannot be injected into the network due to a busy outgoing link. When an incoming
data message is processed by a NI, an ACK or NACK message is inserted into the control
message queue if the outgoing link is busy or the control message queue is already populated.
The NI’s firmware is designed to transmit buffered control messages as soon as the outgoing
link becomes available. This method of preventing deadlock relies on the consumption
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Figure 4.6: Injection policing effects of a credit-based flow control scheme implemented
on top of the optimistic NI-based scheme used in GRIM. Performance is measured as the
average message injection overhead time for null length messages.

assumption [67] that is basis of most deadlock prevention schemes.

4.2.4 Observed Advantages to NI-based Flow Control

One of the arguments for employing flow control in the NIs is that buffer space can be used
dynamically as needed by applications. In this scheme a receiving NI rejects a message
only if the intended endpoint lacks buffer space for accepting the message. In comparison,
endpoint-based flow-control schemes generally reserve buffer space across the entire com-
munication path before a message can be transmitted. This reservation results in injection
policing that can limit performance. As a means of investigating the effects of injection
policing, a benchmark program was constructed for GRIM to simulate an endpoint-based
flow-control scheme. In this test an endpoint transmits a large number of messages to an-
other endpoint, which in turn transmits all the messages back to the sender as soon as they
are received. In order to observe policing effects, the sending NI is limited from having
no more than a fixed number of outstanding messages in-flight to the destination at any
time. The benchmark measures the amount of time required for the sender to inject a burst
of null-length messages. This value is divided by the burst size to determine the average
injection overhead for a single message in the burst transfer. The benchmark is run multiple
times, varying the burst size and maximum number of outstanding messages the sending
endpoint is allowed to have at any time.

The results of this experiment are presented in Figure 4.6 for hosts that allow from four
to an unbounded number of outstanding messages. As expected the average message injec-
tion overhead for each test remains low until the injection burst size exceeds the number
of outstanding messages the sender is allowed to have. After this point injection overhead
rapidly increases to a steady-state value. While sharp, this increase is not instantaneous
because the receiver injects credit-replenishing replies at the same time the sender injects
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outgoing messages. As these tests demonstrate, increasing an endpoint’s maximum num-
ber of outstanding messages allows the endpoint to inject larger bursts without overhead
penalties. For the case where no injection policing is performed, injection overhead does
not increase until burst size is larger than 5,000 null-length messages. At this point the
NI buffers become saturated and the host must wait for space to become available in the
NIs. As these tests demonstrate, a NI-based flow control scheme allows buffer space in the
system to be utilized in a dynamic manner. This trait allows endpoints to inject a large
number of messages with minimal amount of overhead for each message.

4.3 Logical Channels

In resource-rich cluster computers the communication library must be designed to allow
multiple communication endpoints in a host to interact with the network through a single
NI. In GRIM this task is performed through the use of NI-based logical channels. A logical
channel in this context refers to a set of data structures housed in NI memory for facili-
tating message transfers between an individual endpoint and the NI. The NI is equipped
with a logical channel for each endpoint in the host and therefore the NI must coherently
transfer data between its collection of logical channels and the physical network at run-
time. The advantage of this approach is that each endpoint is provided with its own virtual
communication interface for the network.

The use of multiple logical channels in the NI has had a significant impact on the design
of GRIM’s NI firmware. One of the more challenging tasks in this effort has been adapting
the reliable transmission protocol used by pairs of NIs to operate with multiple logical
channels. The approach taken in GRIM is to structure the reliable delivery mechanisms
to operate at the logical channel level as opposed to simply the NI level. This approach
can help prevent head-of-line blocking that impedes communication performance. Another
area of GRIM’s firmware that was influenced by the use of multiple logical channels is the
manner in which in-flight messages are buffered by NIs. Because there is a limited amount of
memory available for implementing logical channels, modern versions of GRIM consolidate
all NI-level message buffering into the sending NI. Finally, using multiple logical channels
results in an increased workload for the NI. Therefore the GRIM firmware was examined
to determine which areas are affected the most by the use of logical channels. Performance
tests were constructed to determine the maximum number of logical channels a NI could
support under practical conditions.

4.3.1 Logical Channel Structure

A logical channel provides a virtual communication interface that an endpoint can use
to interact with the network. Each logical channel is equipped with data structures in
NI memory that are necessary for maintaining this interface. Figure 4.7 depicts the data
structures employed for a logical channel in the GRIM communication library.

In GRIM the three components of a NI-based logical channel are as follows.

• Message Queue: Each logical channel provides a dedicated amount of buffer space
known as the message queue for housing in-transit messages. An endpoint supplies the
NI with a new data message by appending the queue with the message and notifying
the NI of the update. Multiple queue styles have been employed in GRIM and are
discussed in Section 4.2.2.
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Figure 4.7: Each logical channel contains data structures necessary for providing a virtual
communication interface.

• Message Queue Registers: A logical channel employs three registers for managing
the capacity of its message queue. The first two of these registers are the front and
back pointers which indicate the region of the queue that is currently occupied by
in-flight messages. A third register provides a next pointer for the NI so that it can
identify the next message to be transmitted in the queue.

• In-flight State Information: In addition to queuing data structures the NI must
also maintain state information for each logical channel. This state includes sequenc-
ing information used by the NI’s reliable transmission protocol and information about
the endpoint that owns the logical channel.

A NI’s logical channels are configured by the host when the system is initialized. End-
points are connected to logical channels based on configuration information supplied to the
communication library. In the current implementation the same logical channel provides
both incoming and outgoing interfaces for an endpoint. While it is possible to use different
logical channels to manage an endpoint’s incoming and outgoing network interactions, doing
so complicates the interface for the end user and is therefore avoided.

4.3.2 Message Sequencing with Multiple Logical Channels

The use of multiple logical channels affects the manner in which a reliable transmission
protocol is implemented in the NI. The primary issue involves the manner in which pairs of
NIs are synchronized to provide in-order delivery of messages from different logical channels.
In the simplest approach logical channel information is ignored in the reliable transmission
process. In this approach all logical channels are mapped on to a synchronous connection
that exists between a pair of NIs. As described in Section 4.2.1, sequencing information is
stored in two one-dimensional arrays: one for labeling outgoing messages and the other for
verifying the order of incoming messages. The (outgoing/incoming) sequencing arrays are
indexed by the value of the (destination/source) NI for the transmission. Sequence values
in the arrays are incremented after every successful transmission. The downside of this
approach is that congestion for one logical channel affects the performance of other logical
channels. Since there is no way to distinguish which logical channel is congested at the
destination, a request to retransmit a message forces the sending NI to perform rollback
on all of its outgoing logical channels. This approach is undesirable, especially in resource-
rich clusters where a host may have multiple endpoints that service incoming messages at
different rates.
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Figure 4.8: In the any-to-any approach, message sequencing is performed on messages
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Another approach to implementing a reliable transmission protocol is to perform mes-
sage sequencing on a per logical channel basis as opposed to a per-NI basis. In this approach
each NI manages two three-dimensional arrays for sequencing values. These (outgoing/in-
coming) sequence arrays are indexed by the values of the source logical channel, the (des-
tination/source) NI, and the destination logical channel. As depicted in Figure 4.8 this
approach allows an any-to-any form of communication between sender and receiver logical
channels. In this approach a message is retransmitted only if previous messages to the same
logical channel were refused. The downside of this approach is that fetching sequence infor-
mation is more time consuming and logical channels must maintain more state information.
This approach is utilized in the current version of GRIM.

4.3.3 Distribution of NI Message Queues

Using multiple logical channels in the NI also affects the manner in which in-transit messages
are buffered during the NI-NI communication process. In the ideal case it is desirable
to provide buffering at both the sending and receiving NIs. Sending buffers allow the
communication library to hide network congestion from the injecting endpoint. Likewise,
a large receiving buffer for a NI can prevent the communication library from having to
retransmit a message when a receiving endpoint is saturated. However, the issue with using
multiple NI logical channels is that there is a finite amount of memory in the NI for housing
the logical channels. Naturally, as the number of logical channels in the NI increases, the
amount of buffer space provided to each logical channel decreases. Therefore it is necessary
to consider how message buffering is performed in the NI in order to efficiently allocate the
NI’s buffer space.

In initial versions of GRIM, message buffering was provided at both the sending NI
(outgoing queues) and receiving NI (incoming queues) as depicted in Figure 4.9. The
intention of this approach is to split the NI’s buffer space evenly between the sending
and receiving tasks. Unfortunately there are at least three drawbacks to this approach.
First, it was observed that the incoming message queues were used infrequently in the
communication path. The characteristic can be attributed to the fact that the endpoints in
the system commonly feature enough buffer space and processing power to match the rate
at which messages arrived from the network. Second, using incoming message queues adds
to the workload of the NI. While a cut-through path allows messages to bypass an incoming
message queue when it is empty, the NI must still examine the incoming message queue
when processing newly arrived messages in order to maintain ordered delivery. Finally, the
allocation of incoming message queues decreased the amount of space available for outgoing
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Figure 4.9: It is possible to buffer in-flight messages at both the (a) sending NI and the (b)
receiving NI. A cut-though path at the receiver improves the performance of the receiving
process.

message queues. This trait decreases the number of messages an endpoint can inject into
the communication library at a time.

Based on these issues, GRIM was redesigned in a manner that only provides NI-level
message buffering at the sending NI. In this approach a message that cannot be accepted by
an endpoint due to a lack of endpoint buffer space is simply dropped by the NI and negatively
acknowledged. Upon receipt of the NACK the sending NI automatically performs rollback
on the appropriate outgoing message queue and retransmits the message at a later time.
While this approach increases network load, Myrinet provides a considerable amount of
bandwidth and retransmissions take pace only when a receiving endpoint is saturated. In
addition to increasing the amount of buffer space available for housing outgoing messages,
this approach reduces the overhead in receiving portion of the NI’s firmware.

4.3.4 Number of NI Logical Channels

Utilizing multiple logical channels in the NI naturally results in an increased workload for
the NI. Therefore it is beneficial to examine how the use of logical channels impacts the
performance of the NI. A first step in this process is determining which portions of NI
firmware are most affected by the use of logical channels. In GRIM’s firmware the use of
multiple logical channels has more of an impact on sending tasks than receiving tasks. In
the sending portion of the NI’s firmware the NI must inspect each outgoing logical channel
to locate newly injected messages. Increasing the number of logical channels therefore
increases the amount of time that a NI must spend searching for new messages to send.
In contrast, the receiving process is not significantly affected by the use of multiple logical
channels. This is because an incoming message contains all the information necessary for
the NI to determine which incoming logical channel should be used to accept the message.

A second step in examining the impact of logical channels on NI performance is determin-
ing the maximum number of logical channels a NI can support under practical conditions.
Given that the sending tasks of the NI are the region of NI firmware that is most affected,
an experiment was constructed to determine how increasing the number of logical channels
in the NI impedes performance. Specifically, this experiment is designed to measure the
amount of time required for a NI to scan all of its outgoing logical channels for new mes-
sages. This scanning time is important because it can add delay to the total transmission
time of an individual message. For example, a NI with 16 logical channels may have to scan
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Figure 4.10: The amount of time required by the NI to search a fixed number of message
queues for new messages.

15 empty logical channels before it can detect a message that was available all along in the
last logical channel. Scanning time is also important because it consumes NI CPU cycles
that could have been used to perform other NI tasks.

The results of the outgoing logical channel search experiment are presented in Fig-
ure 4.10. The test was performed using two versions of the Myrinet NI card, the LANai 4
and LANai 9. As expected the LANai 9’s performance is roughly three times better than
the LANai 4 due to architectural enhancements. When using a single logical channel the
tests revealed that the LANai 4 and LANai 9 require 1 µs and 0.5 µs respectively for the
NI to examine the logical channel. These times increase to 5.5 µs and 1.5 µs for 8 logical
channels, 9 µs and 3 µs for 16 logical channels, and 18 µs and 6 µs for 32 logical channels.
These results can be used to set a practical limit on the number of logical channels used
in a NI. Given that most Myrinet communication libraries provide end-to-end latencies of
approximately 10-20 µs, a conservative approach would dictate that in the worst case a
NI would spend half of the potential delivery time searching for messages in the outgoing
logical channels. Therefore, it is suggested that the LANai 4 and LANai 9 NIs use no more
than 8 and 24 logical channels respectively.

4.4 Active Message Interface

The first of two APIs used in GRIM provides end users with an active message style pro-
gramming interface. This interface is designed to be more robust than the original AM
specification [27] due to the heterogeneity of communication endpoints used in resource-
rich clusters. In GRIM, active message function handlers must be registered with a global
server before they can be used by applications. In this process endpoints submit a string
identifier for each function handler and are returned a unique integer identifier that any
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Figure 4.11: The active message API requires endpoints to register function handlers locally
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endpoint can use to reference the function. An active message contain all arguments nec-
essary for an endpoint to process a message. Therefore GRIM endpoints employ a polling
interface for detecting and processing incoming messages. The active message interface was
extended with an overflow buffer to break the dependency between outgoing messages and
incoming messages and thus avoid deadlock.

4.4.1 Active Message Handler Management

GRIM provides an infrastructure for dynamically managing active message function han-
dlers used in the cluster. The challenge in this task is providing a means for endpoints to
publish a list of available function handlers to the global context and have these handlers
universally identified in a coherent manner. Since handler registration generally only takes
place during system initialization, GRIM dedicates a single node in the cluster for providing
global handler registration. In this approach endpoints submit a list of string identifiers
for available function handlers to the server. The server correlates submissions and assigns
unique integer identifiers for each string identifier. The list of mappings between string and
integer identifiers is then published to all nodes in the cluster.

Figure 4.11 depicts an example of the active message handler registration process used
in GRIM. The first step in this process is for an endpoint to locally identify its available
function handlers using a local registration function. When the endpoint is ready for other
endpoints in the cluster to begin using these handlers it executes a synchronization function.
This function transmits the endpoint’s table of available function handlers to the node in the
cluster that manages the global database of active message handlers. The server processes
the message by assigning new global handler identifiers for function handlers that have not
yet been registered. The entire list of global function handlers is then transmitted back to
the sender, where the data is stored in a global function handler database. At run time
the endpoint consults this database to determine an integer identifier for a named function
handler. If a node cannot perform the translation locally it can issue a request to the server
to determine the proper integer identifier.

4.4.2 Polling Interface

Because of the nature of active messages, end applications do not need to provide specific
reactions to the presence of incoming messages. Instead information included in the header
of a message is used by the receiver to determine how to process the message. However
it is still necessary for each endpoint to be equipped with mechanisms for detecting and
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processing incoming messages. This functionality is accomplished in GRIM through the use
of a polling interface. In this interface end applications must periodically invoke a polling
function in order to guarantee that incoming messages are processed. Internally GRIM
invokes polling operations whenever a user performs a GRIM call in order to guarantee
that an application interacting with the network is at least performing a poll operation
any time a network interaction is requested. For multi-threaded programs GRIM can be
configured to dedicate a thread to periodically invoking a poll operation so that users do
not need to explicitly poll the interface. Unfortunately this multi-threaded approach adds
to the latency of communication.

4.4.3 Deadlock Avoidance for Message Handlers

A common problem in implementing an active message based system is that it is possible
for deadlock to occur at the application level if precautions are not taken. Deadlock can
occur because an active message arriving at a host can inject a reply message back into the
network. The buffer space housing the incoming message cannot be freed until the handler
completes and a handler that issues a reply cannot complete until buffer space is available
in the network to inject the reply. As illustrated in Figure 4.12(a-b), this can result in a
cyclic dependency between two applications when the network is congested. One option for
removing this dependency is to utilize separate buffer space or separate networks for send
and reply messages, and specify that a reply message cannot generate additional replies.
This option is costly in terms of buffer space and limits the functionality of end applications.

A second option that is utilized in GRIM is to provide an overflow message queue at the
host. If a handler must inject data back into the network and there is no room available
for the outgoing message in the NI, buffer space is allocated in host memory to house the
message. This memory serves as an overflow message queue, with additional injections
appended to the queue until all overflow messages can be injected into the network. Since
the host has a finite amount of memory, this approach does not guarantee that application
deadlock due to message recycling will never occur. However with the large amount of
virtual memory available to a host, this approach makes deadlock extremely unlikely and
comes at little penalty to the common case.
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4.5 Remote Memory Interface

The second programming interface provided by GRIM is for remote memory operations.
This interface is designed to provide low-level mechanisms for manipulating and observing
memory distributed throughout the cluster. For management purposes, GRIM requires that
all remote memory operations utilize registered memory. Registered memory is memory
allocated by GRIM that is guaranteed to always be available in physical memory. The
remote memory interface utilizes virtual memory addresses to reference registered memory,
and therefore requires mechanisms to translate a virtual address into a physical address
that the NI can use to complete a remote memory operation. GRIM allows both remote
memory reads and writes, and provides a simple notification mechanism to indicate that a
transaction has completed. As a means of improving performance, GRIM also provides a
special remote memory write operation that uses a physical address to reference registered
memory. While there are basic rules that a user must follow when using the remote memory
interface, the API provides a powerful means of managing distributed data in the cluster.

4.5.1 Registered Memory

The first step in using the remote memory API is obtaining a block of registered memory.
Registered memory refers to a block of memory that has been allocated by the communi-
cation library and pinned so that the host’s operating system does not attempt to relocate
the block’s physical pages. GRIM provides two interfaces for obtaining registered memory.
The first interface obtains a block of memory in user space and then utilizes a system call
to pin all of the pages of the allocation. While this approach can acquire large blocks of
memory, its primary drawback is that the allocated memory is non-contiguous in the physi-
cal address space. This characteristic can result in reduced performance for NI interactions
because when the NI accesses the memory, it must fragment its DMA operations into a
series of page-sized transfers. Additionally, applications using this option must be given
sufficient access privileges for invoking the system call that pins the memory.

GRIM provides a second interface for obtaining registered memory that uses a specially
designed pinned memory management unit. This unit is a combination of both user- and
kernel-level software and provides mechanisms for allocating large blocks of pinned memory
that are contiguous in the physical address space. While the operating systems has a limited
amount of contiguous memory, it is possible for this library to obtain multiple 4 MB regions
from a host with 256 MB of system memory. There are two advantages to using this
interface for obtaining registered memory. First, since this memory is contiguous, the NI
can execute remote memory operations with a single DMA transfer. This feature decreases
overhead and improves performance. Second, applications do not have to be given system
privileges in this approach because a dedicated device driver performs the privileged task
of interacting with the kernel’s memory system.

4.5.2 Virtual Memory Translation in the NI

Remote memory operations are designed to use virtual memory addresses to reference a
block of registered memory. Because the NI operates with physical memory addresses it
is necessary for the NI to be equipped with mechanisms for translating a virtual address
to a physical address. In GRIM the Myrinet device driver is designed to perform address
translation for the NI on demand. In this process the NI DMAs an address translation
request to a known location in the kernel’s memory space and then triggers an interrupt
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signal to obtain the host’s attention. The Myrinet driver handles the interrupt with an
interrupt service routine that examines the request, performs the translation, and writes
the resulting information back to the NI. Once equipped with a translation, the NI can
process a remote memory operation.

Interrupt service routines are expensive operations for both the host CPU and the NI.
Therefore it is beneficial if the NI is equipped with a means of caching address transla-
tions. As Figure 4.13 illustrates, GRIM’s NI firmware is designed with a translation cache
that is divided into two regions. The first region houses static translation entries that are
programmed by the communication library when an application acquires a large block of
contiguous registered memory. The second region of cache entries is for storing translations
performed at runtime by the NI that were not satisfied by the first set of cache entries.
This part of the cache is beneficial in situations where the first set of cache entries is full
or when an application frequently accesses the same virtual address. Cache entries contain
the virtual memory address for the registered block of memory, the size of the block, and
the physical addresses and sizes of the pages that are used for housing the block of memory.

4.5.3 Remote Memory Writes (RM-V, RM-P)

GRIM provides two functions for performing remote memory writes. The first of these
functions utilizes a virtual memory address to reference a remote node’s registered memory
and is referred to as an RM-V operation. At runtime the receiving NI must examine the
arguments of the remote memory write operation, translate the virtual memory address,
and perform the necessary DMAs to store the message’s payload in the physical pages of
the registered memory. Referencing the block of remote memory with a virtual address
simplifies the interface for end users because local and remote endpoints can use the same
memory pointer to reference a block of memory.

GRIM provides a second form of remote memory write referred to as an RM-P oper-
ation. An RM-P operation utilizes a physical address to reference a block of registered
memory instead of a virtual address. RM-P operations are designed for experienced users
that need to perform custom data transfers that take place efficiently. Since RM-P oper-
ations reference the destination’s memory with a physical address, the receiving NI does
not have to perform virtual memory translation to execute the message. Therefore RM-P
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messages are expected to have better performance than RM-V messages. GRIM provides
a set of mechanisms for an end application to translate the virtual address of a local block
of registered memory into a physical address. RM-P operations can also be utilized as an
efficient means of updating the memory of a remote peripheral device.

4.5.4 Remote Memory Reads (RM-RV)

The second type of remote memory operation is designed to allow an endpoint to fetch data
from a remote endpoint’s memory. Remote memory reads operate using virtual addresses
to reference registered memory at the sending and receiving endpoints and are referred to
as RM-RV operations. RM-RV messages are utilized in GRIM as follows. First the sending
endpoint injects an RM-RV message that contains references to (i) the receiver’s memory
that is to be fetched, (ii) the sender’s memory where the results are to be stored, and (iii) the
length of the transfer. When the message arrives at the receiving NI, address translation is
performed and the requested data is fetched into a NI buffer. This data is then transmitted
back to the sending NI in the form of an RM-RV reply message. Upon receiving this reply
message the original NI translates the virtual address specified in the message, DMAs the
message’s payload to the address, and marks the original RM-RV message as acknowledged
in its outgoing message queue.

4.5.5 Endpoint Notification for Remote Memory Operations

When utilizing a remote memory interface, a common operation is to transfer a block of data
and then update a memory location in either the sending or receiving endpoint’s address
space to notify the endpoint that the transfer has completed. This notification operation can
easily be performed using two remote memory operations, the first performing the transfer
and the second performing the update. However, processing two instructions increases the
workload of the communication library, which can degrade performance. Therefore remote
memory operations in GRIM are equipped to provide a simple form of notification when
the remote memory operation is completed by the NI. With this mechanism, users can
specify the location of a single 32-bit word in registered memory that is updated when an
operation completes. Notification information is stored in the user-defined arguments of a
remote memory message. For remote writes the user can specify both the location of the
variable to update as well as a 32-bit value to write to the variable. Remote memory reads
carry more information in the message header and therefore only allow the user to specify
the virtual address of a variable in the sender’s address space that is to be updated. The
NI writes a zero to this address when it finishes storing all of the fetched data.

4.5.6 Mixing Active Message and Remote Memory Operations

GRIM is designed to allow users to work with the active message and remote memory pro-
gramming interfaces at the same time. This feature is possible because both interfaces are
implemented as independent units that are layered on top of a system that reliable transfers
messages between endpoints in the cluster. Since the delivery system forces each program-
ming interface to adhere to a common message format, it is possible to mix traffic from
different interfaces in the delivery system. The outgoing messages of different programming
interfaces are merged when the endpoint injects the messages into the NI. For messages ar-
riving from the network, the NI delivers the messages to the proper programming interface
based on the type field of the messages. However, the active message and remote memory
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Figure 4.14: The data path for active messages provides extra message buffering before
messages are processed compared to the remote memory data path.

programming interfaces have different strategies for buffering and processing messages ar-
riving at the NI. Therefore it is necessary to specify the order in which incoming messages
are processed when the two programming interfaces are used at the same time.

A message layer that implements in-order delivery between a pair of endpoints guar-
antees that messages are processed by the receiver in the same order that that they were
injected by the sender. Unfortunately, differences in the manner that messages are buffered
in the active message and remote memory programming interfaces make this guarantee un-
desirable when the two interfaces are used at the same time. As Figure 4.14 illustrates, the
issue is that while remote memory messages are processed by the NI as soon as they arrive,
active messages are placed in an additional endpoint-level buffer before they are processed.
Therefore, in order to prevent remote memory messages from bypassing active messages, a
strictly ordered system would require the NI to delay executing a remote memory message
until the endpoint’s active message queue is empty. This requirement impedes performance
and negates the benefits of using the NI to process remote memory operations.

An alternative approach is to relax the requirement that the two programming inter-
faces are tightly synchronized in terms of processing order. In this approach messages are
processed in the order in which they arrive at a programming interface, not the NI. An
examination of the communication paths of GRIM reveals that this approach only violates
out-of-order execution in one case: when an active message is followed by a remote memory
operation. Because of the buffering of active messages in the endpoint, this approach can
result in a remote memory operation being executed before preceding active messages are
completed. However, all other uses of the communication library are guaranteed to take
place in the order in which they are injected (AM followed by AM, RM followed by AM,
and RM followed by RM). This approach is implemented in GRIM and requires users to be
aware that remote memory operations may bypass previously injected active messages.

4.6 Summary

GRIM is a communication library designed for clusters that feature a high-performance
Myrinet SAN. One of the key characteristics of GRIM is that core functionality is largely
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pushed into the NI cards. A NI-based reliable transmission protocol allows the NI to
dynamically manage the transfer of data between NIs, and relies on an optimistic approach
in order to decrease latency. Each NI is equipped with multiple logical channels in order
to provide the various endpoints in the cluster with private communication interfaces to
the network. The presence of multiple logical channels in the NI has resulted in changes in
the way messages are buffered in the communication pipeline because each NI has limited a
limited amount of on-card memory. GRIM simultaneously supports both active message and
remote memory programming interfaces. These interfaces provide powerful programming
abstractions that can be utilized in a flexible manner. This description of GRIM represents
the core functionality of the communication library upon which extensions for resource-rich
clusters are built upon.
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CHAPTER V

HOST-TO-HOST TRANSFERS

Modern message layers for cluster computers are optimized to provide high-bandwidth,
low-latency communication between host CPUs in the cluster. While the key design goal
of GRIM is flexible communication among host CPUs and peripheral devices, it is also
desirable if GRIM is capable of providing reasonable levels of performance for host-to-
host interactions. In order to achieve such performance GRIM had to be designed with
communication mechanisms that operate in a streamlined manner. The active message and
remote memory programming interfaces used in GRIM both rely on the same mechanisms
for transferring data between a pair of hosts. These mechanisms use a communication
pipeline that is comprised of three sets of data transfers: host-to-host, NI-to-NI, and NI-to-
host. By optimizing each of these transfers it is possible to improve the overall performance
of GRIM. This performance is further enhanced by end-to-end optimizations that increase
the amount of overlap that takes place between the stages in the communication pipeline.

This chapter examines the low-level performance characteristics of GRIM for data trans-
fers between host CPUs. This analysis takes place in two parts. First, the three stages of
data transfer in the communication pipeline are examined individually. For each pipeline
stage, data transfer characteristics are reported as well as measurements of the amount of
overhead that is required by GRIM to perform stage-specific operations. Second, GRIM’s
performance is examined in the context of end-to-end transfers. In this effort the effects
of pipeline and cut-through optimizations are inspected. End-to-end performance measure-
ments are reported for two sets of hosts and two types of Myrinet NI card. These results
are compared to the performance values of other message layers, and reveal that GRIM
provides competitive performance levels for interactions between host CPUs. These mea-
surements also indicate that GRIM is designed in a manner that allows the overhead of its
sophisticated functionality to be hidden from the critical path.

5.1 Overview of the Host-to-Host Communication Path

In traditional cluster computers the main goal of the communication library is to rapidly
transfer data from one host CPU to another. Since host CPUs are the only resource available
for processing an application in these clusters, existing communication libraries have largely
been optimized for high-performance host-to-host interactions. In resource-rich clusters the
fundamental goal of the communication library is flexible communication, as the cluster
provides diverse resources to assist in the processing of an application. However, it is
still important that a message layer for resource-rich cluster computers be able to obtain
reasonable levels of performance for host-to-host interactions, as host CPUs are expected
to provide significant contributions to application processing in these clusters. Therefore
a key part of examining GRIM is evaluating the communication path it provides between
two host CPUs.

GRIM offers two different programming interfaces that can be utilized for host-to-host
communication: active message and remote memory operations. As Figure 5.1 illustrates
both of these programming interfaces utilize the same communication path between hosts.
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Figure 5.1: The active message and remote memory programming interfaces share the
same communication path. The three phases of data transfer include (1) Host injection, (2)
NI-NI delivery, and (3) NI ejection.

Data transfer in this path can be divided into three separate phases:

• Host injection into the NI (Host-NI): Both the active message and remote mem-
ory interfaces begin the communication process by injecting a new message into the
NI. This operation takes place over the local PCI bus with transfers orchestrated by
the host CPU.

• SAN Transfer (NI-NI): Data is then transferred across the SAN using reliable
transmission mechanisms implemented in the NIs.

• NI Ejection (NI-Host): After receiving a valid message the NI must transfer the
message to the appropriate location. For active messages the NI appends an incoming
message to the host’s message queue. Remote memory operations are performed by
the NI, where data is directly transferred to and from the host endpoint’s address
space.

Implementation details are provided in this chapter for each of the data transfer stages.

5.1.1 Evaluation Environment

Three different clusters were utilized in the performance benchmarks provided in this chap-
ter. The first cluster utilizes hosts that have four 200-MHz Pentium Pro (PPro) processors
and 32b/33MHz PCI. Due to the limited performance of these systems, the PPro hosts
were only utilized to provide a point of comparison for PCI measurements. The second
cluster used in this effort is based on hosts that have a single 550-MHz Pentium III (P3)
processor and a 32b/33MHz PCI bus. These systems provide reasonable levels of perfor-
mance and are characteristic of middle-of-the-road clusters that are commonly utilized in
academic research efforts. The final cluster used in these tests employs hosts that contain
dual 1.7-GHz Pentium IV (P4) processors and feature both 32b/33MHz and 64b/66MHz
PCI buses. While the P4 hosts provide the best performance for all the clusters used in
these tests, the motherboard chipset (Intel 860) for these hosts suffers from unusual PCI
performance characteristics that are unsettling. Therefore, the majority of the benchmarks
presented in this chapter were performed using the P3 cluster. Measurements using the P4
cluster are provided as part of the overall performance evaluation described in this chapter.

The measured values reported in this thesis are the results of benchmarking software
that was constructed to provide practical and repeatable estimates of performance. In all
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of these tests a measurement is performed several times. The median value for all iterations
of a test is reported as the measured value. When applicable the benchmarking programs
used in this work employ cache polluting mechanisms between successive iterations of a
measurement. The mechanisms help to obtain a better measurement of performance under
worst case operating conditions. Finally, it is important to note that benchmarks are
performed on unloaded systems in order to obtain fair evaluation environment.

A common form of benchmarking network performance that is used in this chapter is to
acquire a round-trip timing measurement for a transmission. In this form of measurement a
message is transmitted from one entity to another and then returned to the original sender.
The sender measures the amount of time the message is in-flight in the network and records
this value as the round-trip time. Dividing the round-trip time in half yields an estimate of
the one-way transmission time for the message. One-way transmission times are commonly
referred to as the latency for communication. Dividing the amount of application data in
a message by the one-way communication time provides an estimate of the bandwidth for
the transmission.

5.2 Injecting Data into the Sending NI (Host-NI)

The first stage in the host-to-host communication path is for the host endpoint to inject
a message into the local NI. This task is the same for active messages and remote mem-
ory operations because the sending host endpoint assembles an outgoing message in host
memory and then transfers it to the NI’s memory. There is no simple means of efficiently
transferring data from a host-level application to a peripheral device such as the NI. Since
the host CPU lacks a DMA engine of its own, it must either use the NI card’s PCI DMA
engine to perform the transfer or spend CPU cycles moving the data itself with programmed
I/O (PIO) operations. While DMA operations rapidly transfer large blocks of data, config-
uring the DMA engines is a complex and an expensive operation. PIO mechanisms on the
other hand are simple to implement but offer limited performance. Therefore researchers
typically employ multiple mechanisms for injecting data from the host CPU into a NI and
select the best mechanism for a transfer based on run-time conditions.

Since resource-rich clusters utilize a number of diverse peripheral devices, it is valuable
to encapsulate the various host-to-card transfer mechanisms into a single portable library
that can be used with different cluster resources. From a user’s perspective it is beneficial if
the library employs self-tuning mechanisms that allow the application to examine the host’s
hardware environment and automatically determine the most efficient means of injecting
data into a peripheral device. Such a library has been constructed for GRIM named TPIL:
the tunable PCI injection library. This library selects from multiple CPU-specific PIO
and card-specific DMA transfer mechanisms to maximize the performance obtained for a
given injection size. While this section specifically focuses on the use of TPIL to increase
host-to-NI injection times, the library is utilized with other cards such as the Celoxica card
discussed in the following chapter.

5.2.1 Programmed I/O Transfer Mechanisms

The first method by which data can be transferred from a host application to a peripheral
device is through programmed I/O (PIO) operations. In this approach the device driver for
a peripheral device provides an application with a memory map of the peripheral device’s
on-card memory. This memory appears as virtual memory that the application can read
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or write. Interactions with the memory are translated by the host CPU and I/O chipsets
into individual PCI read or write transactions. PIO operations incur a large amount of
overhead (roughly 1 us for reads, 2 us for writes). In addition to providing a simple means
of interacting with a device, PIO operations allow the host CPU to perform virtual memory
translations for the data residing in host memory automatically through normal virtual
memory operations.

A number of features of the modern x86 architecture can be exploited to accelerate PIO
performance [49]. These hardware features include:

• Write-Combining: The write-combining MTRR registers included in Pentium MMX
and higher processors allow stores to user-specified memory ranges to take place with-
out strict ordering. This allows multiple writes to consecutive memory addresses to
be combined for burst transfers.

• MMX Registers: The eight 64-bit MMX registers can be used as a temporary
buffer for moving 64-byte blocks of data between host memory and the I/O system.
This technique allows data writes to take place as burst operations that are efficiently
mapped by the chipset into PCI transactions.

• SSE Cache Control: The streaming SIMD extensions (SSE) [90] unit adds features
to provide user-level control of the CPU’s cache. In addition to pre-fetching opera-
tions, the SSE hardware provides non-temporal stores where writes can bypass cache
memory and be flushed directly to memory.

Previous literature [15] has discussed the use of write-combining to improve the host-
to-card performance for transfers less than a kilobyte in size. While this greatly reduces
the amount of time an application spends injecting data, there are pitfalls that must be
addressed. The main hazard with write-combining is that writes can be reordered in the
chipset to improve burst transfer performance. For NIs this could result in a race condition
where an update to a queue pointer erroneously bypasses the actual placement of data in
the queue. Such hazards must be prevented through careful definitions of memory regions
that perform write-combining or by using fence instructions made available in Pentium
III processors. A second pitfall is that there are a limited number of regions that can
be marked for write-combining, and that the definition of such operations is a privileged
operation. While early versions of GRIM utilized write-combining, it has been abandoned
in favor of the MMX and SSE PIO transfer techniques.

5.2.2 DMA Transfer Mechanisms

The second means of injecting data into a peripheral device is to utilize DMA transfers. In
this approach the host CPU configures a peripheral device’s DMA engines to transfer data
from host memory to card memory. DMA transfers are generally only useful for moving
large blocks of data because there is a large amount of overhead involved in having the
host orchestrate a DMA transaction. Part of this overhead is due to the fact that the
host CPU must use PIO writes to configure the registers of a card’s DMA engines for each
transfer. Additional overhead can be attributed to the notification mechanisms employed
by the DMA engines. After the host initiates a DMA transaction it must wait until the
DMA completes before it can proceed. A DMA engine typically notifies the host that a
transfer has completed by generating an interrupt, which must be handled by the card’s
device driver.
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The main difficulty in utilizing DMA transfers is dealing with virtual memory. In the x86
architecture PCI devices operate with physical addresses while applications utilize virtual
addresses. As a consequence three issues must be addressed when using a DMA operation:
(i) virtual to physical address translation must be performed, (ii) data for a single DMA
must be contiguous in the physical address space, and (iii) memory must not be changed
(i.e. paged out) during a DMA transfer. Based on these issues designers typically employ
one of two approaches to using DMAs. The first approach is simply to allocate a large block
of pinned contiguous memory which serves as an intermediate buffer for data transferred
with a DMA. While this approach simplifies DMA transfers it incurs the overhead of a data
copy from application memory to the intermediate buffer. Another approach is to instead
pin the user’s virtual memory and perform DMA operations on the individual page frames
housing the data. This approach involves multiple DMA operations but generally provides
the best performance. In the TPIL library three card-specific operations are provided for
transferring memory with DMA engines:

• One-Copy: In this approach user data is copied into a large (128 KB) contiguous
buffer. The card then issues a single DMA to move the data. The operation is repeated
if application data exceeds the capacity of the transfer buffer.

• Double-Buffered One-Copy: Like the previous approach data is copied from user
space to a contiguous transfer buffer in host memory. However, this approach splits
the buffer in half and overlaps the transfer of data into the buffer with the DMA
operation.

• Zero-Copy: This approach pins the pages holding user data and configures the DMA
engines to transfer data directly from the user pages. While individual DMA transfers
are limited to a page in size, this approach removes the need to copy data in host
memory, thus greatly improving speed.

5.2.3 TPIL Host-to-NI Performance

TPIL is designed to operate with the GNU/Linux 2.4 operating system and is implemented
as a combination of user, kernel, and device level software. The internal benchmarking
functions of TPIL were utilized to examine the performance of two types of hosts using
two different versions of the Myrinet NI card. In the first set of tests, the Myrinet cards
were placed in a 550-MHz Pentium III system that only featured a 32b/33MHz PCI bus.
The results of the benchmark are displayed in Figure 5.2. In these tests the PIO methods
had the best performance for small to medium sized transfers (less than 10 KB) while large
transfers were best served with zero-copy DMA operations. The MMX and SSE methods
had similar performance levels until approximately 2 KB, at which point the SSE’s cache
manipulation operations began to positively affect performance. For the DMA operations
the zero-copy method provided the highest levels of performance for this system, with a
maximum transfer rate of approximately 119 MB/s observed for both NI cards. These
transfer rates are less than the maximum 132 MB/s performance levels of the 32b/33MHz
PCI bus because the data transfers are sourced from virtual memory that is non-contiguous
in the physical memory address space.

In a second series of tests the benchmarks were repeated using the 1.7 GHz Pentium IV
hosts. The results of these tests are presented in Figure 5.3 for the (a) LANai 4 and (b)
LANai 9 NI cards. The LANai 4 card was placed in a 32b/33MHz PCI slot and obtained

61



0

20

40

60

80

100

120

140

 10  100  1,000  10,000  100,000  1,000,000

B
a
n

d
w

id
th

 (
M

B
y
te

s
/s

) 

Injection Size (Bytes) 

DMA 0-Copy

DMA 1-Copy DB

DMA 1-Copy

PIO SSE

PIO MMX

PIO Memcpy

0

20

40

60

80

100

120

140

 10  100  1,000  10,000  100,000  1,000,000

B
a
n

d
w

id
th

 (
M

B
y
te

s
/s

) 

Injection Size (Bytes) 

DMA 0-Copy

DMA 1-Copy DB

DMA 1-Copy

PIO SSE

PIO MMX

PIO Memcpy

(a) (b)

Figure 5.2: Host injection performance for a P3-550 MHz host using the (a) LANai 4 and
(b) LANai 9 Myrinet NI cards.
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Figure 5.3: Host injection performance for a Pentium IV-1.7 GHz using (a) the LANai 4
(32b PCI) and (b) the LANai 9 (64b PCI) NI cards.

a maximum injection rate of 102 MB/s using SSE PIO transfers. The DMA engines for
the LANai 4 card performed poorly in this host and allowed data injection rates of only
89 MB/s using zero-copy DMAs. The LANai 9 card was placed in a 64b/66MHz slot
and obtained much better performance. While MMX and SSE PIO transfer mechanisms
were limited to approximately 53 MB/s, the DMA operations were able to reach up to 213
MB/s. An interesting observation of this performance is that for very large transfers, the
double-buffered one-copy DMA operation provides better performance than the zero-copy
mechanism. This trait can be attributed to the fact that the Pentium IV hosts have large
amounts of host-memory bandwidth because the hosts utilize RDRAM for main memory.
Therefore for large transfers it is more efficient for the host to arrange source data so that
DMAs take place in large contiguous transfers than it is for the host to schedule a large
number of small transfers.

As a means of comparing PCI performance between systems, a LANai 9 card was placed
in three different hosts and the injection performance of TPIL was measured. The best
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Figure 5.4: Overall TPIL performance for three different hosts.

transfer rates obtained with TPIL are reported in Figure 5.4 for each host. The PPro-
200 MHz system provided the worst performance in these tests because it has poor PCI
performance and lacks MMX and SSE units. The P3-550 MHz system provided the most
linear performance of all the systems. Linear performance is desirable in a message layer
because the user can be assured that reasonable performance can be obtained regardless
of the size of the messages that are transferred. Finally the P4-1.7 GHz system exhibited
different performance characteristics for its 32b and 64b PCI buses. PIO operations work
well for the 32b PCI bus but not for the 64b PCI bus. The converse can be said of DMA
operations for this system. Based on the performance measurements it is advantageous to
either (a) place the LANai 9 card on the 32b PCI bus if the message layer does not issue
injections larger than 4 KB or (b) construct the message layer to use transfer sizes that
are greater than 8 KB when the LANai 9 card is placed on the 64b PCI bus. GRIM is
optimized for the latter of these options because of the performance benefits of the 64b PCI
bus.

5.3 Data Transfer between NI Pairs (NI-NI)

The second form of transmission in the host-to-host communication path is the transfer
of data from the sending NI the receiving NI. This NI-NI transfer takes place across the
Myrinet network and requires the use of a reliable transmission protocol in order to guar-
antee that messages are transferred in-order from one NI to another. As a first step in
examining NI-NI performance, tests were constructed to observe the amount of time re-
quired to transfer various-sized messages between NI pairs. These measurements give an
estimate of the native performance available in the SAN. Additional measurements were
made of GRIM’s NI firmware to determine how much overhead is added by GRIM’s reliable
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Figure 5.5: Observed bandwidth for different transfer sizes between NI pairs. Measure-
ments are based on round-trip timings.

transmission protocols. These measurements include timings of the individual operations
that are performed by sending and receiving NIs during the reliable transmission process.

5.3.1 Native SAN Performance

A first step in measuring the performance of NI-NI transfers in the host-to-host communi-
cation path is determining the native performance of the SAN hardware. A benchmarking
program was constructed to determine how much bandwidth could be obtained from the
SAN under ideal conditions. In this test round-trip timing measurements are performed
between a pair of NIs that are directly connected by a SAN cable. NIs detect a new message
in this test only when the message has arrived in its entirety at the NI. The test is performed
several times using different values for message size.

The results of the bandwidths measured in this test are presented in Figure 5.5 for
three pairs of NI cards. The first two tests measured the performance of the SAN-1280
links [3] using pairs of LANai 4 and LANai 9 NI cards. The LANai 4 cards are able to
obtain approximately 132 MB/s (1.056 Gb/s) while the faster LANai 9 cards reach close to
150 MB/s (1.2 Gb/s). These transfer rates suggest that NI pairs can obtain a significant
portion of the SAN-1280’s available 160 MB/s (1.28 Gb/s) bandwidth. In the third test
a two LANai 9 cards are configured to use the Myrinet-2000 link standard. These cards
are able to obtain 200 MB/s (1.6 Gb/s), which is 80% of the Myrinet-2000 standard’s 250
MB/s (2.0 Gb/s). It is important to note that the cards obtain good performance even for
small messages. In each test half of the maximum observed bandwidth could be obtained
using messages that were only 256 bytes long. This characteristic is especially important in
cluster computing because many parallel applications frequently utilize small messages for
state updates.
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Table 5.1: Reliably delivering a message incurs overhead at the sending and receiving NIs.

NI Function
Time (µs)

LANai4 LANai9

Sending
NI

Detect new message
(1 Logical Channel / 8 Logical Channels)

1.0 / 5.5 0.5 / 1.5

Set values in message 2.5 1.0

Insert message in scoreboard 3.0 1.0

Receiving
NI

Decode and beging processing message 2.5 1.0

Verify sequencing information 2.0 0.5

Destination capacity check 2.0 0.5

ACK/NACK generation 4.0 1.5

5.3.2 Overhead for the Sending and Receiving NIs

While the previous tests demonstrate that a significant portion of the available SAN band-
width can be obtained for data transmissions, there are a number of operations that take
place at the sending and receiving NIs that add to the overhead of NI-NI communication.
Because these operations degrade communication performance, it is beneficial to determine
and measure the individual tasks that must be performed in the NI-NI transmission process.
Table 5.1 provides a listing of measurements made to perform various operations in both
the sending and receiving NIs for the LANai 4 and LANai 9 NI processors.

As this table indicates, the sending and receiving NIs must perform a number of tasks
before and after a message is transmitted. In the sending NI the message must first be
detected by scanning the NI’s outgoing logical channels. Once a message is detected the
sending NI must mark certain values in the message such as its sequence number and a token
value that can be used to track the message. The sending NI must then record information
about the message in a scoreboard, which allows the NI to keep track of the messages when
retransmissions are necessary. At the receiving NI, an incoming message is first detected by
the NI polling the network DMA interface. After a message has been detected the receiving
NI must decode the message’s header to determine how to process the message. For data
messages the NI must verify that the message is marked with the next expected sequence
number for the logical channel. Messages passing this test are then examined to determine
if the specified destination endpoint has enough buffer space to accept the message. For
accepted messages the NI must generate an acknowledgement message that is transmitted
to the sender after the data message is transferred to the endpoint.

Performing these actions sequentially adds greatly to the overall overhead of the com-
munication process between two NIs. Therefore the NI firmware is designed to operate
in a manner that allows some of these operations to overlap with DMA transactions. For
example in the sending NI scoreboard updates take place after the NI begins transmitting
the outgoing message to the network. Likewise in the receiving NI the firmware begins
decoding and processing a message as soon as the first few bytes of the message’s header
begin to arrive. While it is complex to construct such concurrency in NI firmware, doing so
shaves overhead off of the critical path in the communication library. The fact that GRIM
provides competitive performance to other less sophisticated message layers indicates that
the overhead of GRIM’s increased functionality can be effectively hidden.
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Figure 5.6: Bandwidth measurements for peripheral device DMA transfers into pinned
host memory for (a) P3-550MHz and (b) P4-1.7GHz hosts.

5.4 Ejecting Data from the Receiving NI (NI-Host)

The last stage in the host-to-host communication path is the receiving NI’s ejection of data
to the destination endpoint. In this phase data from active messages and remote memory
operations must be transferred to the proper locations in host memory. The NI accomplishes
this task with the use of an on-card PCI DMA engine. For active messages data is appended
to the back of a message queue for the host endpoint that is located in pinned, contiguous
memory. A remote memory operation on the other hand requires the NI to transfer a block
of data to host memory that is specified in the message. Completing this operation may
require virtual to physical address translation by the NI depending on the arguments of the
message.

5.4.1 Native NI PCI Performance

A first step in examining the performance of the NI-host ejection process is to determine the
speed at which the NI can transfer data to host memory using its on-card DMA engines. A
benchmark program was constructed in NI firmware to measure the amount of time required
for a PCI device to transfer variable sized blocks of data from card memory to a contiguous
region of host memory. This benchmark provides an estimate of the raw PCI performance
a peripheral device can obtain from a host system. Three versions of the Myrinet NI card
were used in this effort. The first two cards are the LANai 4 and LANai 9 NI cards that were
used in the previous tests. The third card is a PCI mezzanine connector (PMC) version of
the Myrinet LANai 4 card. This card is attached to one of the PMC daughter-card slots
available on the Celoxica RC-1000 FPGA card that is discussed in Chapter 6. The RC-1000
card utilizes a PCI bridge unit to allow the LANai 4 PMC card to appear as a normal PCI
device to the host system.

The benchmark software was utilized to measure the PCI performance of the P3-550
MHz and P4-1.7 GHz hosts. The results of the experiment are presented in Figure 5.6(a-b).
For the P3-550 MHz host (a), the normal LANai 4 and LANai 9 cards were able to obtain
up to 132 MB/s using the 32b PCI bus. The LANai 4 PMC card was only able to obtain
approximately 112 MB/s. This degradation in performance can be attributed to the fact
that the PMC card’s PCI transactions are routed through the bridge chip of the RC-1000
card. For the P4-1.7 GHz host (b), the LANai 4 card obtained 130 MB/s from the 32b PCI
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Table 5.2: The amount of time required for the receiving NI to deliver an active message
to the host endpoint for a P3-550 MHz host.

Action
Time (µs)

LANai4 LANai9

DMA (32B / 64KB) message to host 3.0 / 496.0 2.0 / 494.0

Increment and convert queue pointer 1.5 0.5

DMA queue pointer to host 4.0 1.5

bus while the LANai 9 reached 307 MB/s from the 64b PCI bus. It is important to note
that all of these cards were able to obtain reasonable performance levels, even with small
transfer sizes. Half of the maximum observed bandwidth for these cards can be obtained
using transfers that are only 256 bytes long.

5.4.2 Active Message Delivery

In the NI-host ejection stage in the host-to-host communication path, the NI implements
separate delivery mechanisms for the active message and remote memory programming
interfaces. The active message delivery mechanisms operate by inserting an incoming active
message into a FIFO queue that is located in host memory. The NI is equipped with front
and back indices for this queue so that it can determine where to place the next incoming
message without assistance from the endpoint. Once a message has been transferred to the
queue, the NI must notify the endpoint of the arrival of new data. In GRIM this notification
is provided by the NI updating a queue pointer that is located in the endpoint’s address
space.

Instrumentation software was added to GRIM’s NI firmware to determine how much
time is required for the NI to perform its ejection tasks. Table 5.2 lists the amount of
time the NI takes to perform the tasks for ejecting an active message. The first step in the
ejection process is for the host to transfer the active message to the message to the proper
location in the host’s message queue. As the previous subsection discussed, it is possible
for this task to be performed as data is arriving from the network in a cut-through fashion.
The second task is for the NI to increment its local back pointer for the message queue. The
new pointer is also converted into a value that has the same byte order as the destination
endpoint (e.g., big-endian for the x86 host). The final task in ejecting an active message
is to update the endpoint’s back pointer using a DMA transfer. This transfer is only four
bytes long and cannot be performed until the previous DMA completes.

5.4.3 Remote Memory Execution

For remote memory messages the NI must perform a DMA operation using arguments that
are specified in the incoming message. Three different remote memory operations are pos-
sible. The first type of remote memory is a remote memory write to a physical memory
address (RM-P). The NI processes RM-P messages by transferring the payload of the mes-
sage to a physical address specified in the header of the message. As such these messages
are executed immediately upon arrival at the NI without any external translation assis-
tance. The remaining two remote memory operations utilize virtual addresses to reference
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Table 5.3: The amount of time required for the receiving NI to process a remote memory
operation in a P3-550 MHz host.

Action
Time (µs)

LANai4 LANai9

Search NI VM translation cache
(hit / miss)

3 / 10 1 / 4

DMA translation request to host 3 1.5

Host interrupt overhead 6.5 6

Host VM translation and NI update
(1 page / 17 pages)

2 / 17 3 / 10

DMA message payload
(4B / 64KB)

3 / 514 2 / 507

DMA update to lock variable (optional)
(cached / non-cached address)

9 / 29 4 / 17

memory and therefore require the NI to perform address translation. The virtual memory
write operation (RM-V) writes payload data to a virtual address while the virtual memory
read operation (RM-RV) operation transmits the contents of a block of virtual memory to
the sender. All remote memory operations provide an optional mechanism for updating a
separate lock variable in virtual memory when a remote memory operation completes.

Instrumentation software was constructed to determine the amount of time required for
the NI to process remote memory messages. Timings are reported in Table 5.3 for the LANai
4 and 9 NI cards. The first step in processing a remote memory operation is translating
the virtual memory addresses supplied in the RM-V and RM-RV operations. For these
operations the NI first consults a small cache of translations that is located in NI memory.
If a translation cannot be obtained from this cache the NI must DMA a formal translation
request to host memory and interrupt the host. The device driver for the NI parses these
requests, translates the requested virtual memory addresses, and stores the results back into
NI memory. It is important to note that translating virtual memory address is relatively
expensive. However, translation overhead can partially be hidden by allowing translation
to take place while the message’s payload is arriving. After the NI is equipped with the
proper physical address it can begin transferring data between the card and the host. Once
this operation completes a remote memory operation can optionally update a lock value in
host memory. This operation requires a virtual memory translation as well as a DMA of 4
bytes.

5.5 Performance and Optimizations of the Communication Path

While it is important to consider the performance of individual stages in the communication
path, it is also necessary to consider how the stages behave in the context of end-to-end
communication. One method of transmitting data through multiple network elements is to
utilize a store-and-forward communication model. In this model each network element must
receive a data message in its entirety before the message can be transmitted to the next
stage. While this model has poor performance for individual transmissions, it is possible to
use store-and-forward transmissions in a pipelined manner for improving the performance of
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Figure 5.7: Messages are moved in their entirety in a store-and-forward communication
model. The minimum amount of time required to transmit a byte can be determined by
inverting the maximum bandwidth of the transmission mechanism

a series of transmissions. GRIM utilizes built-in fragmentation mechanisms to allow a store-
and-forwards pipeline to be constructed in the communication library. These mechanisms
allow data to be transferred in a high performance manner between host endpoints.

The performance of a store-and-forward system can be improved through the use of
cut-through optimizations. In cut-through approaches network elements are permitted to
begin transmitting a data message before the entire message has arrived at the network
element. Cut-through techniques therefore reduce the amount of time between when a
message begins to arrive at a network element and when transmission begins to the next
stage in the communication pipeline. Cut-through optimizations have been applied in GRIM
to both the sending and receiving NIs. While cut-through benefits are more visible at
the receiving NI, both the sending and receiving NI cut-through optimizations provide
noticeable improvements for the communication pipeline. This section provides details of
the optimizations used to increase the performance of the host-to-host communication path,
as well as performance measurements of each optimization.

5.5.1 Store-and-Forward Communication Model

One approach to implementing a system that delivers data messages through a multi-stage
communication path is to employ store-and-forward data transfers. In this approach each
stage in the communication path must receive a message in its entirety before it can begin
transmitting the message to the next stage. An example of how store-and-forward data
transfers take place in the host-to-host communication path is illustrated in Figure 5.7.
In this example the host-NI, NI-NI, and NI-host transmissions of a data message take
place sequentially with no overlap. Because a message must serially propagate through
all three transmission stages, it should be expected that the performance of the overall
communication path will be roughly a third of the performance of an individual transmission
stage. Using the maximum bandwidth available for each transmission stage (listed to the
right of the figure), it is possible to determine the maximum bandwidth that can be obtained
for the transmission of a single message through the overall communication path. Inverting
the maximum bandwidth for a transmission stage yields the amount of time required to
transfer a single byte through a stage. Assuming 32b PCI buses, the sum of the transmission
times for the three stages is 21.39 ns. This value corresponds to a maximum host-to-host
bandwidth of 46.75 MB/s.
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Figure 5.8: The store-and-forward performance for a single message transmission between
a pair of P3-550MHz hosts using (a) active messages and (b) remote memory operations.

A set of benchmark programs were constructed to observe GRIM’s host-to-host perfor-
mance. These programs use round-trip timing measurements between two hosts to deter-
mine the overall bandwidth that can be obtained from the hosts. The tests are performed
for both the active message and remote memory programming interfaces. In the active
message tests a special function handler is used to either return an incoming message to the
sender or stop a timer if the host is the endpoint that originally transmitted the message.
In the remote memory tests a block of data is transferred using the remote memory write
physical (RM-P) operation. The notification mechanisms of the RM-P operation are used
to update a memory location that holds a value that signifies the completion of a transfer.
The sending and receiving endpoints in the remote memory test poll this notification vari-
able and transmit blocks of data when necessary. These benchmark programs are used in
all of the tests in this chapter that examine host-to-host performance.

The host-to-host benchmarking programs were utilized to observe the performance of
GRIM for the store-and-forward transmission of a single message between two P3-550 MHz
hosts. The results of the experiments are presented in Figure 5.8(a-b) for message sizes
ranging from four bytes to nearly 64 KB. For the tests using the active message programming
interface (a), the LANai 4 and 9 NI cards reached maximum bandwidths of 39 MB/s and 43
MB/s respectively. The remote memory tests yielded nearly identical results. As expected
the end-to-end performance of the system is less than the theoretical maximum bandwidth
of 46.75 MB/s. This reduction in performance is due to processing overhead that takes
place in the various stages of the communication path.

5.5.2 Store-and-Forward Pipelining

While the store-and-forward model of communication only offers limited performance for
transferring a single message, it provides a framework for establishing a high-performance
communication pipeline between a pair of endpoints. In a pipelined approach a series of
messages is transmitted from one host to another in rapid secession. While each pipeline
stage can only forward one message at a time, the abundance of messages to transfer
allows each stage to operate at the same time on different messages. An example of how
this concurrency can result in increased performance is illustrated in Figure 5.9. In this
example a series of messages are transmitted from one host to another. After the host
finishes injecting the first message to the sending NI, it can begin injecting the second
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Figure 5.9: Store-and-forward mechanisms can be used to create a communication pipeline
for increased performance.

message. During this time the sending NI can begin transmitting the first message to the
receiving NI. As the pipeline fills it becomes possible for more stages to operate concurrently,
increasing the performance of the overall communication path. It is important to note that
pipeline performance is dependent on the sizes of the messages that are being transferred
as well as the transfer rates of the individual pipeline stages. For example in Figure 5.9, the
third message is larger than the second message. Therefore there is a gap between when the
NI-NI stage finishes transmitting the second message and when it can begin transmitting
the third message.

Given the performance advantages of pipelining it is beneficial to include mechanisms
in the message layer that allow transmissions to take place in a pipelined fashion. One
means of accomplishing this task is to utilize fragmentation and reassembly techniques at
the programming interface level. In this approach large messages are broken into a series
of smaller messages that are individually transmitted through the communication path
and reassembled at the receiver. Because network hardware generally limits data transfers
to a maximum transfer unit (MTU), most message layers naturally provide some form of
fragmentation and reassembly. GRIM includes fragmentation and reassembly mechanisms
for both the active message and remote memory programming interfaces. Low-level details
of these mechanisms are provided in Chapter 8. These mechanisms were adapted to allow
pipelining to take place in the communication path.

5.5.3 Pipelined Store-and-Forward Performance

The benchmarking programs used in the store-and-forward tests were modified to examine
how fragment size affects the performance of the overall communication pipeline. In these
tests the fragmentation size for the communication library was varied from 256 bytes to
nearly 64 KB (GRIM’s MTU). Host-to-host bandwidth was then measured using different
sized messages for both the active message and the remote memory test programs. The
tests were performed for P3-550 MHz hosts using a pair of LANai 4 NIs and a pair of LANai
9 NIs.

The results of the experiments are presented in Figure 5.10(a-d). The first observation
to be made from these measurements is that pipelining does in fact increase communication
performance for messages that are larger than approximately 4 KB. For these messages
there is enough data being transferred that a message can be fragmented in a manner that
allows concurrency between pipeline stages. As expected best results in these tests were
obtained when the fragment size was selected in the middle range of possible values. For
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Figure 5.10: The performance of different fragment sizes for a pair of P3-550 MHz hosts
using different NIs and different programming interfaces. The tests used (a) active messages
with the LANai 4, (b) remote memory operations with the LANai 4, (c) active messages
with the LANai 9, and (d) remote memory operations with the LANai 9.
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Figure 5.11: Cut-through optimizations allow a pipeline stage to begin transmitting a
message before all of its data has arrived.

the LANai 4 cards a fragment size of approximately 2-4 KB provides good performance
for both programming interfaces. The LANai 9 cards operate well with 1-2 KB fragments.
The lower desirable fragment size can be attributed to the fact that the LANai 9 card is
roughly three times faster than the LANai 4 card, thereby allowing a finer granularity of
transmissions in the pipeline.

The benchmark tests also reveal that there are performance differences between the
active message and remote memory interfaces. The most notable difference is that the
remote memory performance curves generally increase with message size while the active
message curves have slight performance drops at certain message sizes. These drops can
be attributed to the reassembly mechanisms of the active message interface. Fragmented
messages in the active message interface are reassembled in an intermediate message buffer.
Therefore as soon as message fragmentation takes place there is a slight drop in performance
because the receiver must perform an extra copy of all message fragments. The remote
memory reassembly procedures do not need to perform this procedure and therefore function
more efficiently.

5.5.4 Cut-through Optimizations

While pipelining increases the performance of the host-to-host communication path, a crit-
icism is that data transfers are still based on store-and-forward mechanisms. These mecha-
nisms can cause a pipeline stage to delay the transmission of a message until the stage has
received the entire data message. An alternative approach is to employ cut-through rout-
ing, where individual stages are permitted to begin transmitting a message as soon as the
first bytes of the message arrive. For many LAN cards cut-through optimizations are not
possible because network interactions take place at the packet level. However, Myrinet NI
cards allow users to manage network interactions at the byte level. Therefore it is possible
to implement cut-through optimizations in Myrinet at both the sending and receiving NIs.
An example of how cut-through optimization can be applied to the end-to-end communi-
cation path is illustrated in Figure 5.11. In this example a data message is transferred as
a series of smaller segments. Each stage in the communication pipeline can therefore begin
transmitting a message as soon as the first segment of a message arrives.

GRIM implements cut-through transfer optimizations for both the sending and receiving
NIs. The receiving NI implementation is the more straightforward of the two because the
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receiving NI can easily coordinate all necessary data transfers. In the current implementa-
tion the receiving NI monitors the capacity of an incoming message buffer and then begins
transferring data to the host as soon as the network begins to fill the buffer. Implementing
cut-through optimizations in the sending NI is more challenging because of the manner in
which data injections are performed in GRIM. In other message layers [], the sending NI
pulls a data message out of a host endpoint’s address space and pushes the message to the
network. As such it is trivial to implement the transfers in a cut-through manner because
the transfers are performed entirely by the NI. Unfortunately, this approach is not valid for
GRIM because messages are injected into the NI by endpoints in a push fashion. This push
methodology is due to the fact that some endpoints in GRIM are peripheral devices that
operate with simple transfer mechanisms.

Given the benefit of cut-through optimizations, special functions were constructed in
GRIM to allow an injecting endpoint to achieve cut-through data transfers without having
to resort to using the NI to pull messages into the NI. In GRIM the injecting endpoint and
the sending NI can operate in a cooperative cut-through manner. In this effort the endpoint
breaks the injection process of large messages into a series of smaller message segment
injections. After transferring a segment to the NI, the endpoint updates a counter in the NI
that specifies how much of the message has been transferred. When the sending NI detects
a new message it begins transmitting as much of the message as is available to the wire.
The NI then appends the network transmission as new segments arrive. This approach is
cooperative in that in the common case, the endpoint and NI operate at the same time and
transfer a message to the network in an efficient cut-through manner. However, there is no
guarantee that the endpoint and sending NI will be synchronized to perform a cut-through
transfer. In addition to increasing performance, this approach is advantageous because cut-
through transfers can be accomplished without major modifications to the endpoint or NI
software.

5.5.5 Performance with Cut-through Optimizations

The host-to-host performance benchmarks were used to examine the impact of cut-through
optimizations on the communication pipeline. In these tests a fixed fragment size of 4 KB
was selected for the transfers. Sending cut-though procedures were designed to segment a
message into 1 KB blocks, while receiving cut-through mechanisms were designed to move
data to the host endpoint as soon as it becomes available. The tests were performed for
different message sizes using the LANai 4 and LANai 9 cards, with different cut-through
optimizations enabled in each run. These tests utilized only the remote memory operation
for the transfer, although active message performance provided similar behavior.

The results of the experiment are presented in Figure 5.12(a-b). Cut-through optimiza-
tions in these tests provided a significant performance boost for both the LANai 4 and 9
NI cards. Receiver-based cut-through provided the most improvement in the tests due to
the fact that it can operate at a fine granularity. In the best case the receiver cut-through
mechanisms can begin transferring data to the host as soon as the header for the message
arrives. Sender-based cut-through provides a slight performance gain. This gain is less than
the receiver-based optimizations because the 4 KB message fragment size limits the sender
to four injection segments per fragment.

Additional tests were performed varying the GRIM’s fragment and segment sizes. De-
termining a good combination of these settings is highly dependent on the PCI transfer
characteristics of the host and NI cards. For both LANai 4 and 9 NI cards, the performance
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Figure 5.12: The effects of cut-through optimizations on end-to-end performance between
P3-550MHz hosts using the (a) LANai 4 and (b) LANai 9 NI cards. These tests use RM-P
programming interface, a fixed cut-through injection size of 1 KB, and a pipeline fragment
size of 4 KB.
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Figure 5.13: Overall performance of P3-550 MHz hosts in GRIM using (a) LANai 4 and
(b) LANai 9 NI cards.

bottleneck is the transfer of data from host to NI card. The LANai 4 card obtains maxi-
mum PCI injection performance for 1-2 KB transfers. Therefore GRIM is configured with a
segment size of 1 KB and a fragment size of 16 KB for the LANai 4 card. For the LANai 9
card, the DMA engines provide maximum performance at roughly 16 KB. Therefore GRIM
is configured to use a segment size of 16 KB and a fragment size of 64 KB for the LANai 9
card.

5.6 Overall Performance

The host-to-host benchmark programs were run a final time with all performance optimiza-
tions enabled. The three programming interfaces were independently measured in this effort
using message sizes ranging from four bytes to two megabytes. The LANai 4 and 9 NI cards
were used to connect pairs of P3-550 MHz and P4-1.7 GHz hosts.

The results of the experiments with the P3-550 MHz hosts are presented in Figure 5.13(a-
b). For the LANai 4 NI cards (a), the performance curves are relatively smooth. The RM-P
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Figure 5.14: Overall performance of P4-1.7 GHz hosts in GRIM using (a) LANai 4 and
(b) LANai 9 NI cards.

Table 5.4: The overall performance of GRIM for different transfer mechanisms on 550 MHz
Pentium III systems (P3) and 1.7 GHz Pentium IV (P4) systems.

Host PCI NI
Latency (µs) Bandwidth (MB/s)

AM RM-V RM-P AM RM-V RM-P

P3 32b/33MHz
LANai 4 16 18 14 87 66 96

LANai 9 10 10.5 9.5 102 69 116

P4
32b/33MHz LANai 4 17 18.5 14.5 105 65 108

64b/66MHz LANai 9 9 8.5 8 144 98 146

interface provides the maximum performance of 96 MB/s and the minimum latency of 14
µs. The LANai 9 card (b) offers better performance in this host, reaching a maximum
bandwidth of 116 MB/s (928 Mb/s) and a latency of 9.5 µs for RM-P operations. The
transition from PIO to DMA injection mechanisms for this card results in performance
reaching a temporary plateau for messages between 4 KB and 32 KB.

The results of the experiments for the P4-1.7 GHz hosts are presented in Figure 5.14(a-
b). The LANai 4 cards (a) had to be placed in 32b PCI slots in the P4 hosts. These cards
were able to obtain 108 MB/s of bandwidth and 14.5 µs of latency between the P4 hosts
using the RM-P interface. Compared to the P3 tests, the P4s provide better bandwidth but
slightly worse latency for the LANai 4 card. The P4’s superior processing power also helps
the more computationally demanding AM interface to provide performance that is closer to
the RM-P interface than is observed in the P3 tests. LANai 9 cards (b) were placed in the
64b PCI slots of a pair of P4 hosts. In the performance tests the RM-P interface obtains
146 MB/s (1.168 Gb/s) of bandwidth and a minimum latency of 8 µs. Given that the
SAN-1280 links offer a theoretical transfer rate of 160 MB/s, GRIM obtains a substantial
portion of the available host-to-host performance.

GRIM’s overall performance numbers are summarized in Table 5.4. An important obser-
vation of these numbers is that the RM-V interface provides only 60-75% of the performance
of the RM-P interface. This performance degradation can be attributed to the overhead of
translating virtual memory addresses at the receiving NI. The reason why this translation
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has such a negative impact on RM-V performance is that the receiving NI must perform
this operation before an incoming RM-V message can be processed. Because the transla-
tion is the first step in the NI’s receiving process, it is difficult to hide the overhead of the
operation with other transfers the NI must perform. Therefore users should be aware that
the RM-V interface is only capable of providing limited performance.

5.7 Comparison with Other Message Layers

Over the years a number of message layers have been constructed for Myrinet. It is beneficial
to compare the host-to-host performance of GRIM to these message layers in order to gauge
how well GRIM can perform in traditional cluster applications. These comparisons also
reveal how well the complexities of GRIM’s lower mechanics are hidden from the critical
path for end-to-end communication. Unfortunately many of the existing message layers are
no longer supported and cannot be run on modern systems. As a means of comparison,
this section provides two forms of performance estimates for existing message layers. First,
performance estimates are provided for many message layers using the values reported by
the original researchers. Second, performance estimates of the most commonly used message
layer, GM, are provided for the same systems used in the GRIM benchmarks.

5.7.1 Reported Performance

It is important to compare the performance of GRIM with existing message layers for
Myrinet. Performing such a comparison is challenging to do in an accurate and fair manner
for a number of reasons. At a fundamental level GRIM is designed to provide functional-
ity that is not present in other message layers. Therefore comparisons must be limited to
traditional host-to-host metrics. Unfortunately, utilizing previously reported values in this
comparison can often be misleading, as different utilize different hardware and software plat-
forms, and sometimes different definitions of performance metrics. Ideally a fair comparison
would run a standard set of benchmarks on the message layers using the same hardware
and software environment. The hardship in this effort is that several of the message layers
are now legacy software that is no longer supported due to changes in the Linux kernel or
incompatibilities with modern hardware. Rather than port these legacy message layers to
modern systems, the first part of comparing the performance of GRIM is to provide the
performance measurements that were originally reported by the researchers.

Reported performance estimates for a number of Myrinet message layers are listed in
Table 5.5. The majority of these measurements are based on older hosts using the LANai 4
NI card. Therefore the most relevant performance measurements of GRIM are those made
of the P3-550MHz hosts that are equipped with the LANai 4 NI. In these tests GRIM
obtained a maximum bandwidth of 96 MB/s and a minimum latency of 14 µs. In terms of
latency GRIM offers slightly less performance than most of the message layers, but is still
within an acceptable range. In terms of bandwidth GRIM is relatively competitive with
other message layers.

5.7.2 Measured Performance

As a means of providing a more accurate comparison of GRIM’s performance with other
message layers, Myricom’s GM [64] message layer was benchmarked for the P3 and P4
clusters. GM is the de facto standard for communication in Myrinet clusters and supports
a variety of operating systems and NI cards. GM’s internal benchmarking programs were
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Table 5.5: Performance reported for various Myrinet message layers.

Message
Host NI

Latency Bandwidth
Layer (µs) (MB/s)

AM [28]
UltraSparc 167 MHz

(SBUS)
LANai 3 10 38

AM-II [23]
UltraSparc 167 MHz

(SBUS)
LANai 4 21 31

BIP [75] PPro-200 MHz LANai 4 5 126

FM [70] PPro-200 MHz LANai 4 11 76.2

GM [64]
P3-1 GHz
(64b PCI)

LANai 9c
(Myrinet2000)

7 240

LFC [12] PPro-200 MHz LANai 4 12 65

Trapeze [101] P3-450 MHz LANai 4 30 110

Table 5.6: Measured performance for GM and GRIM on 550 MHz Pentium III (P3) systems
and 1.7 GHz Pentium IV (P4) systems.

Host PCI NI
Latency (µs) Bandwidth (MB/s)

GM GRIM GM GRIM

P3 32b/33MHz
LANai 4 24 14 79 96

LANai 9 9.7 9.5 108 116

P4
32b/33MHz LANai 4 24 14.5 69 108

64b/66MHz LANai 9 9.44 8 146 146

utilized to determine how well the message layer performed using the same hardware that
the GRIM benchmarks were performed with.

The results of the GM benchmarking experiments are presented in Table 5.6. In all
of these tests the performance of GRIM was observed as being slightly better than that
of GM. GRIM particularly excelled in the benchmarks involving LANai 4 NI cards. This
characteristic can be attributed to the fact that GM is largely targeted for LANai 9 cards
and that a number of GM optimizations have to be disabled in order for the LANai 4 cards
to function properly. It is important to note that GM is designed to be the most robust and
reliable message layer for Myrinet. It is not the intention of this thesis to claim that GRIM
is a better message layer than GM. Instead, these measurements are reported for the sake
of demonstrating that GRIM provides comparable performance to state-of-the-art message
layers such as GM.
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CHAPTER VI

PERIPHERAL DEVICE EXTENSIONS

A key characteristic of message layers for resource-rich cluster computers is extensibility.
From a hardware perspective, it must be easy for users to adapt these message layers
to support new and diverse peripheral devices in the cluster. In this effort, peripheral
devices are visualized as communication endpoints and added to the cluster’s global pool
of distributed resources. Therefore, the message layer serves as a general framework for
interconnecting both host CPU and peripheral device resources. GRIM is unique in that it
is a message layer that is specifically designed to provide this framework. Peripheral devices
in GRIM interact directly with other resources in the local host (e.g., the NI or other local
endpoints) using efficient PCI transactions. Peripheral devices with sufficient processing
capabilities are allowed to operate in an autonomous manner without the guidance of the
host CPU. For legacy peripherals that are less capable, GRIM can be configured to utilize
host-level software to manage the device’s interactions with the message layer.

This chapter focuses on the task of integrating peripheral devices into the cluster envi-
ronment as communication endpoints. The discussion begins with a generalized description
of how new peripheral devices are added to the GRIM environment. In order to construct
new peripheral device endpoints, designers must be aware of the manner in which endpoint
software is expected to function as well as the methods by which GRIM manages peripheral
device resources. As a means of illustrating the integration process, the remaining por-
tion of this chapter provides implementation details for four peripheral devices that have
been incorporated into GRIM. These devices include an intelligent server adaptor card, an
FPGA accelerator card, a video capture card, and a video display card. These devices offer
a diverse range of processing capabilities and help to demonstrate how GRIM can be used
in a flexible manner to allow applications to utilize these resources.

6.1 Adapting a Peripheral Device for use with GRIM

GRIM is designed to allow multiple peripheral devices distributed throughout a cluster to
be utilized as resources in the virtual parallel-processing machine. The approach taken in
GRIM is to allow each peripheral device to function as a communication endpoint that
interacts directly with the communication library. Therefore, the process of adapting a
peripheral device to operate in the GRIM environment begins by constructing endpoint
software for the peripheral device. This software is comprised of a set of device-specific
active message function handlers for the device and message-passing mechanisms that allow
the device to interact with other resources in the local host. Once endpoint software is
available, a designer must construct host-level software to allow the device to be utilized in
the GRIM environment. GRIM provides a series of built-in functions that can be used by
designers to simplify this task. Finally, end users interact with peripheral device endpoints
through a series of resource-management operations provided in GRIM. These functions
allow a user to locate, reference, and communicate with a resource that is available in the
cluster. The overall organization of the software for a peripheral device endpoint is pictured
in Figure 6.1.
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Figure 6.1: The major components of a peripheral device endpoint implementation.

6.1.1 Peripheral Device Endpoint Software

The first task in integrating a peripheral device into the GRIM environment is to construct
low-level software that allows the device to function as a communication endpoint. This
software is divided into two parts: device-specific active message function handlers and
message-passing mechanisms. The active message portion of the software is responsible for
serving as a means by which end applications can invoke specific operations at a peripheral
device. A designer must therefore construct active message function handlers for a new
peripheral device that adequately capture the device’s key capabilities. After a device’s
function handlers have been constructed, a designer can add information about the handlers
to a static database that is available in the GRIM library. This database allows a peripheral
device’s function handlers to be visible to applications in the cluster and removes the need
for a peripheral device to register its handlers at runtime.

Low-level endpoint software must also implement message-passing mechanisms for com-
municating with the NI and other endpoints in the local host. For outgoing messages, an
endpoint utilizes PCI DMA operations to transfer data to the message queues of other
endpoints. For incoming messages, an endpoint allocates a block of memory for housing
message queues that other endpoints can write. An endpoint must periodically poll its
incoming message queues to determine if new messages are available. GRIM provides a set
of files in C that can be used to simplify the task of implementing this functionality. These
files include data structures for messages and message queues, as well as skeleton code for
performing key message-passing operations. A designer can use this software by including
the files in an endpoint implementation and then defining device-specific functions needed
for the message-passing operations, such as a function for initiating a PCI data transfer.

6.1.2 Host-Level Integration

After endpoint software is constructed for a peripheral device, a designer must provide host-
level software that allows the card to be utilized by the operating system and the GRIM
library. The operating system portion of this software is implemented in a kernel-level
device driver. While device drivers are nontrivial to implement, GRIM performs most of
its operations in user space. Therefore, device drivers for GRIM can be relatively simple,
and require only basic operations such as initializing the peripheral device and providing a
memory map of card memory to user-space applications. Once a device driver is available,
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a designer must construct appropriate user-space software that allows the GRIM library
to interact with the card. Typically, this software includes initialization functions and
device-specific operations that may be needed by applications.

6.1.3 Library Initialization

The GRIM library must perform a number of initialization functions before the cluster can
begin processing an application. The first step in the initialization process is for GRIM to
load configuration information for the cluster from a set of user-defined configuration files.
In addition to providing basic information such as routing tables, the configuration files
specify the peripheral device resources that are available in the cluster. Each host in the
cluster uses this information to determine which peripheral devices it is equipped with and
how it should initialize its devices. Cluster configuration information is stored in a database
that can be accessed by applications at runtime to help locate resource information.

After all devices in the local host have been initialized, GRIM must configure each
peripheral device with information that allows the device to interact with the local NI
and all of the other endpoints in the host. In this process, GRIM determines how many
incoming message queues each endpoint needs and how large each queue should be. GRIM
then updates all of the queue pointers for all of the endpoints in the local host. Two sets of
pointers must be configured for each message queue, one for the sending endpoint and the
second for the receiving endpoint. When configuring these pointers, GRIM must translate
all references to the message queue into values an endpoint can utilize. This procedure is
complex, and automatically accounts for virtual-to-physical address translations, byte-order
differences, and card-specific memory addressing issues. Needless to say, the automatic
endpoint configuration functions are the most mind-numbingly complex part of GRIM.
However, these operations are designed in such a way that when a new device is added
to GRIM, users simply supply basic information to GRIM’s configuration function and
configuration takes place automatically.

6.1.4 Runtime Management

From an end user’s perspective, a communication library for a resource-rich cluster computer
must provide basic mechanisms for allowing users to customize their interactions with pe-
ripheral device endpoints. After initialization, the GRIM library provides a set of functions
for performing such operations. With these functions, a user can query the communication
library to locate a specific type of peripheral device. Users can perform these queries in the
context of the cluster’s global resources, or limit searches to particular hosts. When the
communication library successfully locates a desired resource, it returns an integer identifier
that can be used to reference the resource. Applications can then invoke operations at the
resource simply by injecting active messages that are marked with the reference. Internally,
GRIM provides all of the routing that is necessary for the messages to be delivered to the
resource.

It is expected that some peripheral device endpoints will require more complex man-
agement functions than the current runtime system provides. For example, if an endpoint
needs to use a peripheral device to perform a series of computations, it is beneficial if the
endpoint can temporarily obtain exclusive ownership of the device so that the computations
can take place without interruption. This type of operation can be implemented in GRIM
by utilizing the peripheral device’s host CPU to manage ownership of the resource. In this
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Figure 6.2: Architecture of the Cyclone Microsystems I2O development card.

approach, the host manages a reservation system for a peripheral device that is manipu-
lated with active messages. When an endpoint needs to obtain ownership of the resource,
it transmits the appropriate request to the host and waits for a response before accessing
the device. Similar approaches can be used to layer additional functionality on top of the
existing GRIM software.

6.2 Cyclone Microsystems Server Adaptor Card

The first peripheral device added to the GRIM communication library was the Cyclone
Microsystems server adaptor card [4]. While originally marketed as a general platform for
evaluating the Intelligent I/O (I2O) [51], extensions, this card has become a valuable tool
for active disk and active network research efforts [36]. The overall architecture of the card
is presented in Figure 6.2. At the core of this architecture is an Intel i960 processor [46]
that operates at 66 MHz. This processor includes a built-in 32b/33 MHz PCI unit that
features chained DMA engines and PCI doorbell registers. The card is equipped with 4 MB
of on-card DRAM that can be expanded to 36 MB by populating a standard SIMM socket.
In order to market the development card for different uses, Cyclone Microsystems placed
a custom expansion interface on the card for attaching a daughter card. ATM, Ethernet,
and SCSI daughter cards were constructed for the development card. The daughter card
used in this research effort features two Fast Ethernet ports and two Ultra-wide, Ultra-fast
SCSI ports. Communication between the i960 and the daughter-card components physically
takes place using a secondary PCI bus.

The Cyclone Microsystems development card uses a custom version of the VxWorks
operating system [96] to control the card’s hardware resources. VxWorks provides a UNIX-
like, multitasking environment for applications. Application developers write programs for
this environment in the proprietary Tornado development system [95], and then load the
compiled binaries onto the i960 using either a serial download cable or the card’s Ethernet
controllers. While the VxWorks operating system greatly simplifies the development process
with this card, it is important to note that the i960 may be underpowered for operations
required by the operating system. The I2O card was used in multiple research efforts at
Georgia Tech, the most notable of which is the QUIC [94] project.
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6.2.1 Endpoint Construction

The process of porting the GRIM endpoint software to function on the I2O card was rel-
atively straightforward due to the card’s rich programming environment. The endpoint
software was constructed to run as a normal VxWorks process on the I2O card. At ini-
tialization time, the endpoint process allocates a block of memory for housing incoming
message queues and shares this information with the host library. After initialization the
process monitors the incoming message queues, processes messages, and ejects outgoing
messages to the host’s NI or endpoints. Message ejections are performed using the card’s
DMA engines, allowing the I2O card to operate autonomously without the guidance of the
host CPU. With the help of Ivan Ganev, Robert Goldman, and Kelly Norton, a Linux
device driver was constructed for the I2O card that allowed the card to be utilized by host
applications.

Multiple active message function handlers were constructed for the I2O card to provide
end users with a means of controlling the card’s hardware. Initial development with this
card focused on constructing handlers for both network operations and storage operations.
However, soon after this development began Cyclone Microsystems announced that the disk
controller hardware for this card did not operate in a reliable manner. Therefore the focus of
this work shifted to utilizing this card exclusively for its network hardware. Active message
handlers were constructed so that the I2O card could be utilized as a network bridge,
relaying messages between the SAN and the LAN when needed. These types of operations
are necessary when a cluster is utilized as a large-scale network server that external hosts
connect to through a LAN.

Active message handlers were constructed for the I2O card to allow messages to be
transferred between internal cluster resources and external Ethernet-based hosts. In this
system an external host connects to the I2O card using a long-term socket. Once a con-
nection is established, transactions between the internal resources and external hosts can
take place using a special active message that performs bridging operations. This message
allows a normal active message to be encapsulated as the payload of the bridging message.
When the I2O card receives a bridge message, it extracts the encapsulated active message
from the payload and forwards it to the appropriate resource in the cluster. In order for
bridging to take place the I2O card must maintain a table of Ethernet TCP connections so
that it can relay data to the proper connection.

6.2.2 Performance Measurements

The I2O endpoint implementation was constructed for an early version of GRIM. While
this card has several shortcomings, including several documented hardware problems, it was
sufficient for an initial proof-of-concept demonstration. Simple performance measurements
were made of the endpoint implementation and are presented here. The early version
of GRIM used in these measurements was less robust than the current version and thus
incurred less overhead in host-to-host transmissions. For example, the early version of
GRIM featured 13 µs latencies as opposed to 16 µs latencies for host-to-host transmissions.
This difference should be taken into account when evaluating the performance of the I2O
card.

A test program was constructed to determine how efficiently a host-level application
could interact with an I2O endpoint. In this test, the time required to have a message sent
to and returned from the I2O card was measured. The resulting communication path is

83



for host-NI-NI- I2O, and was performed using the LANai 4 version of the NI card. The
one-way travel time for a short message was measured to be approximately 21 µs. This
latency is much larger than that required for two hosts to communicate. While the I2O card
is situated in close proximity to the NI card, the i960 processor is much slower than the host
processor. Additionally, the I2O card’s DMA engines are designed to transfer large blocks
of data and therefore have a large overhead for performing small PCI transfers. However,
the I2O card illustrates that a peripheral device can operate in an autonomous manner in
the communication library and serves as an example of how intelligent peripheral devices
can directly interact with the NI.

6.3 FPGA Accelerator

Field-programmable gate arrays (FPGAs) are reconfigurable hardware devices that can
be programmed to function as application-specific circuits. In recent years, commercial
FPGAs have grown significantly in capacity, and are now capable of emulating large blocks
of custom computational circuitry. These circuits can be utilized as a means of accelerating
application performance in a cluster, and therefore it is beneficial to consider methods by
which FPGAs can be incorporated into a cluster. Currently, there are multiple FPGA
cards that are commercially available for accelerating a host’s computational performance.
One of these cards is the Celoxica RC-1000 [34], which features a modern FPGA and large
amounts of on-card SRAM.

In order to better investigate the use of FPGAs as computational resources in the cluster
environment, the RC-1000 FPGA card has been adapted to function as a communication
endpoint in GRIM. This process was non-trivial, as endpoint software had to be converted
into hardware circuitry. This circuitry is referred to as the static frame for the device, and
is responsible for managing interactions between the FPGA and other resources in the local
host. A second block of circuitry referred to as the circuit canvas is used in the FPGA
as a place for housing multiple user-defined computational circuits. These circuits are the
hardware equivalent of the active message handlers found in other GRIM endpoints. This
section provides basic details of the RC-1000 FPGA endpoint implementation. Additional
details are provided in the following chapter as well as in Appendix B.

6.3.1 FPGA Overview

In order to use FPGAs in the cluster environment, it is first necessary to understand the
basic characteristics of the technology. FPGAs are reconfigurable hardware devices that can
be programmed to emulate custom, application-specific circuits. Unlike application-specific
integrated circuits (ASICs), which cannot be reprogrammed, FPGAs can be reconfigured
at runtime to emulate different circuits that are needed by applications. A high-level ar-
chitecture of an FPGA is presented in Figure 6.3(a-b). In this architecture, an FPGA is
comprised of (a) a two-dimensional grid of (b) programmable logic blocks. Each logic block
contains a lookup table that emulates a desired logic function. Logic blocks are connected to
implement more complex operations through a programmable interconnection network in-
side the FPGA. In addition to lookup tables, modern FPGA architectures include complex
structures such as blocks of memory, high-speed multiplier arrays, general-purpose CPU
cores, and high-speed network transceivers [97]. State-of-the-art FPGAs are advertised as
being capable of emulating up to 8 million logic gates at a time [99].

Designs for FPGA devices are generally constructed in hardware-description languages
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Figure 6.3: FPGAs are generally (a) large arrays of programmable logic blocks (LBs) that
feature (b) lookup tables (LUTs) and D-flip flops.

such as VHDL or Verilog. While these languages can simplify the design process, it is
important to note that designing hardware is still significantly more time-consuming than
designing software for a general-purpose CPU due to the low-level nature of the work. Once
a design is debugged with simulation tools, it is synthesized into a gate-level description
that is targeted for a particular family of FPGA devices. This description is then placed and
routed for a target FPGA architecture using tools provided by the FPGA vendor. The end
result of this process is a configuration file that can be loaded into the FPGA. Depending
on the size and complexity of a design, it may take anywhere from tens of minutes to tens
of hours for the entire compilation process to complete. Programming an FPGA with a
configuration file can take several milliseconds in modern FPGAs.

6.3.2 Celoxica RC-1000 FPGA Card

The FPGA card chosen for integration into the GRIM communication environment is the
Celoxica RC-1000 FPGA card. This card features a Xilinx Virtex-1000 FPGA [98], 8 MB
of on-card SRAM, and PCI Mezzanine Card (PMC) [5] sockets for connecting two PCI
daughter cards. A LANai 4.3 version of the Myrinet NI card was available at Georgia Tech
in a PMC form factor, and allowed the NI card to be attached directly to the RC-1000
FPGA card. Figure 6.4 illustrates the overall architecture of our FPGA-enhanced NI card
and the major hardware components of the individual cards.

The architecture of the Celoxica RC-1000 card divides on-card memory into four 2
MB banks of SRAM. Each bank is single ported and operates with 32-bit data values.
The RC-1000 provides switching hardware and memory arbitration mechanisms to allow
the single-ported SRAM banks to be accessed by either the FPGA or the PCI controller.
The arbitration mechanisms are implemented in a CPLD through the use of two 4-bit
request registers (one for the FPGA the other for the PCI unit), and one 4-bit grant
register. In this scheme, exclusive ownership of a bank of SRAM is acquired by updating
a request register and polling the grant register. Memory arbitration does not take place
automatically for the PCI controller. Instead, the external entity initiating a transfer of data
to the RC-1000’s memory must first interact with the card’s CPLD and obtain ownership of
the involved SRAM banks. The PCI controller for the RC-1000 is the PLX-9080 chip [74],
which provides a chained DMA engine for PCI transfers. Due to the manner in which the
memory arbitration mechanisms are implemented for this card, the FPGA cannot initiate
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Figure 6.4: Celoxica RC-1000 and Myrinet Peripheral Devices.

its own PCI DMA operations. This implies that the card requires the host’s assistance
whenever the FPGA exchanges data with the host.

6.3.3 FPGA Endpoint Implementation

Integrating the RC-1000 FPGA into the GRIM environment involved defining a hardware
configuration for the FPGA that allows the FPGA to function as a communication endpoint.
This hardware configuration must satisfy three design goals. First, it must be capable of
managing the card’s incoming and outgoing message queues for interactions with the com-
munication library. In addition to injecting and ejecting messages, the FPGA configuration
must be capable of parsing an incoming message to determine which hardware circuitry
should be used to process the message. Second, the configuration must provide simple
mechanisms that allow computational circuits to access the RC-1000’s on-card SRAM that
is not used for the message queues. This memory can be used to store application data
sets in order to improve computational performance. Third, the FPGA configuration must
allow multiple user-defined computational circuits to be loaded in the FPGA for use by ap-
plications. These circuits are analogous to software-based active message function handlers
found in other endpoints.

Based on the preceding requirements, circuitry was designed for the FPGA to allow the
RC-1000 to function as a communication endpoint. As presented in Figure 6.5, the design
divides the FPGA into two regions, and uses three separate interfaces to allow interactions
between hardware units. The majority of the FPGA is used for the circuit canvas, a region of
the FPGA that houses multiple user-defined computational circuits. These circuits process
incoming messages and must adhere to a dynamic circuit API. The other portion of the
FPGA is allocated for use as a frame for the canvas. The frame is a small region of the
FPFA that is utilized to control card-specific interactions between the circuit canvas and
the FPGA card’s resources. The frame includes state machines for managing interactions
with the communication library, the circuit canvas, and user-accessible on-card memory
referred to as the scratchpad. Because the frame is designed to insulate the canvas from
card-specific features, it is possible to port this work to other FPGA cards by modifying
the frame.
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Figure 6.5: FPGA Organization.

6.3.4 User-Defined Circuits

One of the key features of the RC-1000 endpoint implementation is its capability for support-
ing multiple user-defined computational circuits in a single FPGA. The frame is designed
with an interface that allows multiple computational circuits to be physically loaded in the
canvas and dynamically utilized to process incoming messages. The frame employs two sets
of signals to accomplish this task. First, each computational circuit is connected to the
frame by a set of control signals. These signals allow the frame to activate a computational
circuit and detect when the circuit has completed its work. The second set of signals routes
vector data streams between the frame and the computational circuit. A vector data stream
transfers a linear series of 32-bit data values using an asynchronous transfer protocol. Each
computational circuit can use up to two input vector data streams and one output vector
data stream.

A simplified block diagram of the interface between the frame and computational circuits
housed in the canvas is presented in Figure 6.6. Each computational circuit is provided with
vector data streams supplied by ports A and B in the frame. Results of the computations
are streamed back into the frame through port C. In addition to supporting up to eight user-
defined computational circuits, each FPGA configuration is also equipped with a built-in
unit for basic ALU operations. This unit provides a set of linear, two-input vector operations
(e.g., add, multiply, AND, OR, XOR, min, and max) as well as one-input vector operations
(e.g., NOT and a no-operation). The no-operation is beneficial because it can be used to
transfer memory from one memory location in the scratchpad to another.

6.3.5 Examples of User-Defined Circuits

Multiple user-defined computational circuits have been constructed for use in the circuit
canvas. As a means of illustrating how a modern FPGA can house multiple complex hard-
ware units, an FPGA configuration with a set of cryptography cores was implemented.
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Figure 6.6: The interface for computational circuits in the canvas.

The post-layout design was examined to determine how much space each core occupies in
the Virtex-1000 FPGA. These estimates are presented in terms of the percentage of the
Virtex-1000’s overall resources that are consumed by the circuits. These percentages can be
translated to gate counts using the estimation that a Virtex-1000 can emulate approximately
one million logic gates. Each core is briefly described as follows:

• Digital Encryption Standard (DES) [66] (6%): A publicly available DES core
called free-DES [54] was ported to operate as a user-defined core. This unit can either
encrypt or decrypt data supplied by vector data port A using a key supplied by vector
data port B.

• RC6 [79] (13%): Chris Wood implemented a version of the RC6 encryption standard
for encrypting and decrypting data from vector data port A using a key schedule
supplied by vector data port B. The engine operates with up to 1024 rounds (R), at
32-bit data value widths (W), with key lengths (B) up to 1024 bytes.

• MD5 [78] (26%): The MD5 message-digest algorithm was implemented to generate
a 128-bit identifier for data supplied by vector data port A.

• Built-in ALU Operations (5%): The frame features a built-in ALU core for basic
vector operations.

The frame for this configuration requires approximately 20% of the Virtex-1000’s re-
sources. A significant portion of this allocation is for two blocks of the FPGA’s internal
SRAM so that the frame can buffer messages that are being processed. This design illus-
trates that multiple useful circuits can be loaded in the FPGA at the same time.

6.3.6 RC-1000 Interactions with GRIM

In order to allow the RC-1000 to function as a communication endpoint in GRIM, low-level
message-passing mechanisms were constructed to facilitate data transfers between the RC-
1000 and other resources in the local host. The first difficulty in this effort is that the FPGA
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cannot initiate DMA transfers. This problem was resolved through the construction of host-
level software that initiates DMA transfers on behalf of the RC-1000 card. This software
detects when the card needs to perform a transfer and issues the proper DMA operation.
A more challenging issue in implementing the RC-1000’s communication mechanisms is
dealing with its card-specific memory-arbitration mechanisms. As discussed earlier, the
RC-1000’s PCI controller and FPGA share access to the card’s single-ported SRAM banks
through an arbitration scheme. Thus, when an endpoint needs to inject a message into one
of the RC-1000’s incoming message queues, it must first obtain exclusive ownership of the
memory bank that houses the queue. Ownership is acquired by updating the card’s request
register and then polling a grant register to detect when the card has assigned ownership
to the endpoint.

While the RC-1000’s memory-arbitration mechanisms are adequate when only the host
CPU uses the card, there is the possibility of a hazardous race condition when multiple
resources in the host (e.g., the NI and the host CPU) access the arbitration mechanisms at
the same time. The problem is that there is only one register for all off-card resources to
place memory-arbitration requests. If an endpoint does not have knowledge of the current
requests made by other endpoints in the host, it is possible for access to an SRAM bank to
be released mistakenly. For example, consider the case where the host CPU and NI are each
injecting a message into different queues located in the same SRAM bank of the RC-1000.
If the NI finishes before the host CPU, it could mistakenly update the RC-1000’s bank
request register to indicate that access is no longer needed to the SRAM bank. Because the
memory arbiter only observes the most recent update to the request register, it is possible
for the arbiter to change ownership of the SRAM bank from the PCI interface to the FPGA.
This series of events results in the host utilizing an SRAM bank for which it no longer has
access.

A solution to the problem of allowing multiple resources in the host to coherently share
access to the memory-arbitration mechanisms of the RC-1000 is to merge access requests
at a single location in the host. In the GRIM implementation, this task is delegated to
the Myrinet NI due to its proximity to the FPGA card on the PCI bus. As illustrated in
Figure 6.7, a series of request queues are implemented in the NI. When the NI detects a new
request in a queue, it updates a local set of registers for the queue and compares the sum of
all the current requests to the last request issued to the FPGA card. If there is a difference,
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Table 6.1: Performance measurements for RC-1000 memory arbitration.

Operation
Resource

Requesting
Arbitration

Resource
Performing
Arbitration

Time (µs)

Acquire SRAM
Host Host 6

Host NI 13

NI NI 5.5

Release SRAM
Host Host 2

Host NI 7

NI NI 3

a new request is sent to the RC-1000’s arbitration unit through a PCI transaction. If this
update is due to a new request for memory (as opposed to a release), the NI periodically
polls the RC-1000’s arbitration unit until the request is granted. The endpoints in the host
system must poll the NI’s arbitration registers to determine when access is granted for each
request.

Tests were performed to characterize the RC-1000 memory arbitration mechanisms. In
these tests both the host and the NI acquire and release ownership of a bank of RC-1000
SRAM. In the first set of experiments, arbitration is performed directly by the host or the NI.
In the second set of experiments, the host utilizes the NI to perform arbitration on behalf
of the host. The results of these experiments are presented in Table 6.1. As expected,
utilizing the NI to perform arbitration for the host results in a significant performance
penalty for the host. The host’s indirect arbitration scheme incurs twice as much overhead
as a direct approach. These measurements imply that it is beneficial for a host endpoint to
invoke arbitration mechanisms infrequently, and that the host software should be designed to
bundle multiple transactions with FPGA memory into a single operation whenever possible.

6.3.7 TPIL Performance for the RC-1000 Card

The TPIL software was adapted to operate with the RC-1000 card in order to improve
host injection performance. The internal benchmarking features of TPIL that were used to
measure the performance of the Myrinet cards in Chapter 5 were utilized to measure the
performance of the RC-1000. The results are presented in Figure 6.8 for a P3-550 MHz host
that is equipped with a 32b/33-MHz PCI bus. As expected, MMX and SSE PIO based
transfers provide the best performance for injections smaller than approximately 3 KB.
After this point, zero-copy DMAs become the most profitable transfer method, eventually
reaching a performance of approximately 116 MB/s.

An interesting characteristic in these performance measurements is that PIO operations
reach a peak value of 42 MB/s for transfers that are 1 KB in size. Performance gradually
drops for transfers larger than this size until a steady-state value of approximately 32 MB/s
is reached. The RC-1000’s PCI chipset is likely to be the cause of this performance drop
because the PCI chipset has a limited capacity for buffering incoming data from the PCI
bus. PIO transfers can therefore be slowed if the host CPU attempts to inject data faster
than the card can empty the buffer. DMA transfers do not experience this performance
degradation because the DMA engine can throttle its transfers to match the capacity of the
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Figure 6.8: RC-1000 PCI injection performance for P3-550 MHz hosts.

buffer.

6.4 BrookTree Video Capture Card

The third peripheral device used as a resource in the GRIM environment is a video capture
card based on the popular BrookTree BT8x8 chipset [21]. Many commercial video capture
cards utilize this chipset because it is economical, and because device drivers exist for both
Windows and Linux operating systems. The chipset integrates a PCI controller, video
capture circuitry, and control logic in a single chip. BT8x8 card utilizes a block of host
memory to serve as a frame buffer and employ a highly-configurable data-transfer engine
to move incoming video data to the host. Unfortunately, this card does not feature a
programmable CPU that could be used to implement GRIM endpoint software. Therefore,
a host-level library was constructed to allow GRIM applications to access this device. This
effort demonstrates that GRIM can be utilized to include even simple peripheral devices in
the cluster communication model.

6.4.1 Overview of the BT8x8 Video Capture Card

Many commercial video capture cards are based on the BrookTree BT8x8 chipset. This
chipset is popular because it implements all capture hardware in a single chip, can process
NTSC, PAL, and SECAM analog video sources, and can perform operations such as scaling,
clipping, and pixel-format transformations in hardware. In order to reduce the cost of the
chipset, the BT8x8 chipset is designed with minimal buffer space for housing video data.
Instead of buffering frames of video data in card memory, the BT8x8 uses a programmable
DMA engine to stream captured data directly into a region of the host’s memory. A desirable
aspect of this approach is that a frame of video data can be streamed to any location in the
host, including the on-card frame buffer of a video display card.

91



Video 

A/D 

V
id

e
o

 M
u

x
 

Video 

Scaler 

Format 

Converter 

Pixel 

FIFO 

PCI DMA 

Engine 

 

 

 

 

DMA 

Instruction 

Queue 

Control Registers 

Video 0 

Video 1 

Video 2 

PCI 

Figure 6.9: The high-level organization of the BT848 chipset.

An overview of the hardware pipeline that transforms analog video into a raw digital
data stream in the BT848 chipset is presented in Figure 6.9. The input to the pipeline can
be selected from one of three analog video sources using a programmable multiplexer. This
input is transformed into a digital data stream using an analog-to-digital converter. Digital
data at this point is represented in a 640x480 pixel frame using the 4:2:2 YCrCb format
[25]. The next stage in the pipeline is a video scaling unit that can downsample the data
stream to user-defined dimensions. The data is then passed through a format-conversion
engine that transforms the 4:2:2 YCrCb image into other formats (e.g., RGB565 or RGB32).
Video data is then queued in a series of pixel FIFOs, where data is held until a PCI DMA
engine transfers the data to host memory. The DMA engine performs data transfers based
on a list of transfer instructions that are assembled by the host’s device driver for the card.

Open source device drivers are available in the Linux operating system for BT8x8 video
capture cards. These drivers are part of the video-4-linux (v4l) effort [37] and provide a
basic API for user-space applications to interact with video capture cards. Because the
BT8x8 chipset does not employ an on-card frame buffer, the driver must allocate a block of
host memory for housing captured data and program the card with a list of DMA operations
to store data into the memory. The driver allows users to create two frame buffers for each
card so that the card can write data into one buffer while an application reads data from
the other buffer. Using this double-buffered approach, it is possible for an application to
acquire 640x480 pixel video data at 30 frames per second (NTSC’s frame rate).

6.4.2 Endpoint Construction

In the process of examining how the BT8x8 video capture card can be integrated into the
GRIM environment, it was observed that adapting endpoint software to run on the card
would be infeasible for three reasons. First, while the card does provide a programmable
RISC engine, this engine is primarily designed to simply transfer data between the card
and host memory. Second, the card does not provide any memory that could be used for
implementing on-card message queues. Finally, the fundamental nature of the card makes
it impractical for use as an autonomous endpoint. Outside of configuration operations, the
card performs the single function of writing data to a memory location in the host. Therefore
it was decided that the integration of the BT8x8 card into the GRIM environment should
leverage the existing v4l work and utilize the host as a unit for managing cluster interactions
with the card.
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Table 6.2: Characteristics of BT8x8 video streams.

Frame Size (Pixels) 320x240 640x480

Bytes/Frame (16b Pixels) 150 KB 600 KB

Bytes/Second (@30 Frames/Second) 4.5 MB/s 18 MB/s

Bits/Second (@30 Frames/Second) 36 Mb/s 144 Mb/s

The software that allows the BT8x8 to be used in the GRIM environment is comprised
of initialization functions and active message handlers. The initialization functions connect
to the v4l device driver and acquire allocations of host memory for housing video frames.
After initialization, users can utilize a number of active messages for controlling interactions
with a video capture card. In addition to active messages that allow users to configure the
video capture software, a special active message is available for requesting that a frame of
video data be transmitted to an endpoint. This request message allows users to specify the
active message handler that is used in the reply message that carries the video data. This
interface allows users to construct their own interfaces for processing incoming data without
having to specify the mechanics of how the video capture card obtains the data. If the user
does not specify a handler to use in the reply message, a built-in handler is selected that
simply transfers the message’s payload to a user-specified memory address.

Additional active message handlers were constructed to allow the node with the video
capture card to transmit video data to another node in the cluster using remote memory
operations. With these functions a node can have a frame of video data transferred directly
to a frame buffer or a display device. Given that the dimensions of a frame of captured
video may not match the dimensions of the output display, it is necessary to break the
remote memory write operation into a series of smaller transfers. For example, if the frame
size of the captured video is smaller than the size of the display, the captured data must
be transmitted one row at a time in order for the rows to be rendered properly. The
GRIM active message function handlers can perform this operation if the user supplies the
dimensions of the target display.

6.4.3 Driver Modifications

The V4L device driver was modified to allow captured video data to be stored to a region
of memory specified by the user. These extensions allow users to pass a physical memory
address to the driver for a block of contiguous memory that is large enough to house a frame
of video data. The GRIM software was also extended to allow users to reserve a contiguous
block of NI card memory for housing application data. This effort provided the fundamental
means by which the capture card could transfer video data directly to the Myrinet NI card in
order to reduce the number of PCI transactions required by a system that needed to stream
video data from one host to another. Test applications were constructed to demonstrate
that the video card could in fact transfer data directly to the proper location of the NI card.

While the basic mechanisms for streaming video data directly into the NI have been
constructed, development was halted due to a lack of practicality. Table 6.2 lists the char-
acteristics of two video streams the BT8x8 card is capable of creating. If the video capture
card is configured to store data directly to the NI, a buffer large enough to house two
frames of data must be allocated from NI card memory. With only a megabyte of SRAM,
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the LANai 4 NI would only be able to support the 320x240 pixel video stream. While
the LANai 9 could support 640x480 pixel frame buffers, doing so significantly reduces the
amount of memory that is available for the NI to buffer normal messages. In contrast,
the 640x480 data stream requires only 18 MB/s of bandwidth from the host’s PCI bus.
Because this data rate is only 14% of the available bandwidth of a 32b/33-MHz PCI bus, it
was decided that the extra effort required to reliably stream data directly into the NI was
not worth the possible performance gain. Instead, software was designed to store captured
video data in an intermediate host buffer and then transfer data to the NI as needed by
applications. This method is able to transfer 640x480 pixel data streams in 30 frames per
second.

6.5 Video Display Cards

Video display devices are another form of multimedia peripheral device that can be utilized
in the cluster environment. While there are numerous commercial video display cards, the
vast majority of these cards operate on the principle that display data is housed in an on-
card block of memory known as the frame buffer. Writing graphical data into this block
of memory results in changes in the rendered output. Therefore video display cards can
be incorporated into the GRIM environment by making the frame buffer accessible to end
applications. GRIM has been extended with functionality to allow the frame buffer in a host
to be identified to end applications. End users can then use this information with remote
memory write operations to update the display of a remote host in an efficient manner.

6.5.1 Video Display Card Overview

Modern video display cards generally employ a large (2-128 MB) block of memory known
as the frame buffer for housing video display data. The frame buffer accelerates system
performance by allowing video data to be stored locally on the video card. The output
display engine for the graphics card therefore continuously reads from the frame buffer and
uses digital-to-analog converters to generate the appropriate VGA signals. A video display
card is typically connected to the host system through the accelerated graphics port (AGP)
[47]. This port is similar to PCI, but is situated closer to the host’s memory system and has
asynchronous transfer characteristics (i.e., ‘writes’ to card memory are faster than ‘reads’).
While PCI devices can usually store data to an AGP card with write operations, most
motherboard chipsets do not allow a PCI device to utilize read operations to fetch data
from AGP card memory.

The Linux kernel provides a simple, universal driver that allows user applications to
directly access a video display card’s frame buffer. This driver provides a means for an
application to map the frame buffer into the application’s address space, where it can be
updated using normal PIO operations. The device driver also provides basic functionality
that allows applications to query the frame buffer’s settings. User-space applications can
use these calls to determine the dimensions of the display and the current pixel depth. The
frame-buffer driver operates regardless of whether or not a window manager is running.
Therefore, it is possible for user-space applications to update the graphical display even if
X windows software [68] is not running.
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6.5.2 GRIM Integration

It is generally infeasible to port communication endpoint software to a video display card
due to the architecture of these cards. Video display cards simply render graphical data
and therefore are designed to function as data sinks. Thus, the approach taken in GRIM
to integrate a video display card into the cluster architecture is to simply present the video
display card’s frame buffer as a block of memory that cluster applications can update. The
first task in accomplishing this goal was adapting GRIM to interact with the device driver
that controls the frame buffer. At initialization time, GRIM opens the driver and maps
the frame buffer into the application’s address space. Next, GRIM utilizes a custom-built
device driver to transform the virtual address mapping of the frame buffer into a physical
address that can be referenced by the NI card. Finally, the physical address of the frame
buffer is shared with other endpoints in the system. These endpoints can then use remote
memory write operations with the physical address (RM-P) to render changes to the output
display.

An example host-level application was constructed to demonstrate how the frame buffer
could be used in the distributed cluster environment. In this application, multiple hosts
are equipped with video capture cards and configured to capture live video streams. At
runtime, each of these hosts is instructed to transmit its captured video stream to a different
area of one host’s frame buffer. The result is that multiple video streams can be displayed
simultaneously on a single output screen. The advantage of this approach is that the
incoming video streams can be routed directly to the output display without buffering the
data in the display host’s memory. This type of operation can be beneficial in other tasks
such as distributed rendering systems, where individual workstations perform the task of
rendering different portions of an overall scene.

6.6 Summary

Multiple peripheral devices have been integrated into the GRIM communication environ-
ment. This work has been simplified by the fact that GRIM implements a common core of
its communication functionality in the NI. Peripheral devices in this environment implement
mechanisms to facilitate interactions with resources in the local host such as the NI or other
endpoints. GRIM is a flexible substrate for this type of work because it can be adapted
for use with peripheral devices that have a wide array of characteristics. The I2O adap-
tor integration was the least challenging of these efforts because endpoint software could
be ported directly to the card. The RC-1000 endpoint was the most challenging because
endpoint software had to be implemented as FPGA circuitry. The video capture and dis-
play integration work complete the survey of peripheral device work because they represent
devices that cannot natively run endpoint software, and therefore require host-level man-
agement. All of these examples illustrate that GRIM is extensible in that it can be adapted
with device-specific functionality to allow new peripheral devices to be incorporated into
the cluster environment.
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CHAPTER VII

STREAMING COMPUTATIONS

Resource-rich cluster computers feature a large number of host CPUs and peripheral devices
that can be used by applications as a pool of available resources. A challenge in working
with such resource models is constructing applications that effectively utilize the cluster’s
distributed resources. In this chapter we describe support for a pipelined computing model
where accelerators available as peripherals in distinct nodes can be configured through
GRIM to operate as a single computational pipeline. Such a model can support a wide
range of applications, including streaming media and signal processing applications.

Adapting a message layer to support streaming computations requires an examination of
how cluster resources can be utilized as elements in a computational pipeline. A streaming
computation is visualized as a connection-oriented service, where a number of operations
are performed on data that is passed through a connection. This programming abstrac-
tion requires two specific features from an implementation. First, individual resources in
a connection must be capable of performing a specified computation on an incoming data
stream. In GRIM this functionality can be accomplished through the use of GRIM’s built-
in active message mechanisms. Second, a resource in a connection must be equipped with
mechanisms for forwarding computational results to the next resource in the connection.
This functionality is implemented in GRIM through both the library’s native reliable de-
livery mechanisms and a programmable forwarding directory. This directory allows users
to configure the exact functionality of a streaming operation in flexible manner.

As a motivating example the Celoxica RC-1000 FPGA endpoint has been adapted to
support streaming computations. In addition to equipping the RC-1000 endpoint with a
forwarding directory, several enhancements were made to the endpoint’s architecture. These
modifications include a virtual memory system that allows on-card memory to be shared by
applications and a system for dynamically reconfiguring the FPGA with hardware circuits
needed at runtime by applications. This chapter provides implementation details of the
streaming computation extensions, as well as performance measurements of the RC-1000
endpoint that relate to the streaming environment.

7.1 An Overview of Streaming Computations

In pipelined implementations a complex computational task is divided into a linear series of
subtasks that can be performed by individual resources. Each resource is then configured
to function as a pipeline stage, performing a specified computation on incoming data and
forwarding the results to the next resource in the pipeline. The benefit of this approach is
that when streams of data are injected into the pipeline, it is possible for the pipeline stages
to concurrently operate on different portions of the stream. The desired result is that the
system is capable of producing output results at the same rate that data is injected into
the pipeline.

Multimedia applications provide a strong motivation for systems that are capable of
performing high-throughput streaming computations. In a number of these applications
raw multimedia data streams must be processed in real time. Unfortunately it is often
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Figure 7.2: An example of a connection-oriented streaming computational pipeline.

infeasible to use a single host computer to perform this processing because of the high
data rates that are involved and the computational complexity of the operations that need
to be performed. Therefore it is beneficial if a series of resources in a cluster can be
utilized as a streaming computational pipeline. An example of such a pipeline is depicted
in Figure 7.1. In this system a video capture card generates a video stream that is relayed
through multiple peripheral devices distributed throughout a cluster. The devices perform
specific operations on the data stream until the data is properly prepared for consumption
by a host-level application.

7.1.1 Connection-Oriented Streaming Computations

While streaming computations can be implemented in a variety of manners, a particularly
useful abstraction is to visualize a streaming computation as a form of a connection-oriented
service. In this abstraction data injected into a connection is processed by a series of
computational stages that are defined when the connection is established. As Figure 7.2
illustrates, any endpoint in the cluster can inject data into a connection, but computational
results are only transmitted to a single endpoint. A new connection can be created by
any endpoint in the system. After obtaining a unique identifier for a new connection,
an endpoint must configure the individual resources that are to be used in the connection.
Configuration information specifies the operation a resource should perform as well as where
the results of an operation should be transmitted in the cluster.

There are multiple benefits to implementing a streaming computation as a connection-
oriented service. First, connection-oriented communication is well understood by program-
mers and is therefore a programming abstraction that can be adopted without much dif-
ficulty. Second, this approach can be used in a flexible manner to implement a variety of
useful computational systems. For example, users can chain multiple connections together
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by forwarding the results of one connection to another. Therefore users can construct com-
plex operations by using a set of basic operations as building blocks. Finally, computational
connections provide a simple programming abstraction that allows any endpoint to invoke
complex operations without having to know the underlying mechanics of the connection.
This feature is especially valuable for simple peripheral device endpoints in resource-rich
clusters.

7.1.2 An FPGA-based Pipeline Unit

GRIM has been extended with software to support a connection-oriented form of streaming
computations. In this effort peripheral devices can be configured to function as the pipeline
stages of a streaming computation. Of the peripheral devices that are currently supported
in GRIM, the most attractive device for this work is the Celoxica RC-1000 FPGA card
discussed in the previous chapter. This card is a natural candidate for use in streaming
operations because it is designed to function as a computational accelerator. Therefore the
current RC-1000 endpoint implementation has been modified to support streaming compu-
tations. These modifications are implemented as extensions to the FPGA’s frame, which
is the block of logic that implements the endpoint state machines for the RC-1000. While
the focus of this chapter is on implementation details for adapting the RC-1000 endpoint
for streaming computations, other endpoints can be extended with this functionality in a
similar manner.

7.2 Pipeline Computations

The first of two functional requirements for an endpoint to behave as a pipeline stage is for
the endpoint to be capable of performing a predefined computation on incoming messages
for a data stream. This functionality can be implemented in a relatively straightforward
manner using GRIM’s active message programming interface. For the RC-1000 FPGA
endpoint, the active message function handler is used to select the computational circuit
that processes an incoming message for a data stream. Observing that FPGAs have a
limited capacity for housing computational circuits, the RC-1000 FPGA endpoint has been
extended with software that allows the FPGA to be dynamically reconfigured with different
circuitry as needed by applications. The FPGA frame in this approach detects when it does
not have the circuitry necessary to process a message and signals a function fault to the host.
The host software is designed to resolve these faults, allowing the FPGA to be reconfigured
on demand as needed.

7.2.1 Using Active Messages to Control Pipeline Computations

An endpoint that functions as a pipeline stage in a streaming computation must be con-
figured to perform a user-specified operation on a data stream’s incoming messages. This
functionality can be accomplished through GRIM’s active message programming interface.
In this approach a message arriving at a pipeline stage is labeled with a stream identifier
and an active message handler that specifies the operation the endpoint should perform on
the message. Since all pipeline processing instructions are included in an incoming message,
it is necessary for the endpoint transmitting the message to format the message. While it
may seem counterintuitive to have to place an endpoint’s processing instructions at the
preceding endpoint in the pipeline, doing so simplifies the configuration process. In this
system forwarding information (used to transmit results to the next pipeline stage) and
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processing instructions (used to specify the operation the next pipeline stage performs) are
stored at the same location (the preceding pipeline stage).

Most endpoints can easily be adapted to perform the computational part of stream-
ing operations because this approach relies on the existing active message infrastructure.
Similar to other messages, endpoints simply process streaming computation operations by
executing the proper active message function handler. For the RC-1000 FPGA endpoint
the FPGA frame’s current active message interface is sufficient for implementing this func-
tionality. Messages arriving at the RC-1000 endpoint for a streaming computation are
examined by the FPGA frame and processed using the user-defined circuit that matches
the arguments specified in the message’s header.

7.2.2 Dynamic FPGA Circuit Management

One of the difficulties involved in utilizing an FPGA as a computational resource is that
each FPGA is only capable of housing a limited amount of user-defined circuitry. While
the industry is constantly increasing the gate capacity of commercial FPGAs, it is unlikely
that a single FPGA will ever be able to house all of the computational circuits that could
be utilized by end applications. This limitation becomes a significant issue as the number
of streaming computational pipelines used in a cluster increases. If these pipelines require
diverse types of processing, it is likely that the number of computational circuits needed
by the pipelines may outnumber the total space available for housing the circuits in the
cluster’s FPGA resources. What is needed is a system that can dynamically reconfigure
the cluster’s FPGAs to emulate the hardware operations that are needed by applications
at runtime.

Modern commercial FPGAs generally provide two forms of reconfiguration that can
be utilized by software that dynamically manages an FPGA endpoint’s circuits. First, all
FPGAs support a form of full reconfiguration, where an FPGA is reprogrammed in its
entirety. Circuit management software can utilize this operation to reprogram an FPGA at
runtime with a configuration that contains a circuit that is required by an application. In
this approach multiple FPGA configurations are generated offline and stored in a database
that the software manages. Second, some FPGAs support partial reconfiguration, where a
region of the FPGA can be reprogrammed without affecting the rest of the chip. With this
option circuit management software can be designed to replace one computational circuit for
another. Unfortunately, partial reconfiguration operations can incur significant overheads
due to the amount of effort that is required in rerouting an FPGA’s active signals. While
the FPGA management techniques described in this section can be applied to both forms
of reconfiguration, the focus of this effort is on utilizing full reconfiguration mechanisms.

7.2.3 Supporting Function Faults in the FPGA Frame

In order to support dynamic circuit management the RC-1000 FPGA endpoint had to
be modified with functionality for assisting the reconfiguration process. These extensions
allow the FPGA frame to detect the need for reconfiguration, and provide a means for the
FPGA to save and restore its runtime state information during the reconfiguration process.
The extensions operate as follows. Whenever the host system loads new computational
circuits into the FPGA it stores a list of function ids for the circuits in the FPGA card’s
SRAM. After the host activates the FPGA the frame pulls these ids and other runtime
state information into the FPGA. The frame uses this information at runtime to determine
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Figure 7.3: The process of reconfiguring an FPGA during a function fault.

if an incoming message can be processed by the FPGA’s currently loaded computational
circuits. If the FPGA is not equipped with the proper circuits, it initiates a function fault
that must be resolved by the host’s dynamic circuit management software.

Figure 7.3 depicts the steps that are taken during a function fault. After (1) the FPGA
detects that it is not equipped with circuitry to process a message it (2) stores its dynamic
state information in on-card SRAM. The FPGA then suspends its execution and (3) sends
an interrupt request to the host processor. The host software detects the fault, determines
which function is needed by the FPGA, and (4) fetches an appropriate configuration from
a database. The host (5) loads the FPGA with this configuration and updates the FPGA’s
list of available circuits. The host then restarts the FPGA which (6) fetches its dynamic
state information from SRAM. The FPGA uses this information to begin processing the
message that caused the function fault. The message can now be processed because the
FPGA is loaded with the computational circuit that is needed by the message.

7.2.4 Function Fault Overhead

Measurements were performed to estimate the amount of overhead that is involved in pro-
cessing an FPGA function fault. For the FPGA portion of this overhead, the FPGA frame’s
state machines were examined to determine how many FPGA clock periods are required
by the frame to generate and recover from a function fault. Clock periods can be related
to wall clock time by dividing the number of clock periods by the FPGA’s clock frequency
(20 MHz). For the host’s portion of a function fault’s overhead, instrumentation software
was added to the host library to measure the amount of time required to perform fault
resolution operations. A P3-550 MHz host was used in these measurements.

The results of the measurements are presented in Table 7.1. While the FPGA operates
at a relatively slow clock rate it is able to perform all of its function fault operations in only
a few microseconds. Unfortunately there are significant overheads for the host to resolve a
fault. The two dominant operations in this procedure are for the host to reconfigure and then
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Table 7.1: The amount of time required to manage an FPGA function fault.

Resource Action
FPGA
Clocks

Time (µs)

FPGA

Store queue pointers 6 0.30

Store missing function 2 0.10

Trigger function fault 1 0.05

Release SRAM bank 0 1 0.05

Host

Acquire SRAM bank 0

-

13

Process fault 8

Load configuration from file (optional) 10,205

Reconfigure FPGA 95,114

Set FPGA clock 2,405

Set function IDs 2

Reset FPGA 56,813

Release SRAM bank 0 7

FPGA
Acquire SRAM bank 0 8 0.40

Reload queue pointers 4 0.20

Reload functions IDs 9 0.45

reset the FPGA. The reconfiguration process is time consuming because approximately 700
KB of information must be serially loaded into the FPGA using PIO operations. Resetting
the FPGA is time consuming because the operation requires a 50 ms delay for proper
execution. Newer FPGA cards will reduce this overhead by a factor of 5-10, with custom
architectures doing even better. However, the current model is on par with connection
oriented programming models where pipelines are constructed and changed infrequently.

7.3 Pipeline Forwarding

The second operation that a pipeline stage must perform is forwarding computational results
to the next resource in the pipeline. This task is an integral part of a streaming computation
because it allows a collection of distributed resources to be utilized in a connection. At
a fundamental level, forwarding mechanisms should allow pipelines to be constructed in
a flexible manner. In addition to routing messages between resources, it should also be
possible for users to route data through the same resource multiple times. The benefit of
using the same resource to implement multiple pipeline stages is that dynamic application
data can be more readily shared among the pipeline stages. One means of constructing a
flexible system for managing the transfer of data between pipeline stages is to employ a
forwarding directory at each endpoint in the pipeline. A forwarding directory is a user-
programmable table that contains information that specifies how a pipeline stage should
transmit the results of a streaming computation to the next stage in the pipeline. These
tables are easily updated and serve as a simple means by which users can configure both
the routing and computational operators used in a streaming computation.
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Figure 7.4: Forwarding examples for (a) a single computation on a single stream, (b)
multiple computations on a single stream, and (c) multiple streams.

7.3.1 Forwarding

After a pipeline stage generates computational results for an incoming message it is neces-
sary to forward the results to the next stage in the pipeline. Forwarding mechanisms must
be flexible enough to be utilized in a number of manners. Figure 7.4(a-c) illustrates three
fundamental examples of how data may be forwarded between resources in a pipeline. In
the first example (a), a resource is configured to function as a single stage in a pipeline.
Results from this operation are forwarded to another resource in the cluster. It is expected
that most applications will utilize resources in this manner because the approach is the
most straightforward to manage and implement. The second example (b) illustrates a more
elaborate case where a resource is utilized to perform two sequential operations in a com-
putational pipeline. This approach requires a means of buffering results at a resource and
is beneficial for applications where data locality can be exploited. In the final example (c) a
resource is utilized to process data for multiple independent streaming computations. This
approach allows a resource to be utilized by multiple applications and requires mechanisms
for isolating data streams.

7.3.2 Forwarding Directory

One method by which diverse forwarding operations can be implemented in a streaming
environment is to store forwarding information at the resources utilized in a connection. In
this approach each endpoint is equipped with a forwarding directory that contains infor-
mation specifying where and how the endpoint should transmit the results of a streaming
computation operation. A message arriving at an endpoint contains information that iden-
tifies the message as belonging to a particular computational stream. This stream identifier
is used to extract information from the forwarding directory that specifies how the com-
putational results of the operation should be formatted for transmission in the network.
Therefore users can construct new connections or modify the flow of existing pipelines
simply by updating the appropriate forwarding directory entries of the resources that are
involved. Updates can be performed using a built-in set of active message handlers that
modify forwarding directory entries.

Figure 7.5 illustrates how a forwarding directory at an FPGA endpoint can be utilized
as a means of forwarding data from one pipeline stage to another. In this example an active
message arriving at the FPGA contains information specifying that the message belongs
to computational stream X and requires processing by the FFT active message function
handler. After decoding the message’s header, the FPGA utilizes an FFT computational
circuit to process the payload section of the incoming active message. The results of this
computation are stored in the payload section of an outgoing active message. The header
for this message is supplied from entry X of the forwarding directory. This header specifies
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Figure 7.5: The forwarding directory provides information for transmitting a pipeline
stage’s results to another endpoint.

where the communication library should transmit the message as well as the operation that
should be performed at the next pipeline stage.

7.3.3 FPGA Implementation

The RC-1000 endpoint’s frame was modified to support a forwarding directory. The direc-
tory consists of 256 entries that are stored in the first SRAM memory bank of the card.
An entry in the forwarding table is comprised of eight 32-bit words that house all of the
values necessary for generating the header of an outgoing message. The frame provides
a special active message function handler that allows users to program individual entries
of the forwarding table. When the FPGA frame detects the arrival of a new message, it
examines the message’s header to establish the necessary data paths between resources in
the FPGA. Users can store the results of an active message operation in on-card scratchpad
memory, a recycling buffer, or in the outgoing message queue. The recycling buffer allows
the message generated by one FPGA computation to be routed back to the input of the
FPGA endpoint. In this manner a single FPGA can be configured to implement multiple
pipeline stages for a computational stream. Forwarding directory performance is included
in Section 7.5 as part of the overall performance of the RC-1000 FPGA endpoint when it
is used for streaming operations.

7.4 Managing Pipeline State Information

In many streaming applications it is beneficial if application data can be stored at the
individual resources utilized in the computational pipeline. This data can include dynamic
state information or static arguments such as filter parameters that are used to process
incoming messages. Unfortunately peripheral device endpoints have a limited amount of on-
card memory for housing application data. As the number of streaming computations using
a resource increases, the amount of on-card memory available to each application decreases.
Therefore it is beneficial to consider mechanisms that allow peripheral device memory to
be shared in a more flexible manner. For the RC-1000 endpoint a basic virtual memory
system has been constructed that allows the card’s scratchpad memory to be treated as a
paged resource. Scratchpad pages are dynamically swapped with host memory as needed by
applications. These mechanisms provide a basic form of protection for applications sharing
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the FPGA card and allow the endpoint to be transparently utilized by different applications.
Similar mechanisms can be implemented for other peripheral device endpoints.

7.4.1 Managing On-Card Memory for an Endpoint

Peripheral device endpoints have a limited amount of on-card memory that can be utilized
for housing application data. This memory is valuable to application designers because it
allows application data to be stored at the endpoint. In the case where multiple applications
utilize the same endpoint, it is necessary to provide some form of management for on-card
memory to prevent conflicts between applications.

The simplest approach is to utilize an allocation scheme where each application obtains
a block of on-card memory that is exclusively owned by the application. While this method
may be suitable for some endpoints and applications, there are three major drawbacks.
First, as the number of applications utilizing an endpoint increases, the amount of available
on-card memory for each application decreases. Second, applications must be designed to
work in a cooperative manner with the memory system. Depending on how memory is
allocated, this approach may make it more challenging for applications designers to work
with peripheral devices. Finally, this system provides no protection between applications.
Therefore an application can erroneously overwrite another application’s data.

Another approach to managing on-card memory is to implement a virtual memory
system for the endpoint. In this approach card memory is divided into page frames and
applications reference on-card memory with virtual addresses. Before the endpoint begins
processing a message it determines if the message’s memory references can be satisfied with
the pages that are currently loaded in the card’s page frames. If a page is not loaded the
endpoint must replace the current page with the requested data. Unloaded pages can be
stored anywhere in the system, although the most practical location is host memory. While
page faults for on-card memory can incur substantial overheads, implementing a virtual
memory system for a peripheral device provides basic protection for applications that share
the device.

7.4.2 Virtual Memory for the RC-1000 FPGA Endpoint

A basic virtual memory system has been constructed for the RC-1000 FPGA card’s scratch-
pad memory. This system operates on a coarse granularity with a virtual memory page
being defined as a 2 MB block of SRAM. SRAM memory banks 1 and 2 of the RC-1000
are therefore used as page frames for housing virtual memory pages that can be accessed
by user-defined circuits. Incoming messages that utilize scratchpad memory reference data
with a virtual memory address. This address is comprised of a page identifier and an offset
into the page. Before the frame begins processing a message it examines the page identi-
fiers of the virtual memory addresses supplied in the message to determine if the page is
currently loaded in one of the two page frames. If a message’s pages are loaded the frame
establishes the necessary data paths for the computational circuits to access the memory.
The offset value of the virtual address is used as the starting address within the page for
accessing data.

If a requested page is not loaded in one of the page frames, the FPGA frame must
invoke mechanisms for loading the proper data into card memory. Figure 7.6 illustrates the
organization of the memory system used in this procedure. First, the FPGA frame stores
the missing page identifier in SRAM. It then suspends the FPGA’s execution and sends the
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Figure 7.6: A virtual memory system is implemented for on-card SRAM. SRAM banks
1 and 2 serve as page frames for an application’s scratchpad data. Unloaded pages are
swapped into host memory.

host an FPGA page fault signal. The host receives this signal, determines which page frame
needs to be updated, and then performs the necessary page swap. A page swap involves
transferring the page frame’s current data to a buffer in host memory and then transferring
the desired page from host memory to the card. After a swap the host updates the FPGA’s
list of loaded page identifiers and restarts the FPGA. The restarted FPGA loads the new
page identifiers and continues processing the message that originally caused the fault. From
the user’s perspective these operations take place automatically in a transparent manner.

7.4.3 Page Fault Performance

The main drawback to implementing a virtual memory system for a peripheral device end-
point is that there can be significant overheads in resolving page faults. In addition to
using the host CPU to resolve a fault, large blocks of data must be transferred to and from
host memory. Performance measurements were made of the RC-1000 endpoint software to
determine how much overhead is involved in a page fault.

The results of the page fault measurements are listed in Table 7.2. As these tests reveal
the most time consuming portion of this procedure is the transfer of scratchpad memory
pages between the card and host memory. The differences between loading and unloading a
page are due to the fact that in the current implementation the load operation is performed
by a zero-copy DMA while the unload operation is performed by a one-copy DMA. Based on
these measurements, page faults are expensive operations in this implementation. In order
to reduce the number of page faults that take place at run time, users should implement
exclusive ownership mechanisms for the card that guarantee that only one application will
utilize the RC-1000 endpoint for a period of time.

There are several means by which the virtual memory system could be improved for
this card. First, the page size could be reduced in order to allow multiple pages to be
stored in the scratchpad memory banks. This approach allows the data sets of multiple
applications to be concurrently loaded in card memory, thereby reducing the frequency of
page faults. Another interesting approach is to physically attach and utilize a storage device
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Table 7.2: Overhead for managing an FPGA page fault.

Resource Action
FPGA
Clocks

Time (µs)

FPGA

Detect fault 1 0.05

Store page ids 3 0.15

Issue fault signal 1 0.05

Release SRAM banks 0-2 1 0.05

Host

Acquire SRAM banks 0-2

-

13

Process fault 8

Unload 2 MB page 43,494

Load 2 MB page 17,927

Notify FPGA 1

Release SRAM banks 0-2 7

FPGA
Acquire SRAM banks 0-2 8 0.40

Reload page ids 2 0.10

to the FPGA card for housing unloaded pages. The RC-1000 card features a large number
of I/O pins that can be utilized to attach a hard drive or other storage devices such as flash
memory. A disk controller can be constructed in the FPGA for managing disk interactions.
Therefore page faults could be managed entirely by the card, swapping card memory to disk
without the intervention of the host. The downside of this system is that it is challenging
to implement and adds to the overall complexity of the FPGA frame.

7.5 Performance of FPGA as a Pipeline Stage

Measurements were performed to determine how much overhead is involved when the RC-
1000 FPGA is utilized as a pipeline stage in a streaming computation. In these experiments
message data arrives at the RC-1000 endpoint from either the host endpoint or the NI card.
Messages contain 4 KB of payload data (i.e., 1024 words of 32b data) and specify a pass
operation for the active message handler. This operation simply transfers the incoming
payload data to the outgoing message’s payload. FPGA clock times are extracted directly
from the state machines and related to wall clock time by dividing clock periods by the
FPGA clock speed (20 MHz).

The results of the measurements are listed in Table 7.3. Starting with the resources that
inject the message into the RC-1000 endpoint, it is clear that the NI can insert messages into
the RC-1000 more efficiently than the host endpoint. This is because the NI controls the
RC-1000’s memory arbitration mechanisms and the NI has better control over its injection
mechanisms because it directly manipulates a PCI DMA engine.

For the FPGA endpoint, the majority of the overhead in processing the message comes
from streaming the individual data values through a computational unit. In this system
the fetch, compute, and store operations take place in a pipelined fashion, allowing the
operations to overlap. This feature demonstrates how an FPGA can be beneficial for pro-
cessing data because it illustrates how custom pipelines can be constructed in the hardware
to achieve high throughputs. It is important to note that the store operations require 3
clock cycles in the current implementation, as opposed to reads which can fetch a new data
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Table 7.3: RC-1000 overhead involved in processing a 4 KB message.

Resource Action
FPGA
Clocks

Time (µs)

(Host/NI)
Acquire SRAM bank 0

-
(13 / 5.5)

Inject 4 KB message (107 / 32)

Release SRAM 0 (7 / 3)

FPGA

Acquire SRAM banks 0,3 8 0.40

Fetch incoming message header 7 0.35

Fetch forwarding information 5 0.25

Fetch payload data 1024 51.2

Computation latency 1 0.05

Store results 3072 153.6

Store outgoing header 48 2.4

Update message queue pointers 3 0.15

Release SRAM banks 0, 3 1 0.05

FPGA
Acquire SRAM bank 3

-
13

Perform DMA 69

Release SRAM bank 3 7

value every clock period. After processing a message the FPGA must format the outgoing
message with a header obtained from the forwarding directory. Control is then passed to the
host system, which detects the message and initiates the DMA that transfers the message
to either the NI or another endpoint in the local host on behalf of the RC-1000 endpoint.

7.6 Summary

Streaming computations are a means of utilizing a collection of distributed resources to
improve the throughput of a complex operation. In this effort, a series of cluster resources
are utilized to implement a computational pipeline. While the cluster resources function
as the computational stages in the pipeline, the message layer provides the framework for
delivering data between the pipeline stages. Each resource in a pipeline is equipped with
a forwarding directory that allows users to specify how data flows through the pipeline
and the operations that are performed on the data streams. As a means of investigating
implementation details, the RC-1000 FPGA endpoint has been extended to support stream-
ing computations. Additional enhancements were made to the endpoint to allow multiple
applications to utilize the resource at the same time.
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CHAPTER VIII

MESSAGE LAYER EXTENSIONS

In addition to hardware extensibility, message layers for resource-rich cluster computers
must also be designed to be support user-defined software extensions. These extensions
allow users to customize their interactions with the message layer in order to implement
functionality needed by applications. In GRIM, users can easily add new functionality to
the core communication library at different levels of the message layer. At the network
level, users can define new communication operations (e.g., multicast) by extending the
message layer’s NI firmware. At the endpoint level, users can implement extensions in a
straightforward manner by constructing specialized active message function handlers.

This chapter deals with the issue of message layer extensibility in the context of application-
related software extensions. Three specific software extensions have been constructed for
GRIM to illustrate how new functionality can be easily incorporated into the library. First,
multicast mechanisms have been added to the core library to allow users to easily transmit
the same message to multiple receivers. These mechanisms result in a reduction in trans-
mission overhead for the sender because the message is replicated in the network. These
extensions demonstrate how users can insert new functionality at the NI level of the li-
brary. Second, fragmentation and reassembly mechanisms have been constructed for the
active message and remote memory programming interfaces, as well as for multicast oper-
ations. These extensions illustrate how endpoint-level software can be added to the library
to provide increased end-to-end performance. Finally, a reliable sockets emulation has been
implemented using the active message programming interface. This emulation allows GRIM
to be used as a replacement for the sockets library in legacy applications.

8.1 Multicast

A common operation utilized in parallel processing applications is multicast. Multicast is a
form of communication where an endpoint transmits the same message to multiple receivers
in the cluster. A subset of multicast is broadcast, where the list of receivers includes all
endpoints in the cluster. Multicast messages are often used to distribute state information or
provide synchronization among a number of cluster endpoints. In [56], researchers observed
that these types of interactions have a strong impact on the overall performance of parallel
processing applications. Therefore it is worthwhile to investigate means by which multicast
can be performed efficiently in a communication library for resource-rich clusters.

While multicast operations can be implemented simply by layering this functionality on
top of existing unicast mechanisms, doing so results in limited performance as the number
of endpoints in a multicast distribution grows. Therefore it is beneficial to examine how
the low-level mechanics of a communication library can be extended to support multicast
more efficiently. Communication libraries supporting multicast typically perform the task
of replicating multicast messages for a distribution tree in the NI [86]. Because these
approaches recycle an incoming message back into the network, it is necessary for multicast
mechanisms to be designed in a manner that prevents deadlock. The GRIM communication
library has been extended with multicast support. In order to avoid deadlock GRIM employs

108



Endpoint NI 

NI 

NI 

NI 

Endpoint 

Endpoint 

Endpoint 

(a) (b) 

Endpoint 

NI 

NI 

NI 

Endpoint 

Endpoint 

Endpoint 

NI 

Figure 8.1: Replicating a multicast message can be performed by (a) the sending endpoint
or (b) in the NI.

an ordering scheme on multicast trees that prevents cyclic dependencies between NI cards.
In addition to preventing deadlock, this scheme utilizes a single message queue for recycled
messages as opposed to two or more, resulting in an increased utilization of NI buffer space
for multicast operations.

8.1.1 Multicast through NI Recycling

Multicast can be implemented on top of any unicast communication library simply by
constructing endpoint software that transmits a separate copy of a multicast message to each
receiving endpoint in a multicast distribution. An example of this approach is illustrated
in Figure 8.1(a). While trivial to implement, this approach suffers from several drawbacks.
First, this approach requires an endpoint to inject multiple copies of a message into the
NI. As discussed in Chapter 5 the endpoint-to-NI transfers are the slowest part of the
end-to-end communication pipeline. Therefore significant overheads may be accumulated
by the endpoint for injecting multiple copies of the same message into the NI. Second, all
transmissions for a multicast message must be serially transmitted through the sending
endpoint’s NI. Because the NI has limited amounts of buffer space for housing in-transit
messages, it is likely that large multicast transmission will saturate the sending NI and
delay message delivery. Finally, if endpoints are responsible for replicating a multicast
message then every endpoint must be equipped with an up-to-date list of multicast receivers.
This requirement makes updating a multicast distribution’s membership list an expensive
operation.

An alternative approach is to perform the task of replicating multicast messages in
the communication library at the NI level. As illustrated in Figure 8.1(b), this approach
is advantageous because a multicast message is only transferred once from the sending
endpoint into the NI. This optimization reduces the load of the host’s I/O system and
greatly simplifies the amount of work an endpoint must perform to transmit a multicast
message. In the context of resource-rich clusters, this approach is also beneficial because
it is possible for all endpoints in the host to utilize multicast mechanisms because message
replication is deferred to the NI.

Moving the task of replicating multicast messages into the NI requires consideration of
how the NI should perform the task. Simply using the sending NI to transmit the multicast
message to all receivers results in similar issues to the endpoint-based replication scheme: all
multicast messages are serially transmitted by the sender and each NI must have knowledge
of the entire list of multicast receivers. Therefore most NI-based multicast implementations
are based on a distributed approach where the task of replicating messages is divided among
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Figure 8.2: The task of replicating messages can be distributed among NIs through (a)
constructing a distribution tree and (b) performing a limited number of multicast injections
at each NI.

the NIs in the multicast group.
One approach to distributing the task of replicating multicast messages in the NIs is

to organize the multicast group into a tree structure and then perform message replication
in the individual NIs. An example of this approach is presented in Figure 8.2(a-b) with
a five endpoint tree (a) that results in three NIs transmitting multicast messages to other
NIs in the network (b). There are multiple advantages to distributing the task of message
replication among NIs in the multicast group. First, multicast distribution can be acceler-
ated because it is possible for multiple NIs to concurrently work on replicating a multicast
message. Second, the workload for distributing messages is shared among all nodes in the
group compared to requiring the sending NI to perform all of the work. Finally, individual
NIs do not need to have knowledge of the entire multicast tree. Instead each node only
needs to be equipped with the ids of its children and the root of the tree. This approach
is sometimes referred to as recycling [63], as multicast messages are recycled back into the
network during the distribution process.

8.1.2 Deadlock Issues in NI-Recycling Multicast

A hazard of using NI-recycling to perform multicast message distribution is that without
precautions, it is possible for the network to become deadlocked. As illustrated in Fig-
ure 8.3(a), a NI that performs recycling takes an incoming multicast message and injects
multiple copies of the message back into the network. Therefore if two or more NIs perform
multicast recycling at the same time, it is possible for a cyclic dependency to be formed to
between the NIs that can result in deadlock if the network becomes congested. An exam-
ple of this type of condition is depicted in Figure 8.3(b-c). In this example two multicast
trees have nodes 2 and 4 in common (b). Unfortunately these trees distribute messages in
the reverse order, which leads to a cyclic loop between the two nodes (c). If the network
becomes congested it is possible for the messages from these trees to reach a deadlock con-
dition where incoming messages cannot be accepted because outgoing messages cannot be
transmitted successfully to their destinations.

A common means of preventing this form of deadlock is to utilize the up*/down* routing
algorithm first described for the Autonet network [82]. Up*/down* routing works with
irregular topologies and is deadlock free [22]. In this approach a spanning tree graph is
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Figure 8.3: Replicating multicast messages in the NI results in a turn that could lead to a
cyclic dependency loop.

constructed for the cluster with one node serving as the graph’s root. Links in the graph
are labeled with directions so that a node’s “up” direction is towards the root and there
are no directed loops in the graph (i.e., traversing the graph in the up direction never leads
to a previously visited node). Nodes have two separate buffers for outgoing messages: one
for upward-bound outgoing messages and another for downward-bound outgoing messages.
At each node an incoming message can be ejected from the network, transferred from an
incoming down link to an outgoing down buffer, or transferred from an incoming up link to
either an up or down outgoing buffer. By preventing messages from traveling from a down
link to an up link, cyclic dependencies are removed from the channel dependency graph
resulting in deadlock freedom.

Up*/down* routing can be applied to prevent NI-recycling multicast mechanisms from
reaching deadlock [53]. In this effort a directed acyclic graph is defined for all of the NIs in
the cluster. This graph is fully connected because point-to-point networks allow any NI to
directly communicate with any other NI. It is required that all multicast distribution trees be
mapped onto the directed acyclic graph for the cluster. Each NI is equipped with separate
up and down labeled logical channels for housing multicast messages that are recycled
into the network. When a multicast message arrives at a NI from the network, the NI
determines which multicast logical channel to recycle the message into based on the current
direction of the message and the rules of up*/down* routing. Through these conditions
cyclic dependencies between multicast buffers at different NIs are broken, allowing multicast
transfers to take place without deadlock.

One of the conditions of using up*/down* routing for multicast is that the multicast
distribution trees are arranged in a manner that agrees with the cluster’s directed graph and
routing rules. Some multicast distribution trees would violate these conditions and must
be rearranged in order to prevent deadlock. An example of such a situation is presented in
Figure 8.4(a-d) for a five node network that has the directed acyclic graph shown in (a).
When the multicast distribution tree presented in (b) has its links labeled (c) using the
cluster’s directed acyclic graph (a), there is a routing problem at NI 4. In this tree NI 4 is
unable to transmit messages from NI 1 to NIs 2 and 3 because doing so involves a transfer
from a down directed link to an up directed link. Therefore the multicast delivery tree must
be rearranged to a topology such as that presented in (d). This topology allows adheres
to the routing rules and is guaranteed to not to create deadlock situations when used with
other valid distribution trees.
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Figure 8.4: (a) A directed acyclic graph for a cluster’s multicast transmissions. (b) A
desired multicast distribution tree. (c) The desired multicast tree when labeled with link
directions. (d) A reordering of the multicast tree that does not violate the up*/down*
routing rules.

8.1.3 Multicast with a Single Recycle Queue

A criticism of up*/down* routing is that it requires the use of two separate message queues
or logical channels for housing outgoing messages. While dynamic buffer space issues can
be addressed through techniques such as escape channel routing [85], the primary issue
in GRIM is that increasing the number of logical channels in the NI reduces the overall
performance of the NI. Therefore it is beneficial to consider means by which the up*/down*
routing algorithm can be applied in which multicast traffic can be housed in only a single
outgoing logical channel. Reducing the number of logical channels used for multicast traffic
to a single logical channel can effectively be accomplished by making restrictions on the
manner in which multicast distribution trees are arranged in the cluster. Given that a two-
channel up*/down* routing scheme already requires some multicast trees to be reordered,
these conditions do not significantly impact end users.

The approach taken in GRIM to achieve deadlock-free multicast transmissions is to
use a two-channel up*/down* routing scheme with the restriction that multicast trees are
arranged in a manner that multicast messages always flow in the down direction of the
cluster’s directed acyclic graph. Because this system prevents messages from flowing in the
up direction, the up logical channel can be removed from the NIs. One implementation of
these conditions that is used in GRIM is as follows. A directed acyclic graph is constructed
for the NIs in the cluster, where each NI has an up-directed link to every NI that has
a smaller identification number in the cluster. An example of such a graph is presented
in Figure 8.5. When multicast trees are constructed for the cluster, they are ordered in
a manner such that a NI’s ancestors in the tree are NIs with smaller id values and its
descendants are NI’s with larger id values. As a result multicast transmissions always
propagate from a NI to a NI that has a larger id. Because data flowing from a NI with
a smaller id to a NI with a larger id is always a down-traversal in the up*/down* graph,
the up channel is not needed in this approach. The system however still operates under
up*/down* routing rules and is therefore guaranteed to be deadlock free. Messages injected
into a multicast tree must be transmitted to the root of the tree for transmission. However,
since these messages are maintained in a separate logical channel at the sending NI, and
incoming multicast messages cannot be recycled into this buffer, there is no dependency or
possibility for deadlock.

The single recycle queue approach has both positive and negative characteristics for
multicast transmissions. As discussed earlier the primary benefit of this approach is that
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Figure 8.5: A directed acyclic graph for cluster nodes.

the sending NI needs to manage only a single message queue instead of two. Another benefit
is that recycled messages are always placed in the same outgoing logical channel no matter
where the destination is. In a two channel approach it is possible that the NI would have to
store the same multicast message in both channels if the next two receivers in the tree had
different link directions. As for drawbacks, this approach creates hotspots in the network.
NIs with lower ids are more likely to be used for forwarding messages because they have
more routing options than nodes with higher ids. Another negative aspect of this approach
is that updating a multicast group is more complex in this approach because there are
restrictions as to where a node can be placed in the distribution tree. Given that multicast
tree updates are infrequent this factor is not a critical issue.

8.1.4 Implementation

The GRIM communication library has been extended to support a subscription-based form
of multicast that is based on the preceding arguments. In this implementation the distri-
bution of multicast messages to a group of subscribing endpoints is handled in the network
by NIs that are equipped with a single, multicast recycling logical channel. The subscrip-
tion nature of the implementation allows endpoints to dynamically join or leave a multicast
group without significant overhead. The NIs for a multicast group are arranged in a binary
tree topology, with each NI being responsible for distributing an incoming multicast mes-
sage to (1) all the subscribing endpoints in the local host as well as (2) up to two other NIs
in the cluster. In order to prevent deadlock, multicast messages may only flow from a NI
to another NI that has a larger id number.

Applications utilize the multicast facilities of GRIM through a library of function calls.
Each multicast group is statically labeled with a string name and dynamically assigned a
globally unique integer identifier. One node in the cluster manages a database for translating
multicast string names into runtime integer ids that can be referenced by all endpoints and
NIs in the cluster. When an endpoint attempts to translate a string name that is not in
the database, a new integer identifier is created and ownership of the multicast group is
assigned to the endpoint requesting the translation. The owner of a multicast group serves
as a central reference point for the multicast group and is responsible for dynamically
managing the subscription list. Multicast management functions take place transparently
in GRIM through the use of specially designed active messages. Therefore an endpoint
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needing to communicate with a multicast group simply locates the multicast id for the
group and injects a message that is marked with the id into the communication library.
Multicast delivery is performed automatically by the communication library.

In order to perform the task of multicast distribution, individual NIs must be configured
with two pieces of state information for each multicast tree. First, each NI is loaded with
information that specifies the root NI for each multicast tree in the system. This information
allows a message injected into the NI to be routed to the root of the multicast tree so that
distribution can begin. If the originating NI is also the root of the multicast tree the
message is simply moved from its outgoing logical channel into the NI’s outgoing multicast
logical channel when buffer space is available. The second piece of state data that NIs are
loaded with is forwarding information. This information is used to determine which (if any)
endpoints in the local host require a copy of an incoming multicast message, and which (if
any) NIs in the cluster should be forwarded a copy of the message. When a NI is required
to forward a message to other NIs, it inserts the incoming message into the NI’s outgoing
multicast logical channel once for all intended destinations and marks the message with
appropriate forwarding information.

8.1.5 Multicast Group Updates

In the subscription-based form of multicast, endpoints can join or leave a multicast group
dynamically. This operation is performed by transmitting a subscription update request
message to the host-level endpoint in the cluster that manages a specific tree. After process-
ing this request the endpoint determines the new multicast tree that needs to be constructed
to satisfy the subscription update. The endpoint then transmits a special tree update mes-
sage to the root of the new tree that contains the complete list of NIs that are part of the
new tree. Upon receiving this message a NI will update its own local forwarding tables and
then insert the message into its multicast logical channel for forwarding to its new children.
These in-band update messages allow the multicast tree to be updated without involving
the subscribing endpoints.

One of the challenges in implementing an system where multicast trees can be updated
dynamically is correctness. In the ideal case all multicast messages are distributed to all of
the endpoints that were part of a multicast group when the message was initially injected
into the distribution tree. The use of in-band updates partially upholds this characteristic
because when a NI updates its forwarding tables, it does not modify multicast messages that
are already waiting for transmission in the outgoing multicast queue. Therefore forwarding
changes are applied only to messages that follow the update message.

Another challenge in implementing multicast updates is preventing update messages
from bypassing previously transmitted multicast messages for a tree. This condition is
possible because update messages propagate through the cluster using the new multicast
distribution tree instead of the old tree. For example, if linear tree A-B-C-D-E is being
updated to linear tree A-D-F, it is possible that the update message will arrive at node
D while multicast data is still queued in nodes B and C. Therefore GRIM implements a
ticketing scheme [] that forces multicast message to be processed in the order they were
injected. In this scheme the root NI labels each message with a ticket from a counter that is
incremented after the transmission. NIs in the tree refuse to accept an incoming multicast
message if its ticket value does not match the NI’s expected value for the multicast tree.
Therefore this system places strict ordering on multicast messages that prevents multicast
messages for a tree from bypassing each other.
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Figure 8.6: An example of the communication path for a multicast transmission.

8.1.6 Multicast Communication Path

As a first step in evaluating the performance of GRIM’s multicast mechanisms, it is beneficial
to examine the low-level details of the multicast communication path. An example of how
data flows through the network components for a multicast tree is depicted in Figure 8.6.
In this example endpoint A injects a new multicast message into its outgoing NI message
queue. The NI is the root of the multicast tree and therefore after the NI detects the
message it transfers it to the outgoing multicast queue. The NI then transmits the message
to two other NIs where the message is relayed to endpoints B and C. While node C is a
leaf in the distribution tree, node B must forward the message to node D. Therefore node
B’s NI copies the message into its outgoing multicast queue and transmits the message
when the outgoing link becomes available. Node D receives the message and transfers it to
its endpoint, completing the multicast operation. It is important to note that all network
transactions in this process take place using per-hop reliable transmission mechanisms.

There are two observations that must be made bout the multicast communication path.
First, at the injecting node a multicast message is buffered in an outgoing message queue
before it is placed in the outgoing multicast queue. This buffering is necessary in order
to guarantee that when endpoints inject multicast messages, the messages are properly
inserted into the multicast queue. The downside of this approach is that compared to
unicast messages, multicast messages always have a bit of added delay before they are
transmitted into the network. A second observation of the multicast communication path
is that there are multiple locations where a NI must copy a message from one NI buffer to
another. While it is possible to perform some of these transfers in a cut-through manner, NIs
often have limited bandwidth for local memory transfers. A test program was constructed
to measure the memory copy performance of the Myrinet cards. This program revealed
that the LANai 4 and 9 cards were only capable of transferring data at 19 and 66 MB/s
respectively. Because of this poor performance it should be expected that NI-based recycling
methods may not reach peak transfer levels observed in unicast procedures.

8.1.7 Multicast Performance

A series of benchmarks were constructed to observe the multicast performance of GRIM. In
these tests multicast messages of variable sizes are transmitted to a set of receivers, which
promptly transmit a null reply message back to the sender using unicast mechanisms. The
sender measures the amount of time required to inject the multicast message and the amount
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Figure 8.7: Performance of multicast and unicast messages for (a) four and (b) eight
P4-1.7 GHz hosts using LANai 4 NI cards.

of time required to injected the message and receive replies from all destinations (i.e., the
overall round-trip time). The benchmark uses two methods for transmitting a multicast
message: the native multicast interface and a unicast system where the injecting endpoint
injects multiple copies of the message using unicast calls.

The results of the benchmark are presented in Figure 8.7 for (a) four and (b) eight P4-1.7
GHz hosts. LANai 4 NI cards were used exclusively in these tests due to a lack of LANai
9 cards. The first observation of these measurements is that the multicast operations in
general require less overhead to inject but have higher round-trip timings than the unicast
operations. The reduction in injection overhead can be attributed to the fact that the
multicast operation only has to inject a single message while the unicast operation must
inject as many copies of the message as there are hosts receiving the message. The increased
round trip latency for the multicast operation is due to the relatively high overhead involved
in performing NI-recycling.

The timing experiments were repeated using multicast subscription sizes ranging from
two to eight hosts. The round-trip timing measurements for the multicast transmission
mechanisms are presented in Figure 8.8. In these tests, subscription sizes of 2-3 and 4-7
hosts were observed to converge in performance as the multicast message size was increased.
This convergence can be attributed to the fact that the depths of the binary distribution
trees for these subscription sizes were equal.

8.2 Message Fragmentation and Reassembly Mechanisms

In most packet-switching and wormhole-routed networks, messages are limited in sized to a
fixed maximum transfer unit (MTU). Therefore it is beneficial to extend a communication
library with functionality that allows a large message to be fragmented into a series of
smaller transmissions that can be reassembled at the receiver. In addition to simplifying
the communication interface for end users, these fragmentation and reassembly mechanisms
can be used as a means of providing increased communication performance through message
pipelining. GRIM provides a built-in mechanisms for fragmenting and reassembling active
messages, remote memory messages, and multicast messages. For each category of message
the fragmentation and reassembly mechanisms had to be designed to allow the messages
to be transported reliably to the application in a transparent manner. Details of these
procedures are provided in this section. Performance measurements are found in Chapter
5 for active messages and remote memory messages, as well as in the preceding section for
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multicast messages.

8.2.1 Active Message Fragmentation in GRIM

The first effort in providing fragmentation and reassembly procedures in GRIM is for active
messages. Performing fragmentation on active messages is moderately challenging because
of the manner in which the messages are processed by the receiver. In GRIM a receiver
cannot execute an active message until all of its data has been transferred. Therefore the
fragmentation procedures for active messages must be designed such that the receiver buffers
a message’s fragments and then executes the appropriate active message handler when all
fragments have arrived. These procedures have been implemented in GRIM using a small
number of active message handlers. The handlers use three types of active messages: one
message to initialize the receiver, several messages to transfer the body of the message, and
a finalization message to complete the transfer. The fragmentation and reassembly process
using these messages is depicted in Figure 8.9.

The first message transmitted for a fragmented active message is an initialization mes-
sage, which is designed to prepare the receiver for the incoming message fragments. The
initialization handler allocates a reassembly buffer large enough to house all of the fragments
and then provides the receiver with basic information about the original message, such as
its active message arguments and function identifier. Following the initialization message is
a series of body messages that contain fragments of the original message’s data. The active
message handler for a body message locates the reassembly buffer being used for the transfer
and then copies the body message’s payload into the proper offset of the buffer. The last
message in the fragmentation process is a finalization message. The function handler for
this message copies the last block of data into the reassembly buffer and then invokes the

117



Sending 

Endpoint 

Receiving 

Endpoint 

Initialization 

Message 

Body 

Message 

1 

Body 

Message 

n 

Finalization 

Message 

Reassembly Buffer 

Append Data, Execute Message 

Append Data 

Append Data 

Allocate Reassembly Buffer 

Figure 8.9: Fragmentation and reassembly of a large active message is performed by three
types of active message handlers.

original message’s active message handler. Once this operation completes, the finalization
handler frees the reassembly buffer and clears the data structures used in reassembling the
message.

There are multiple characteristics of this implementation that are beneficial to end users.
From a performance perspective this approach is designed to hide overheads incurred by the
fragmentations process. Most notably, the initialization message is designed to be small so
that it can be transferred to the receiver quickly. This property allows the receiver to begin
allocating space for the reassembly buffer while the first body message is being transferred.
Another benefit of the fragmentation process is that it is implemented using existing active
message communication mechanisms. Therefore fragmentation is easily layered on top of
the system and operates in a transparent manner to end users. The use of active messages
is also beneficial because end users can easily replace the fragmentation mechanisms with
their own implementation by defining new active message handlers. This characteristic
is particularly valuable when custom interactions with an endpoint are required by an
application.

8.2.2 Remote Memory Message Fragmentation

It is much easier to implement fragmentation and reassembly procedures for remote memory
operations due to the manner in which these messages are executed at the receiver. From an
application programmer’s perspective, remote memory operation simply transfers a block
of memory from one endpoint to another and then optionally updates a user-space lock
variable. Therefore a remote memory operation can easily be divided into a series of smaller
transfers that are executed individually. If the user specifies that a lock update operation is
to be performed at the end of a transfer, the last message in the series of fragmented messages
can be configured to perform the operation. Because GRIM guarantees that remote memory
messages are processed in order, the lock update takes place after all fragments for the
transfer have been executed.
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8.2.3 Multicast Message Fragmentation

Fragmentation and reassembly mechanisms for multicast messages in GRIM are similar to
the mechanisms used for active messages. The key difference between these efforts is the
manner in which endpoints maintain information about fragmented messages. In the active
message procedures a unique id to reference a fragmented message is generated from the
ids of the sending and receiving endpoints and a counter value. For multicast messages this
reference value had to be modified because message fragments are transmitted to multiple
receivers. Therefore fragmented multicast messages are references with an id generated by
the sending endpoint id, the multicast tree id, and a counter value.

8.3 Protocol Emulation: A Sockets Interface

One of the challenges in constructing a communication library is addressing the issues in-
volved in presenting users with a new API. Being human, application designers are naturally
resistant to adopting new APIs. Additionally, new APIs generally prevent existing applica-
tions from being utilized with the communication library due to interface incompatibility.
As there may be a significant amount of work involved in adapting existing applications to
work with a new programming interface, it is desirable to provide mechanisms that allow
a communication library to directly support a legacy API. This work is referred to as pro-
tocol emulation because the communication library provides a programming environment
resembling that of a legacy API.

The GRIM communication library has been extended with functionality to support a
basic emulation of the sockets API. In this emulation endpoints manage socket state in user-
space and use a set of active message handlers to transfer socket data between endpoints.
Macros are used to map socket API functions into the appropriate active message transac-
tions. The emulation is able to detect whether a socket connection is for an internal cluster
resource or an external host and provides the necessary connections in a transparent man-
ner. Basic performance measurements have been made and suggest that while the sockets
emulation is not as efficient as the SAN APIs, they are faster than traditional Ethernet-
based mechanisms. These measurements indicate that legacy applications can directly use
the communication library and benefit from its increased communication performance.

8.3.1 Sockets

The Berkeley sockets [24] interface is a well-understood mechanism for providing inter-
process communication between two applications located on the same or different networked
computers. At creation time a socket is specified as being either reliable (TCP based) or
unreliable (UDP based). A reliable socket opens a bi-directional byte stream connection
between two endpoints. While costly to establish, a reliable socket is suitable for long-term
interactions between applications. An unreliable socket provides the user with a means
of sending and receiving messages or datagrams between two applications. As the name
suggests unreliable sockets leave the task of managing the reliable transport of data to the
end application. While the extensions provided in GRIM are designed to only support
reliable sockets, it is possible to implement an unreliable socket emulation in a similar
manner.

Extending a communication library to support a reliable sockets interface can be ben-
eficial for a number of reasons. First, since sockets-based programs are widely available,
the application base for a communication library can be significantly increased through a
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sockets emulation. Second, the performance of sockets-based applications may be enhanced
through the use of a properly equipped SAN communication library. In addition to using
a high-performance SAN instead of a LAN, there may be performance benefits in this ap-
proach because the socket operations are performed in user space instead of kernel space
[10]. Finally, a sockets emulation for a SAN communication library allows an application
to use the sockets API at the same time as the library’s native API. Therefore users can
construct applications that rely on the sockets API for routine endpoint interactions and
then use the native SAN functions when increased performance is needed.

Because of the benefits of the benefits of a socket-based API, researchers have con-
structed sockets protocol emulations for existing communication libraries. One of the first
and more notable of these efforts is the Fast Sockets project [80]. In this work researchers
extended the AM communication library [27] to support a sockets API. The software would
intercept calls made to the socket library and determine if the operations could instead be
performed using the high-speed SAN and specially designed AM mechanisms. This work
demonstrated that sockets calls could efficiently be layered on top of an existing SAN com-
munication library. The researchers noted that while performance did not reach the peak
levels offered by AM, there were significant gains over the traditional LAN mechanisms.

8.3.2 Planning a Reliable Sockets Emulation

There are at least three areas of development required to allow a SAN communication li-
brary to support an emulation of the sockets API. First, a conceptual model of the flow
of data must be defined for the emulation. Socket data may be buffered at the receiving
endpoint, the sending endpoint, or a combination of the two. While receiver-based buffer-
ing is more traditional, the other approaches may reduce the number of memory copies
involved in transferring data in the emulation. Second, the communication library must
be equipped with a set of functions for facilitating the emulation. These functions must
be able to transport data between socket endpoints and maintain state information used in
the emulation. Finally, wrapper functions must be constructed to allow the emulation to
intercept calls to the sockets API. Wrapper functions translate socket functions into appro-
priate SAN transactions as well as convert traditional LAN information (i.e., IP addresses)
into references that can be utilized with the SAN.

8.3.3 Implementation of a Reliable Sockets Emulation

The GRIM communication library has been extended with a software package that provides
an emulation of the reliable sockets API. This software utilizes a small number of active
message handlers for managing sockets and C-language macros to intercept a user applica-
tion’s socket operations. From a data transfer perspective this package is designed to buffer
socket data at the receiving endpoint. This approach was selected for latency reasons, as
buffering messages at the sender requires the receiver to perform a network fetch operation
when an application attempts to receive data from the socket.

Internally each endpoint in the emulation maintains a list of open socket connections.
An endpoint marks a port in this database as being available when an endpoint performs a
socket operation for accepting a new connection. A connection is established when another
endpoint in the cluster attempts to open a connection to the endpoint at an available port.
Once connected two endpoints allocate data structures for buffering incoming socket data.
When an endpoint injects data into the socket, an active message is used to transport the

120



0

20

40

60

80

100

120

 1  10  100  1,000  10,000  100,000  1,000,000  10,000,000

B
a
n

d
w

id
th

 (
M

B
y
te

s
/s

) 

Transfer Size (Bytes) 

GRIM Sockets LANai 4

100 Mb/s Ethernet

0

20

40

60

80

100

120

 1  10  100  1,000  10,000  100,000  1,000,000  10,000,000

B
a
n

d
w

id
th

 (
M

B
y
te

s
/s

) 

Transfer Size (Bytes) 

GRIM Sockets LANai 4

100 Mb/s Ethernet

Figure 8.10: Performance of the GRIM sockets emulation using LANai 4 NI cards com-
pared to 100 Mb/s Ethernet for (a) P3-550 MHz and (b) P4-1.7 GHz hosts.

data to the remote socket endpoint and append the data to its socket data buffer. The
socket’s read operation then examines the local buffer and extracts data as it becomes
available.

One of the hardships in constructing a sockets interface is distinguishing between sockets
used for internal SAN interactions and sockets used for other operations. For example, an
application uses the same read and write operations to interact with a socket as it does a
file. Therefore if read and write operations are intercepted by the emulation, the emulation
must be able to determine whether to use the SAN library or to use the traditional library
function. This task is performed in GRIM by intercepting all of the calls that manage
file operations. When a new socket is opened, GRIM determines if the destination is a
cluster resource and assigns these resources a specially marked file handler. The file handler
returned for interactions with non-cluster resources is simply the file handler returned by the
initialization operation. At runtime when a socket or file is accessed, GRIM can determine
whether to use its SAN functionality simply by examining the file handler.

8.3.4 Performance

A benchmark program was constructed to measure the performance of the GRIM sockets
emulation. This program was written using the traditional sockets API and therefore can
be used with both a GRIM-based Myrinet network and a TCP-based 100 Mb/s Ethernet
network. Selecting the communication library and network to use in the benchmarks is
performed by setting a switch in the compile process. The benchmark program is designed
to establish a connection between two hosts and transfer a block of data between the hosts
in a round-trip fashion.

The results of the benchmark experiments are presented in Figure 8.10(a-b) and sum-
marized in Table 8.1. As expected the GRIM sockets emulation outperformed TCP-based
Ethernet for all transfer sizes due to the superior performance of the Myrinet SAN. GRIM
provides roughly a third of the latency of TCP sockets and up to nearly nine times the
bandwidth. The performance characteristics of the GRIM sockets API reveal that as mes-
sages become larger GRIM is able to provide better performance until a transfer size of
approximately 64 KB. At this point GRIM begins fragmenting transmissions, resulting in
a dip in performance. While performance begins to increase after this dip, it should be
noted that the performance is not as high as that observed with the active message and
remote memory interfaces. This characteristic can be attributed to the fact that the active
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Table 8.1: Comparison of the performance of TCP and GRIM Sockets.

API Network
P3-550 MHz P4-1.7 GHz

Latency Bandwidth Latency Bandwidth
(µs) (MB/s) (µs) (MB/s)

TCP
100 Mb/s
Ethernet

58.8 10.1 62.5 11.7

GRIM
Sockets

LANai 4
Myrinet

22.7 55.6 22.2 103.3

message socket handlers allocate a new block of memory for every incoming socket fragment
and add the block to a linked list. This differs from the fragmentation mechanisms in the
active message interface where memory for a large transfer is allocated one time in advance
and then filled with a series of transfers. However, the performance of this approach is rea-
sonably high and is therefore beneficial as a means of improving the performance of legacy
applications.
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CHAPTER IX

CONCLUSION

Resource-rich clusters are an emerging form of cluster architecture where both host CPUs
and peripheral devices are utilized by distributed applications. While these clusters can
be physically constructed from commercially available hardware, the enabling technology
for these systems is specially designed message layer software. Current generation message
layers are ill equipped to handle the communication needs of these clusters because they
are by design CPU centric. Therefore this thesis has addressed the design of new message
layers that are able to support efficient interactions between applications and a cluster’s
host CPUs and peripheral devices.

The work presented in this thesis advocates migrating communication functionality in
the message layer from the communication endpoints into the NI when possible. This
migration reduces the workload of the endpoint and simplifies the task of adding new
peripheral devices to the cluster architecture. Three primary design characteristics for
message layers have been discussed as a means of accomplishing this task. First, end-to-
end flow control in the message layer is managed on a per-hop basis in order to simplify
communication protocols for endpoints and provide better dynamic buffer management.
Second, logical channels are employed in the NI to allow multiple endpoints in a host to
efficiently share a singe NI. Finally, two programming interfaces are defined for the message
layer to support a rich set of communication functions. An active message interface provides
a powerful means of controlling peripheral devices while a remote memory interface allows
users to perform low-level transfers of memory between cluster resources.

A critical characteristic of a message layer for resource-rich clusters is extensibility.
Users of resource-rich cluster computers frequently need to perform custom operations and
therefore need to be able to layer new functionality on top of existing message layer software.
More precisely a message layer must be extensible in at least two dimensions. In a horizontal
dimension the message layer must provide means by which new peripheral devices can easily
be incorporated into the cluster environment. In a vertical dimension, a message layer must
be designed to allow users to add new application-specific functionality. These additions
can be made at the endpoint level (e.g., the sockets emulation) or at the NI level (e.g., NI
support for multicast).

GRIM is a message layer that has been constructed with the preceding design princi-
ples. GRIM has been utilized to integrate four different peripheral devices into a cluster
architecture. The fact that these devices have a diverse range of capabilities illustrates that
GRIM’s communication mechanisms are flexible and sufficient for the needs of resource-rich
cluster computers. Multiple application-specific extensions have also been constructed for
GRIM. These extensions include methods for performing streaming computations in the
cluster, NI-supported multicast, fragmentation and reassembly, and an emulation of the
sockets API. These extensions demonstrate that new functionality can easily be layered on
top of GRIM’s core communication operations.

GRIM’s performance has been evaluated and compared to existing message layers. For
host-to-host transmissions GRIM obtains a maximum bandwidth of 146 MB/s (1.168 Gb/s)
and exhibits latencies as small as 8 µs. This performance is comparable to existing message
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layers, indicating that it is possible to add resource-rich cluster functionality to the message
layer without severely impacting the performance of traditional communication operations.
Attempting to implement GRIM’s functionality in other message layers is impractical and
at the very least highly inefficient due to the manner in which these message layers are
designed.

9.1 Implementation Challenges

A significant portion of the work presented in this thesis deals with the challenge of over-
coming the limitations of commodity hardware. Some of the more challenging aspects of
working with commodity hardware, peripheral devices, and cluster computers in general
include the following.

• Low-level Operation: Peripheral devices operate as low-level hardware appended
to the host system. Programming at this level can be challenging for a number of
reasons. Errors at this level often have catastrophic effects on the host. For example,
programming a DMA engine with bad pointers can result in the entire operating
system being relocated in physical memory. These errors can be difficult to locate
as it is more likely that a bad DMA will simply corrupt a random location of host
memory that may not cause an immediate system crash. A key to working in this
environment is to construct protective debugging mechanisms around functions that
pose a risk to system stability.

• Blind Debugging: Another programming difficulty in dealing with peripherals is
that is often difficult to observe the behavior of firmware. While some high-end cards
such as the I2O adaptor are equipped with a serial debugging connection, many cards
have no other monitoring equipment other than LEDs and memory. A significant
amount of the work in dealing with the peripheral devices used in GRIM involved
constructing debugging frameworks, such as a journaling systems to record card op-
erations. These facilities are essential to observing low-level card behavior.

• Device Limitations: One of the most significant problems encountered in this work
is simply dealing with the fact that peripheral devices are utilized in ways they were
not originally intended for. Peripherals devices are typically built on the assumption
that only the host CPU will communicate with the card. This assumption is often used
to justify minimizing peripheral device functionality when a host driver can perform
the same functions. Therefore work in resource-rich clusters often requires defining
new mechanisms by which existing devices can be adapted.

• Byte Endian and Alignment Issues: It is common for the processor of different
peripheral devices to use a different byte endian order than the host processor. For
example, network cards are often big endian (to match network byte order) while x86
processors are little endian. All communication between the host and the NI must
be translated to match the destination’s endian order. Alignment is a similar issue in
that some peripheral devices require data to be aligned on specific byte boundaries.
For example, the LANai 9 NI’s DMA units require memory address to be align on
64-bit boundaries. Therefore, communication software must be designed to place the
right data in the right locations.
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• Limited Data Transfer Mechanisms: Each peripheral device generally has a card-
specific set of hardware for performing operations such as DMA transfers. To com-
plicate matters, some peripheral devices do not provide all of the desired mechanisms
for performing data transfers. For example, while the I2O card features DMA en-
gines, the engines can only be initiated by the card. This adds to the complexity of
transferring data to the device from entities such as the host CPU that do not have
a built-in DMA engine. Therefore it is beneficial to use a library such as TPIL to
accelerate I/O operations.

• An Evolving OS Kernel: Over the last five years, GRIM has had to be adjusted
to operate with three different versions of the Linux kernel (2.0, 2.2, and 2.4). Each
of these transitions required a number of modifications to the device drivers built
for GRIM. While it is natural and desirable for an OS to evolve with improvements,
maintaining both a working knowledge of the kernel and a functional custom device
driver can require a significant amount of effort. One method of dealing with a
changing kernel is to move application functionality from the kernel-level device driver
to user-space software.

• Poor Documentation: A universal problem with working with peripheral devices
is that usually there is a lack of decent documentation. Vendors often do not release
low-level details for a peripheral device to prevent competitors from leveraging their
work. Therefore the only options for developers are reverse engineering and methods
based on trial and error. Discussing driver issues with other Linux developers can
greatly help in this work.

• Deadlock: Deadlock is an important issue that needed to be addressed at all levels
of GRIM’s development. Any time new functionality is added to a message layer
the designer should check to observe whether the operation holds one resource while
waiting for another. Deadlock prevention techniques do not have to be complicated
and can often be implemented with sufficient buffering.

9.2 Future Directions

The work presented in this thesis provides the first steps in constructing extensible message
layers for resource-rich cluster computers. This work can be continued in multiple directions.

9.2.1 GRIM Enhancements

The current version of GRIM provides a basic, flexible substrate for allowing cluster re-
sources to communicate efficiently. However, there are a number of improvements that can
be made to the implementation. First, since GRIM is designed to operate with both the
old and new versions of the LANai NI processor, the NI firmware does not take advantage
of hardware features found in the new card. GRIM’s performance could therefore be en-
hanced by making use of card-specific functions such as the PCI doorbells. Second, like
many Myrinet message layers, GRIM only allows one host-level application in a host to be
connected to the network at a time. GRIM could be modified to support multiple applica-
tions at a time by allocating each application a separate logical channel in the NI. Finally,
GRIM can be enhanced by adding new and different peripheral devices to the communica-
tion model. Given the flexibility of GRIM and the four existing peripheral device examples,
this work can be performed in a relatively straightforward manner.

125



9.2.2 Gigabit Ethernet Substrates

It is useful to consider how the Myrinet SAN currently used in GRIM could be replaced
with commodity Gigabit Ethernet LAN equipment. Gigabit Ethernet is in general more
affordable than Myrinet hardware and is widely utilized for clusters. Adapting GRIM
to support Gigabit Ethernet would therefore provide an opportunity for a large number
of existing clusters to function as resource-rich clusters. The first task in this effort is
selecting a Gigabit Ethernet NI card that can be programmed with GRIM’s low-level NI
functionality. Multiple Gigabit Ethernet cards can be utilized in this effort, including the
Alteon AceNIC [9] card, the Intel Pro/1000 series [50] cards, and network cards based on
the Intel IXP processor [48]. Emerging IXP cards provide the most promising environment
for this work as the cards are very powerful and are well supported by Intel. The IXP cards
feature multiple Gigabit Ethernet ports, up to 256 MB of memory, and multiple threaded
microengine processors.

Adapting GRIM’s NI software to a Gigabit Ethernet NI platform would require changes
to some of the basic functions of the NI. At a fundamental level, message data structures
would have to be modified to meet the formatting requirements of the new network. A
more challenging aspect however is dealing with the communication differences between
the Myrinet SAN and a Gigabit Ethernet LAN. While Myrinet provides highly-reliable
data transmissions, messages may be dropped or reordered in Gigabit Ethernet LANs.
Therefore it is necessary to modify GRIM’s reliable transmission mechanisms to account
for these factors. While GRIM’s in-order delivery mechanisms can be utilized to sort out-
of-order messages, extensions are necessary to protect against dropped messages. These
modifications involve adding timeouts mechanisms for data message transmissions so that
dropped messages are automatically retransmitted. Once a reliable network transmission
protocol is established for Gigabit Ethernet NIs, adapting the remaining portion of GRIM’s
functionality should be a relatively straightforward process.

9.2.3 Active SANs

Another direction for future research related to this thesis is in the field of active SANs. As
the streaming extensions of this thesis have demonstrated, it is possible to utilize FPGAs
as processing elements in a cluster’s network substrate. The next step in this effort is to
reduce the distance between the FPGAs and the NI. One such approach is to include an
FPGA on a NI card. The advantage of this architecture is that the FPGA can process
network messages without costly traversals of the PCI bus. Since the FPGA can process
messages at a finer granularity, it is possible for the FPGA to play a more pivotal role in
streaming computations.

Emerging FPGA architectures provide another opportunity for research exploration
related to active SANs. Recently announced FPGA chips such as the Xilinx Virtex-II
Pro [100] include large amounts of reconfigurable logic, network transceivers, as well as
dedicated processor cores. These chips will be capable of directly interacting with the
physical links of networks such as InfiniBand. Therefore these FPGAs can be visualized as
the next generation of high-performance NI chips. In these chips a portion of reconfigurable
logic and CPU processing time will be utilized to implement network interactions. The
remaining resources of the chip can be utilized to implement custom computations for
streaming operations. Since the NI and FPGA are implemented in a single chip, it is
expected that constructing a streaming computational system will be much more efficient
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and straightforward than the effort required to incorporate the RC-1000 FPGA card as
a coprocessor. However, the system for performing streaming computations on network
messages presented in this thesis is applicable to this architecture and provides a starting
point for future research in this field.
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APPENDIX A

SUMMARY OF MYRINET CHARACTERISTICS

The following are architectural and performance characteristics for the Myrinet LANai 4
and 9 NI cards utilized in this work.

Feature LANai 4 LANai 9B

NI Clock Frequency 33 MHz 133 MHz

NI Memory 1 MB 2 MB

NI PCI Interface 32b/33MHz 32-64b/33-66MHz

SAN Interface SAN-1280 SAN-1280/M2000

Operation Min/Max LANai 4 LANai 9B

PCI DMA time Min 2 µs 2 µs

SAN DMA time Min 3 µs 1 µs

Interrupt service time Min 6.5 µs 6 µs

On-card memory copy bandwidth Max 19 MB/s 66 MB/s

PCI Bandwidth
32b/33MHz

Max
131 MB/s 132 MB/s

64b/66MHz - 303 MB/s

SAN Bandwidth
SAN-1280

Max
132 MB/s 149 MB/s

M2000 - 200 MB/s

Scan N logical channel
data structures

1
Min

1 µs 0.5 µs

8 5.5 µs 1.5 µs

16 9 µs 3 µs
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APPENDIX B

THE FPGA FRAME API

Field-programmable gate arrays (FPGAs) have steadily evolved over the last decade as a
means of accelerating a number of computational tasks through the use of reconfigurable
hardware. Given the potential for this technology it is beneficial to investigate methods
by which FPGAs can be integrated into the cluster computer architecture and efficiently
utilized by end applications. Unfortunately integrating an FPGA into a cluster can be
extremely challenging due to the limited types of resources these cards employ. Most com-
mercial FPGA cards employ one or more FPGAs, a cache of on-card memory, and a simple
PCI controller. Because these cards often lack a general purpose CPU, it is often necessary
to construct a state machine in the FPGA that serves as an interface between a user’s
computational circuits and external resources such as on-card memory or the host CPU.

In order to integrate the Celoxica RC-1000 FPGA card into a cluster computer utilizing
the GRIM communication library, it was necessary to design and implement a block of
FPGA circuitry that managed interactions between the FPGA’s computational circuits
and end applications. This block of logic is known as the FPGA’s static frame because it
allows a canvas of user-defined computational circuits to be insulated from the card-specific
features of the RC-1000 device. This section describes the low-level mechanics of the frame
and provides an API by which end users can interact with the FPGA device. While the
frame is designed to operate specifically with the RC-1000 card, it is possible to adapt this
work for use with other similar FPGA cards.

B.1 Architecture Overview

As depicted in Figure B.1, the RC-1000 implementation of a GRIM communication endpoint
is divided into two contexts: the static frame unit and the dynamic circuit canvas. The
frame serves as a reusable block of hardware that allows different computational circuits
to be dynamically plugged into one of the cluster’s FPGA devices. The frame provides
three specific interfaces to insulate a user’s circuits from the device specific characteristics
of the target FPGA card. First, the frame implements a communication library API that
is responsible for handling messages coming from or going to the communication library.
Second, the frame provides an interface to the dynamic circuit canvas that allows multiple
user-defined circuits to be connected to the frame. Finally, the frame provides an interface
that allows applications to access a region of on-card memory known as the scratchpad.

B.1.1 Data Path of the Frame

A simplified view of the Celoxica RC-1000 frame’s low-level data path is depicted in Fig-
ure B.2. The four SRAM banks available on the RC-1000 are allocated as follows. Bank
0 houses incoming message queues for the communication library as well as runtime infor-
mation for the frame. SRAM banks 1 and 2 are utilized as scratchpad memory for storing
application data. SRAM bank 3 houses the outgoing messages for the communication li-
brary. The control/status port on the RC-1000 provides a simple means of transferring
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Figure B.1: The three interfaces managed by the FPGA frame.

8-bit data values with the host. This port can be configured to transmit an interrupt to
the host and is used to pass simple state information between the host and card.

The individual units in the frame architecture are described as follows:

• Fetch/Decode unit: This unit fetches the next message to be processed by the frame
and establishes the necessary data paths through the frame to process the message.
A message can originate from either the endpoint’s message queues (housed in SRAM
bank 0) or from a recycle buffer which contains the previously generated outgoing
message.

• Scratchpad controller unit: This unit is used to exchange data with the scratch-
pad memory (SRAM banks 1 and 2). A single SRAM bank can supply both input
vectors and accept the output vector of the user-defined circuit if needed. Vector data
is fetched and stored linearly starting at memory offsets provided in the incoming
message’s header.

• Results cache: The results cache is used to buffer the output of a computation until
the frame is able to write the data into its proper destination. The cache is utilized only
when an operation needs to fetch and store data with the same scratchpad memory
bank, or when input data is fetched from an incoming message and output is written
to the recycle buffer.

• Message generator: This unit takes results generated by the computational circuit,
formats the data into an outgoing message, and inserts the data into an outgoing
message queue (located in SRAM bank 3).

• Vector data ports: The frame provides three vector data ports, to which all user-
defined circuits are connected. Ports A and B provide input streams to the circuits
while port C receives output data generated by the circuits.
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Figure B.2: The internal structure of the frame for the RC-100 implementation.

• Built-in Ops: The frame provides a simple built-in computational circuit that can
perform a variety of common vector operations, including add, subtract, multiply,
min, max, invert, and pass.

B.2 Communication Library Interface

The first interface that the frame provides allows the FPGA to interact with the commu-
nication library. This interface is responsible for managing incoming and outgoing message
queues, and must be designed to work with the message format specified for a given com-
munication library. The RC-1000 implementation of the frame utilizes messages formatted
for the GRIM communication library, although it is possible to adjust the implementation
to operate with other libraries.

B.2.1 GRIM Message Format

The RC-1000 implementation of the frame processes messages that are formatted for the
GRIM communication library. Like other communication endpoints found in GRIM, infor-
mation included in the header of each message is used to specify how the RC-1000 should
process a message. The active message function handler identifier for the RC-1000 cor-
responds directly to the globally unique user-defined circuit that is used to process the
message. Because of the flexibility that the frame provides in processing a message, it is
necessary to encapsulate additional information in the message header. This information
resides in the arguments section of the active message header and is used to configure the
frame’s data paths to meet an application’s needs. The fields used to configure the FPGA
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Table B.1: The data fields in an active message header that control the operation of the
frame and the corresponding bit lengths.

Arg[0]
Forwarding A B C Sub Op

ID Driver Driver Driver Reserved Op Length
(8) (1) (1) (1) (7) (4) (10)

Arg[1] Port A Virtual Address (29)

Arg[2] Port B Virtual Address (29) or Port B Constant (32)

Arg[3] Port C Virtual Address (29)

are listed in Table B.1.

B.2.2 Message Queues

The frame implements three different types of message queues. The first category of message
queue is used to house incoming messages for the card. These queues are located in SRAM
bank 0 and adhere to the append-style of queuing utilized throughout GRIM. The current
implementation of the frame provides two separate incoming message queues, with the
intention that one queue is for the host CPU and the other for the NI. The frame periodically
polls each of these queues to determine if new messages are available. This polling operation
takes place every 300 FPGA clock cycles and requires less than a dozen clock cycles to poll
for new data.

The second place where messages can be stored is in the recycle buffer. This buffer is
housed in SRAM bank 0 and has room for exactly one message. This buffer is utilized when
an application needs the FPGA to perform a series of operations on a set of data. Users
can specify a message be recycled by setting the C-Driver bit in the message’s header to
zero. The frame will then route the results of the computation into the recycle buffer and
insert the proper header from the forwarding table. The frame provides a guarantee that if
a message is placed in the recycle buffer, it will be selected as the next message processed
by the FPGA. This guarantee is necessary to prevent multiple messages from being inserted
into the recycle buffer. Therefore it is imperative that users prevent endless recycling loops
in the forwarding table.

The third type of message queue controlled by the frame is for outgoing messages.
Currently there are two outgoing message queues that are housed in SRAM bank 3. In
order to simplify the task of managing these queues, the frame implements a slotted queuing
system. Because the FPGA card cannot directly trigger the DMA engines, the frame must
notify the host when data is available in the message queues. This operation is performed
by updating the RC-1000’s status register, which the host periodically polls. When the host
detects new messages in the card’s outgoing message queues, it can perform the necessary
transfer of data to the proper endpoint.

B.2.3 Forwarding Registers

A key design point for the RC-1000 frame is that it is able to process incoming messages
and generate outgoing messages. This allows the card to be utilized as an intermediate
computational stage as opposed to simply a unit that sinks data. Therefore mechanisms
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have to be present in the frame to allow messages to be ejected by the frame into the com-
munication library. Like other peripheral devices in the GRIM environment, it is expected
that the card will generate messages only in response to a stimuli, such as the detection
of a new incoming message. The hardship in implementing such a system is providing an
interface where users can specify the types of response messages that the frame generates.
The implementation of the RC-1000 frame utilizes a set of forwarding registers to solve this
problem.

The term forwarding registers in the GRIM environment refers to a database in a com-
munication endpoint that contains information used to format outgoing messages. For the
RC-1000 frame this database is implemented as a large table of user-programmed message
headers. All incoming messages have a field in the message header that specifies which table
entry (if any) the frame should reference to generate an outgoing message. The frame copies
the information from the specified entry to the outgoing message and places the results of
the computation in the payload section of the message. Users can adjust the forwarding
register table entries through a set of built-in active message handlers for the frame. The
set pipeline handler simply copies 64 bytes of payload into the specified forwarding register
entry. It is the responsibility of the user to allocate and manage forwarding registers in this
table.

The forwarding registers for the RC-1000 are located in SRAM bank 0 starting at
address 0 in the current frame implementation. The table contains 256 entries, with each
entry housing a single message header (64-bytes). The frame is designed to reference the
forwarding registers only when a header needs to be placed on a message that is generated.
For these situations the frame operates as follows. First, the frame processes a message in a
normal manner. The message header is fetched, the frame data paths are established, and
data is streamed through a specified computational unit. The results of this computation
are routed to the payload section of the generated message, whether the generated message
is assembled in an outgoing message queue slot or the recycle buffer. Next, the frame uses
information from the incoming message to generate an index into the forwarding register
table. The message header located at this entry is then streamed into the header section
of the generated message. Finally, the frame updates the sender id and the payload length
fields of the message header to guarantee that the generated message is properly identified.

B.2.4 Active Message Circuit Identification

Once the frame receives an incoming message it must determine which user-defined circuit
is utilized to process the data. Conceptually, user-defined circuits are similar to function
handlers found in any other communication endpoint in GRIM. Therefore each user-defined
circuit is labeled with a unique active message handler identifier that end applications can
reference to perform a desired computation. However, unlike other function handlers used
in GRIM, user-defined circuits are statically assigned active message identifiers. When
creating a new circuit, a user must define a new static active message handler identifier
for the circuit in the grim handlers.h file. This file contains a static list of handler IDs
for various functions utilized in the GRIM library. Once identified, users can reference
a user-defined circuit with a simple constant as opposed to locating an identifier for the
circuit through the runtime handler database. An advantage of this approach is that it
simplifies the task of forwarding data between FPGA computational circuits because all
circuit identifiers are known in advance.

At runtime the frame must be able to determine which user-defined circuit is utilized
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to process an incoming message. In the RC-1000 implementation of the frame this is
accomplished by comparing an incoming message’s active message handler id to a list of the
FPGA’s user-defined circuits. This list is managed by the host and updated whenever the
FPGA’s configuration is updated. Specifically, the host stores the list of a configuration’s
user-defined circuits in the card’s SRAM before a configuration is loaded into an FPGA.
After the FPGA is reset, the frame loads this list of functions from SRAM into an internal
set of registers. When the frame observes an incoming message, it compares the active
message handler to the list of available circuits. If the requested circuit is available the
frame establishes the data path necessary to connect the user-defined circuit to process the
message. If the circuit is not available, the host is notified of the problem with a function
fault.

B.2.5 Function Faults

A function fault is when an incoming message requests an active message handler that
cannot be satisfied with the user-defined circuits that are currently available in an FPGA.
The first phase in a function fault is for the FPGA to store all of its runtime state information
in on-card SRAM. This data includes the id of the function that caused the fault as well as
the frame’s current set of message queue pointers. Future versions of the frame may also
include the runtime state information of individual user-defined circuits in this operation.
After runtime information is stored the frame notifies the host of the function fault through
the card’s status register. The frame then suspends operation until the host passes an
activation signal to the frame through the control register.

Once the host detects a function fault it must load the id of the missing user-defined
circuit and determine how the FPGA should be reconfigured. In the current implementation
the FPGA is reconfigured in its entirety. Therefore the host simply locates an FPGA
configuration in its database that features the missing hardware and loads the configuration
onto the FPGA. This process includes writing the new FPGA configuration’s list of user-
defined circuits to the card’s SRAM, loading the FPGA with the new configuration, and
triggering the FPGA reset. The FPGA then loads its runtime state information from SRAM
and continues processing where it left off.

B.3 Computational Circuit Interface

The frame allows multiple user-defined computational circuits to exist in the dynamic circuit
canvas, as illustrated in Figure B.3. Each user-defined circuit is connected with two vector
inputs (labeled as ports A and B) and one vector output (labeled as port C). For simplicity
the frame is designed to allow only one user-defined circuit to be active at any given time.
When the frame detects a new incoming message, it sends an activation signal to the user-
defined circuit specified in the message’s header and then routes data into and out of the
vector data ports. Vector data ports are asynchronous and provide sequential streams of
data using a simple control protocol. Circuit designers are free to utilize these ports in any
manner they desire, as long as unused ports are properly grounded.

B.3.1 Vector Data Port Signaling

Vector data ports are designed to operate in an asynchronous fashion. A simple valid/ac-
knowledge handshaking protocol is utilized to allow either the sender or receiver of a vector
data port to stall the passing of data. By design the sender and receiver of a vector data
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Figure B.3: The interface between the FPGA’s frame and circuit canvas.
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Figure B.4: The signals for a vector data port.

port operate on opposite clock edges. The frame inverts the clock supplied to user-defined
circuits so both units have the appearance of operating on the rising edge of the clock. Be-
cause the sender and receiver are on opposite clock edges it is possible for a new data value
to be transferred every clock period. The interface for a port is depicted in Figure B.4.

The signals for a vector data port are as follows.

• On: The user-defined circuit must assert the on signal for the entire time it needs
to transfer data with the port. Therefore the first action a user-defined circuit must
perform when it is activated by the frame is asserting the on signals for all data ports
that will be used when processing a message. Once the on signal is turned off the
frame will stop attempting to transfer data with the port. All vector port on signals
must be set to low before job done can be triggered.

• Valid: The transmitter for a port signifies that the next word from the vector port
has been placed on the data lines. Valid remains high until the receiver of a port
asserts an acknowledgement. Note that because sender and receiver are on opposite
clocks, it is possible for the valid signal to remain high for multiple clock periods if the
receiver can accept data every clock signal and assert the acknowledgement signal.

• Data: The data lines provide the next 32-bit data value when valid is asserted.
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Figure B.5: The interface for a user-defined circuit.

• Acknowledge: The acknowledge (ack) signal is asserted for a single cycle when the
receiver reads a valid data value. An acknowledgement triggers the sender to set the
valid signal to low, unless the next vector data value can be placed on the data lines
immediately.

B.3.2 Circuit Interface Signals

The signaling API for a user-defined circuit is depicted in Figure B.5. In addition to the
three vector data ports, a user-defined circuit must manage a set of control signals in order
to properly communicate with the frame. The failure to correctly generate these signals
can result in either erroneous data or the entire frame being suspended in an endless loop.
All signals for a user-defined circuit are active only on the rising edge of the provided clock
signal. Data presented to the user-defined circuit is generated on the clock’s falling edge.

The control signals passed between the frame and the user-defined circuit are as follows.

• clk: This is the clock signal provided to the unit. A user-defined circuit must assert
signals on the rising edge of this clock. Note that this clock is an inverse of the clock
used in the frame, so that both the frame and user-defined circuits can operate with
rising edge clocks.

• reset h: This signal is an active high reset for the unit. After observing a reset
the user-defined circuit must initialize itself and move to a state where it waits for
notification from the host that it is to perform a computation on a message.
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Figure B.6: An example timing diagram for an asynchronous data vector port.

• job new: The job new signal is activated for a user-defined circuit when the circuit is
the unit that is needed to processes a new message. This signal remains asserted until
the unit completes its task and the frame completes all message processing tasks.

• job subop: This 4-bit signal is an optional field that can be used to allow a user-
defined circuit to perform different operations. For example, a cryptography circuit
may be capable of performing encryption and decryption operations. The user can
specify which of these operations to perform with the subop field.

• job ints: This 10-bit signal specifies how many 32-bit words of processing the user
expects the circuit to perform.

• job done: When the user-defined circuit completes all of its operations it asserts
the job done signal to notify the frame that it is finished processing a message. The
job done signal must remain asserted until the frame pulses the operation complete
signal. It may take several cycles for the frame to issue the operation complete signal
because it may need to flush cached data.

• operation complete: This signal indicates that the frame has completed all pro-
cessing necessary for a message. After receiving this signal all user-defined circuits
must revert back to an initial wait state where they wait for job new to be triggered.
All control signals for a user-defined circuit must be set low after receiving an opera-
tion complete in order to prevent any false starts in the system.

B.3.3 Example Operation

The timing diagram in Figure B.6 provides an example of the signaling required for a user-
defined computational circuit. In this example the circuit is designed to simply read four
values from vector data port A and then signal its completion. The clock signal provided
in this example is from the user-defined circuit’s perspective.

Details of the signaling for this example are as follows.

1. The first phase of operation is for the user-defined circuit to be activated. In this
process the frame asserts the job new signal and waits for the circuit to respond with
the A on.
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2. Once activated the port can begin exchanging data values. In the first transfer the
frame asserts the A valid signal and places ‘A’ on the A data bus during a falling
clock. After some time the user circuit acknowledges the transfer by pulsing the
A ack signal. In this case the frame does not have the next data value ready so the
A valid signal is set to low. This example illustrates how the user circuit can delay
the transmission of data.

3. After some time the frame has two data values to transmit. The frame begins the
transfer by placing ‘B’ on the A data bus and setting A valid. The user circuit is
able to accept this data and replies by setting A ack high. This process is repeated
immediately for ‘C’. This transfer illustrates that the protocol can transfer multiple
data values, with each transfer taking a single cycle.

4. The final transfer is for the single data value ‘D’. In this example both the frame and
user circuit are ready to transfer the value, resulting in a total transmission time of
two clock periods.

5. The final task is for the circuit to complete its operations. After the circuit has
completed all of its computations it sets A on low. The circuit must then wait for
the operation complete signal to be pulsed, which signifies that the frame has finished
storing the results of the computation. After this point the user circuit resets itself to
a state where it waits for a job new signal.

B.4 Scratchpad Memory Interface

The third interface that the frame provides allows user-defined circuits to access data lo-
cated in a block of on-card memory defined as the scratchpad. The scratchpad is designed
as a temporary storage space for housing large sets of application data on the FPGA card.
Its primary benefit is that it allows application data to be stored in close proximity to the
FPGA. This locality can improve the computational performance of user-defined circuits
by decreasing the latency at which data can be supplied to the inputs of the circuits. A
second benefit of the scratchpad memory is that it increases the flexibility of the FPGA
as a computational resource in the cluster architecture. The frame is designed to be able
to connect the scratchpad to a user-defined circuit’s input and output vector data streams.
Therefore the results of one computation can be stored in the scratchpad for use in future
computations. This mode of operation allows the FPGA to be utilized in a more practi-
cal manner since the scratchpad can be used as a means of storing dynamic state for an
application.

There are a number of design issues involved in constructed a scratchpad memory inter-
face. Primarily these issues are related to two challenges: defining fundamental elements of
operation for the interface and mapping these elements into card-specific architectures. This
section discusses three aspects of the design of the scratchpad interface for the RC-1000:
meeting the needs of user-defined circuits, maintaining correctness in the flow of data, and
providing expansion mechanisms to overcome the limitations of the architecture.

B.4.1 Supplying and Sinking Circuit Data

The first requirement for the scratchpad memory system is that it is able to meet the needs
of user-defined circuits. Fundamentally this task is a relatively straight-forward procedure
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due to the API of user-defined circuits. The worst-case scenario under this API is when
the scratchpad is connected to both input ports and the output port of a computational
circuit. Because of this case the scratchpad must be capable of concurrently supplying two
vector data input streams to and accepting one vector data output stream from a user-
defined circuit. The challenge in implementing such a system is managing each of these
data streams in an efficient manner using the resources that are available on a card.

The RC-1000 implementation of the frame utilizes the card’s multi-channel memory
architecture to improve the performance of the scratchpad interface. In this system SRAM
banks 1 and 2 are dedicated exclusively to housing scratchpad data. A benefit of this
approach is that the scratchpad interface can simultaneously service two vector data streams
if the streams are located in different memory banks. On the other hand if two streams are
located in the same memory bank, the scratchpad interface must take turns servicing each
of the data streams. Therefore it is beneficial for users to strategically stripe data sets in
different memory banks in order to improve performance. A state machine was written to
implement the necessary flow of data into and out of a bank of scratchpad memory. This
state machine was replicated for the second bank of scratchpad memory, illustrating that
this approach can be easily extended to card architectures where several separate banks of
memory are available.

B.4.2 Maintaining Correctness in Scratchpad Data Streams

An important element of the scratchpad interface is maintaining data correctness for a
computation. In the scratchpad API a user specifies the starting address and length for
each data vector utilized in a computation. Therefore it is possible for a user to specify an
input vector and an output vector that overlap in scratchpad memory. The hazard here is
that it is unclear whether the user intended for the input vector to be fetched in its entirety,
or whether the user is constructing a form of feedback loop where output values are utilized
as inputs. In order to resolve this ambiguity, the scratchpad interface adheres to a simple
rule: for an individual FPGA computation, input and output data streams are isolated until
the computation completes. As a consequence feedback loops are not permitted within a
computation.

The RC-1000 implementation utilizes simple mechanisms to guarantee that an output
data stream does not overwrite either of the input data streams. In this system a FIFO
buffer is utilized to cache the outputs generated by circuits until all inputs data values are
read from the scratchpad. Once a circuit notifies the frame that it has read all input values,
the scratchpad interface will begin streaming data values out of the FIFO into memory.
Currently the system utilizes the FIFO for any computation that utilizes the scratchpad for
both input and output.

The FIFO approach has both positive and negative aspects. From a positive perspec-
tive the FIFO satisfies the scratchpad rule and also simplifies the state machines for the
scratchpad controllers. This simplification is based on the fact that the controller performs
read operations in their entirety until write operations begin. As for negative aspects, the
system cannot overlap reads and writes and therefore suffers in performance. Addition-
ally, a computation is limited in size to the capacity of the FIFO (currently 1,024 32-bit
words). This system can be improved through a more sophisticated implementation which
determines where outputs and inputs overlap and dynamically manages these regions.
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Figure B.7: The fields of a scratchpad virtual memory reference.

B.4.3 Virtual Scratchpad Memory

FPGA cards have a limited amount of physical, on-card memory that can be utilized to
house scratchpad data. Additionally, it is possible that multiple applications may utilize
the FPGA card at the same time and require different sets of data be stored in the scratch-
pad. Therefore it is beneficial if the scratchpad interface provides a means of transparently
managing scratchpad memory for different applications as needed by the runtime environ-
ment. This form of management is similar to traditional virtual memory operations found
in modern operating systems.

The RC-1000 implementation provides a simple virtual memory system for on-card
scratchpad memory. SRAM banks 1 and 2 on the FPGA card serve as 2 MB page frames
that house application data. The host in this system maintains a database of scratchpad
pages that are not in use. When a page is swapped out of a card’s page frame, it is buffered
in host memory until it is required again by the FPGA. In order to facilitate the virtual
memory system, all references to scratchpad memory must be based on the 29-bit virtual
memory address shown in Figure B.7. The bottom 19-bits of this address provide an offset
into a scratchpad page. Since SRAM banks are 32-bits wide, the bottom 2-bits of an 21-bit
memory reference are always zero. The top 8-bits of the virtual address refer to a unique
virtual page number. A memory location in on-card SRAM is used to identify the pages
numbers that are currently loaded in the page frames. The host must update this location
any time a page is loaded or swapped out. The FPGA pulls this information into internal
registers after being reset or when signaled by the host. At runtime the frame compares
the scratchpad references in a message header to the ids of the currently loaded pages. If
the message’s scratchpad requirements can be satisfied with the currently loaded pages,
the frame establishes all of the necessary data paths and configures both of the scratchpad
controller units.

If the frame detects that an incoming message cannot be processed due to missing
scratchpad pages, the frame must perform a page fault operation. The first step in this
process is for the frame to store the missing page numbers in an SRAM memory location,
halt operation, and notify the host through the status register. After the host detects the
page fault it loads the missing page number(s) from SRAM. The host performs the necessary
evictions, copying one or two of the scratchpad pages from the SRAM banks to the host
memory page database. One or more scratchpad pages can then be copied to the card to
satisfy the request. The host completes the operation by updating the page number values
in the card’s SRAM and triggering a resume operation with the control register. The frame
loads the new page numbers and continues processing the message that originally caused
the page fault.

B.5 GRIM Function Calls

Multiple function calls have been added to the GRIM communication library to simplify
the amount of effort a user must perform to utilize the computational units connected to an
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FPGA frame. These function calls are layered on top of existing GRIM calls and format the
arguments of the message header to match what is required by the FPGA frame. Host-level
functions are listed in Table B.2.

These API functions are briefly described as follows. The grim celoxica send() func-
tion is used to send a user-defined active message to a specified RC-1000 endpoint. This
function allows users to set all of the frame parameters for the outgoing message and is uti-
lized by other calls in this API. The grim celoxica ldMem() function is designed as a simple
means of loading data from an application into the scratchpad. The grim celoxica setPipeline()

and grim celoxica killPipeline() calls are used to set and clear the forwarding regis-
ters of an RC-1000 endpoint. Finally, the grim celoxica alu local() function is used
to transmit a message to an RC-1000 endpoint to perform an operation using the frame’s
built-in ALU using scratchpad memory references.

B.6 Debugging Infrastructure

One of the more challenging aspects of working with FPGA cards is the process of debugging
an application. Because an endpoint software is implemented as hardware in the FPGA,
it is difficult to observe what exactly an FPGA is doing at any particular time. Therefore
it is beneficial to construct environments that can be utilized to assist circuit designers in
debugging their applications.

B.6.1 Simulation Environment

Simulation is by far the quickest and most revealing method by which hardware designers
can debug their FPGA applications. Modern hardware description language (HDL) pack-
ages such as Active-HDL provide a graphical environment where a design’s signals can be
traced in a cycle-by-cycle manner. Because these tools take design input from the same
HDL files that are used for synthesis, there is a relatively high-level of confidence that
fundamental design errors can be caught by designers in simulation.

In order to assist users in the debugging process, a test bench has been constructed
that simulates the card-specific units of the Celoxica RC-1000. This environment allows
the user to examine how an FPGA design will perform when utilized on the card. The
test bench simulates the SRAM banks, SRAM arbitration signaling, clock generation, and
the control/status registers of the RC-1000. The benefit of this environment is that users
can load the SRAM banks with application data to determine how an FPGA will react
to different settings. The common mode of operation is to store multiple GRIM formatted
messages in the incoming message queues of SRAM bank 0 to examine the device’s reaction.

As a means of automating the simulation debugging process, a special library was con-
structed to allow GRIM formatted messages to be captured directly by applications and
statically passed to the simulator. This library was written as a functional replacement for
the GRIM library and simply records data that a host application attempts to inject into
the Celoxica card. The recorded information is then used to generate data files that can be
read into the simulation environment. While this process is relatively simple and static, it
has been found to be an exceptionally useful means of debugging FPGA applications.

B.6.2 Localized Debugging

After a designer has thoroughly examined an FPGA design in simulation, the next step is
to examine the design with actual hardware. This process can be complicated because it
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Table B.2: GRIM API for interactions with the Celoxica RC-1000 card.

grim celoxica send( u32 grim resource id,
u16 function,
u8 function sub op,
u8 pipeline stage,
u8 C, A, B,
u32 write addr,
u32 Read0 addr,
u32 Read1 addr or constan,t
u16 calculation words,
u16 payload words,
u32* payload starting address )

grim celoxica ldMem( u32 grim resource id,
u32 card memory address,
u16 number words,
u8* payload starting address )

grim cleoxica setPipeline( u32 grim resource id,
u8 pipeline id,
u8 next pipeline id,
u8 next C, next A, next B,
u32 next write addr,
u32 next read0 addr,
u32 next read1 addr or const,
u16 next calculation words )

grim celoxica killPipeline( u32 grim resource id,
u8 pipeline id )

grim celoxica alu local( u32 grim resource id,
u8 alu op,
u32 dest addr,
u32 src0 addr,
u32 src1 addr,
u16 calculation words )

142



is difficult to extract useful information from the live hardware. In order to assist users
in this task, instrumentation code is added to the basic framework of the FPGA design.
This infrastructure provides eight data signals that are routed to an LED on the RC-1000
card. These signals are commonly utilized to display both frame state information and
provide a heartbeat display to indicate that the card has not locked up. Users can attach
information to these signals to observe internal information. In a similar manner, users
can route debug information out of the FPGA using the RC-1000’s user I/O pins or the
control/status registers.

Due to the complexity of monitoring FPGA signals, the most common means of debug-
ging a non-simulated FPGA on the RC-1000 card is accomplished by simply monitoring
information stored in on-card SRAM. In this approach a user constructs a host level ap-
plication that injects a series of messages into a local RC-1000 device (using a local card
simplifies the communication process and reduces the number of locations that errors can
be generated). After the messages are injected, a user can use multiple command line tools
written for GRIM to probe the card’s memory. The tool dump celoxica utilizes information
about the card’s memory layout to provide useful information such as the card’s front and
back message queue pointers. Other tools have been constructed to allow users to clear
card memory and reset and load the FPGA with a user-specified configuration file.

B.7 Future Frame Work

The RC-1000 frame presented in this appendix represents a first generation implementation
of an interface that allows an FPGA resource to be integrated into a cluster computing
environment. This work is beneficial because it provides a portable API that both circuit
designers and application programmers can reference. Additionally, the frame simplifies the
amount of effort an end user must perform when operating with the FPGA because the
frame implements a large amount of commonly required functionality. There are multiple
ways in which this first-generation work can be improved.

B.7.1 Enhancements to the RC-1000 Frame

The RC-1000 implementation can be enhanced in multiple ways. The primary weakness
of the current frame is that its memory interface only allows for sequential reads of vector
data ports. It is often desirable for more random access mechanisms to be utilized in these
interfaces, as it allows user circuits to fetch and store data as needed by the application. A
simple extension for such operation would be to add a “skip” signal to each vector port. This
signal could be designed to allow a circuit to instruct the memory interface to skip ahead in
the vector data stream by a variable number of words. This signal only requires the addition
of a small number of lines and therefore should not significantly impact the routing of the
frame. From an application perspective it is more desirable for the user-defined circuit to
be able to specify the offsets given to the memory units as needed. However, this approach
has a number of drawbacks. Primarily, it requires the addition of a large number of signals
for each vector port of each circuit. Second, it increases the amount of work each user
circuit must perform in managing its vector data streams. Finally, it is difficult to pipeline
the fetching of data from memory in this approach as data can be accessed in a random
fashion.

A second area of improvement for the frame is in the chaining of vector units. While the
current frame allows a series of computations to take place within a single FPGA, it stores
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intermediate results between computational stages in a recycling buffer. This approach
simplifies the frame’s complexity but results in a store-and-forward form of computation.
It is desirable to implement a system that is similar to the traditional chaining operations
found in high-performance supercomputers. In this approach data could be routed directly
from one unit to another without significant intermediate buffering. The hardship of this
approach is designing a memory interface that can satisfy all requests for data efficiently.
After the first stage, each computational unit is likely to add another vector data tap to the
memory interface. In this work it would be interesting to compare the design of a frame
that could route data between multiple stages to a system where designers simply created
custom FPGA images that statically connected a series of stages and presented the pipeline
as a whole to the end user.

Finally, the FPGA frame could be enhanced to allow better concurrency in the process-
ing of messages. In the current implementation the frame operates only on a single message
at a time. As a result both user-defined circuits and parts of the frame are placed in idle
states as other units complete their portion of the message processing task. A more efficient
system would allow these idle units to begin processing the next message in order to create a
better pipeline of operations. A simple approach would allow the frame to begin processing
the next message as soon as it finishes handing off data to computational units. A more
complex approach would involve scheduling multiple messages to be processed by different
user-defined circuits. As with chaining, this approach requires additional constraints on the
memory system that might be difficult to implement in a practical manner.

B.7.2 Future Work with Other FPGA Cards

Another important area for future work is adapting the frame to operate on different FPGA
cards. Conceptually, the frame serves as a means of insulating end users from the card-
specific characteristics of a commercial FPGA peripheral device. This environment allows
designers to construct complex computational circuits that can easily be incorporated as
processing units in the cluster architecture. Adapting the frame to operate on different
FPGA cards allows circuit designers to easily migrate a computational circuit from one
FPGA card to another, without having to redesign the circuit.

The main challenge in adapting the frame to operate on different FPGA platforms is
addressing the architectural characteristics of each card. At a high level most FPGA cards
exhibit similar architectures. In general an FPGA and PCI controller share access to a
large block of on-card memory. However, there is a wide amount of variety in the manner
in which each of these units are connected depending on the card. For example the Celoxica
RC-1000 card provides four independent memory banks. This feature was heavily exploited
in the implementation of the RC-1000. Adapting the frame to operate on an FPGA card
with only a single memory bank would require the frame be modified to multiplex memory
transfers onto a single memory channel. For a card with more than four memory banks, it
is possible that the frame could be enhanced so that the additional banks are utilized to
house extra scratchpad pages to reduce paging.

Another aspect of a card’s architecture that affects the design of the frame is the hard-
ware that provides communication with the host. The RC-1000 card uses a custom 8-bit
control/status port for simple communication with the host. The frame uses these registers
to notify the host of runtime events, such as a page or function fault or the presence of out-
going messages. This method of communication is inefficient and utilized only because the
card cannot initiate a DMA transfer. A more desirable means of communication is for the
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card to DMA information into the host’s memory. In general most peripheral devices allow
this form of operation. Therefore, while porting the frame to a new FPGA card will require
the construction of mechanisms to support card to host communication, it is expected that
these mechanisms will be more flexible than those found in the RC-1000.

In summary, adapting the FPGA frame to operate on different cards is a challenging
but beneficial task. This work involves translating card-specific operations from one card to
another. While the unique hardware environment of each peripheral card prevents the frame
from simply being moved from one platform to the next, it is expected that the functionality
from the RC-1000 implementation can serve as a guide to constructing a frame for other
architectures. Performing such adaptations can be extremely beneficial because they allow
a user’s designs to be easily moved between platforms.
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APPENDIX C

THE GRIM API

GRIM is a communication library that allows designers to easily construct applications that
utilize a cluster’s distributed resources. GRIM provides a relatively simple but powerful API
that feature two separate programming interfaces that can be utilized concurrently by an
application. The first of these interfaces is for active messages. In active messages a sender
specifies a function handler that is invoked at the receiver when the message arrives. This
interfaces allows users to trigger actions at remote endpoints and is particularly well suited
for interactions with remote peripheral devices. The second interface provided by GRIM is
one for remote memory transactions. These operations allow an endpoint to send or fetch
a block of memory from a remote endpoint. Remote memory transactions are useful for
efficiently moving large blocks of memory in the cluster with minimal overhead. GRIM is
constructed as a linkable C library that can optionally support POSIX threads. Users can
tailor GRIM’s behavior through the manipulation of configuration files without having to
recompile the application. This appendix describes the basic characteristics of the GRIM
API.

C.1 Configuration Interface

GRIM utilizes a small number of configuration files to specify the hardware environment
for the virtual parallel processing machine. There are two types of files utilized to specify
the configuration. First a single application configuration file serves as a top-level means of
configuring the system. This file contains basic high-level information such as the number
of nodes to use for the application and the configuration of each node. It is expected that
end users will commonly adjust this file to meet the needs of the application. The second
category of configuration files is for static information that does not frequently change in
the cluster. These files define routing tables for the cluster as well as available hardware
resources.

C.1.1 Application Configuration

From a user’s perspective there is one configuration file that is central to specifying how
the GRIM environment is defined. At initialization time GRIM reads a file specified by
the GRIM CONFIG environment variable to determine its configuration. In the current
release this configuration file is located in grim/config/grim config. This file contains
the following variables:

• NUM NODES: This specifies how many hosts are available in the system.

• LCP FILE: This variable specifies a file that contains the routing information for
the Myrinet network.

After these initial constraints users define the configuration for their cluster, including
the resources that are to be utilized in each host. A cluster must be defined with a cluster
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name, a configuration file for the cluster, and a list of resources to be utilized in the cluster.
For example a cluster with two hosts (paris and metz) with a Celoxica card could be listed
in the configuration file as:

#--The French Cluster--

CLUSTER French_cluster

CLUSTER_RESOURCE French_cluster_config.txt

ROUTING_MYRI grim_routes_myri.txt

HOST paris

USE MYRI

USE CELOXICA

HOST metz

USE MYRI

}

It is possible for multiple cluster configurations to be listed in the configuration file
in order to allow users to easily migrate an application between different clusters without
adjusting the configuration file. Before GRIM parses this file it determines the name of the
host that it is operating on. It then selects the proper cluster to use from the configuration
file by selecting the configuration that contains the host the program is running on.

C.1.2 Cluster Resource Configurations

GRIM utilizes multiple configuration files to specify various information for cluster re-
sources. The application configuration file specifies the location of each of these files. GRIM
parses the resource configuration files based on whether the resources are utilized by the
cluster. The following files are utilized:

• Myrinet Routing Table: Because Myrinet uses source routing it is necessary to
define all of the routing information for the cluster in advance. Routes must be
selected in a deadlock free manner. Each line in the configuration specifies the source
node and the paths to all other nodes in the cluster.

• Myrinet Host Mapping File: This file contains the listing of hosts utilized in
the cluster and the physical ID of each host. The physical ID is the number that is
referenced with the Myrinet routing table because it reflects the port number in which
the host is physically connected to the Myrinet switches.

• Celoxica Circuit File: The software that manages the Celoxica card requires in-
formation describing the FPGA configuration images that can be loaded into the
FPGA card. This file lists all of the available FPGA configuration files and notes
which circuit is loaded in which user-defined computational slot. Incorporating ad-
ditional user-defined circuits in GRIM requires that the circuits be identified in the
grim handlers.h header file.
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C.2 Initialization: grim enable()

The GRIM communication library is initialized through the grim enable() procedure. This
function performs a number of startup operations for the library and should only be called
once by an application. This function must be called before any of the library’s variables or
functions can be accessed. The grim enable() procedure performs the following internal
operations:

• Reset variables: The GRIM library begins operation by allocating and resetting all
variables. These variables include node information as well as various databases.

• Parse configuration files: Each node in GRIM must load information from con-
figuration files to determine information about the global cluster environment. This
information contains both general information (e.g., routing tables and host names)
and application-specific information (e.g., the number of hosts used in application).

• Construct a local database of resources: Each node in the cluster utilizes con-
figuration file information to construct a database for resources in the cluster. This
database contains both local and global information, and is referenced by end appli-
cations to determine the location of requested resources.

• Initialize local devices: The next step for a node in the cluster is to initialize the
local set of peripheral devices that are to be utilized in the cluster environment. These
initializations are device specific, performing operations such as loading a peripheral
device with firmware.

• Allocate host incoming message queues: Next GRIM interacts with a device
driver to open a block of memory that is both pinned and contiguous. The library
obtains both a virtual and physical address for the memory so that it can be accessed
by the user-space application and the peripheral devices. This memory is utilized to
house incoming message queues.

• Initialize and link message queues: After all local peripheral devices and host
memory is available, GRIM must establish message queues and initialize message
queue pointers for the resources in the local host. The size of each message queue
is based on the amount of memory available in the resource to house messages and
the number of queues that must share this space. Users can request particular sizes
for message queues in the configuration files, although this information is ignored if
it exceeds queue capacities. After queues are allocated, the library stores pointer
information in the appropriate outgoing message queue registers for each resource.

• Handler library initialization: Next, GRIM initializes both the local and global
handler databases. Once initialized the database is loaded with a set of built-in
function handlers that are available at all nodes.

• NI synchronization: All of the NIs for the nodes used in the cluster perform syn-
chronization. In this procedure a NI alerts all other NIs that it is reset and waiting
to hear from the other nodes. A NI must wait until it receives a reset notification
from all other NIs before it can proceed in a normal mode of operation. This process
is necessary in order to reset the sequencing information used by NI pairs and to
guarantee that a NI will not transmit data to a node that has not been initialized.
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• Peripheral device activation: The final step in initialization is to notify all pe-
ripheral devices that the node is fully initialized and that operation in the cluster is
to begin.

Once grim enable() completes, host applications can begin utilizing the library.

C.3 Runtime Information

After initialization, users can obtain basic information about the host an application is
running on. Each host in the cluster is assigned both a physical node number (PNN) and a
virtual node number (VNN). The PNN is a constant number that is assigned to a particular
host. It is utilized internally by the library to manage routing tables. The VNN is a number
that is assigned to a host at runtime based on the cluster’s configuration file. GRIM assigns
VNNs linearly to hosts in the configuration file, starting with VNN 0 for the first host in the
file. This approach allows users to easily specify which nodes in the cluster are utilized in the
virtual machine, without having to change the files containing physical routing information.
End users should always reference host nodes with the VNN in applications for portability.

Table C.1: API for obtaining cluster host information.

u32 id = grim getVNNFromName(string name)
string name = grim getVNNName(u32 id)
u32 id = grim getMyVNN()
string name = grim getMyName()

grim printVNNConfiguration()

Users can obtain basic information about the local host an application is running on
through the commands listed in Table C.1. The first four of these functions provide either
a 32-bit VNN identifier for a host or the host’s name. The last command prints out infor-
mation about the runtime configuration of hosts utilized in the system for an application.

C.3.1 Referencing a Cluster Resource

In addition to referencing hosts in the cluster, users must be able to reference individual
communication endpoints. A reference to a communication endpoint is constructed with
three pieces of information: the VNN of the endpoint’s host, the type of communication
device the endpoint is (e.g., host-CPU level, Celoxica card, I2O card, etc.), and a logical
channel identifier to associate transmissions to the endpoint.
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Table C.2: Functions for generating a reference to a communication endpoint.

u32 = grim getDestID( u32 destination node VNN,
u8 destination device,
u16 logical channel )

u32 = grim getResource( u32 destination node VNN,
u8 device type,
u16 logical channel )

As listed in Table C.2, GRIM provides two functions for generating a reference to a com-
munication endpoint. First, grim getDestID() can be utilized to obtain a 32-bit reference
to an endpoint if the location of the endpoint is known in advance by the user. The user
must supply the VNN and device type of the endpoint, as well as the desired logical channel
for communication with the endpoint. This function is useful for referencing well-known
endpoints, such as the host-level endpoint that is available at every node. The second func-
tion for generating a reference to an endpoint is grim getResource(). This function is
designed to allow users to query the cluster’s resource database in order to locate a desired
resource. Users can specify a particular VNN with which to restrict the search, or specify
that any VNN can be utilized.

C.4 Active Message Interface

The first of two programming interfaces provided in the GRIM communication library is for
active message style interactions with endpoints. In this system the sender includes infor-
mation in each message that specifies how the message is to be processed at the destination
endpoint. Each endpoint contains a set of active message function handlers that are used to
process incoming messages. An endpoint must register a handler with the communication
library before the handler can be utilized by other endpoints in the cluster. During registra-
tion users associate a string identifier with a handler and are returned an integer identifier
that can be utilized to reference the handler in subsequent API calls. Endpoints invoke ac-
tions in other endpoints simply by sending active messages that are properly encoded. Each
endpoint is responsible for periodically invoking a polling operation that extracts messages
from incoming message queues and processes the messages accordingly.

C.4.1 Handler Registration

Each communication endpoint in the cluster can be equipped with a different set of active
message handlers. Therefore it is necessary to provide functions in the cluster that allow
endpoints to register their own unique handlers and publish this information to the global
cluster context so that other endpoints can reference and utilize the handlers. This process
takes place in three phases with the functions listed in Table C.3.
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Table C.3: The functions utilized to register and reference active message function handlers.

grim register handler( handler call t function,
string name )

grim syncHandlers()
u32 = grim resolveHandler( string name )

The first part of handler registration takes place when an endpoint registers its func-
tion handlers locally with the grim register handler() function. With this function
an endpoint updates a local table that associates a string identifier with a virtual mem-
ory pointer to a function handler. This information does not leave an endpoint until the
grim syncHandlers() function is executed. The grim syncHandlers() function transmits
the local list of function handlers to an endpoint in the cluster which is responsible for
managing a global database of function handlers for the cluster. This node will merge the
incoming list of handlers into the global database and transmit a copy of the global list of
handlers to the endpoint requesting the synchronization. The requesting endpoint will then
update its local tables and assign a global integer identifier to every local function handler.
Once equipped with this information, an endpoint can call the grim resolveHandler()

function to determine the global integer identifier of a function handler in the cluster. This
ID can be utilized in active message transmissions with other endpoints.

C.4.2 Send and Receive Operations

As listed in Table C.4, GRIM provides a grim send() operation for transmitting an active
message to a destination and a grim poll() function for receiving and processing incoming
messages. In the grim send() function the sender must provide a resource reference id for
the destination endpoint, the handler id, four active message arguments, and an optional
payload. The GRIM communication library will take this message, transfer it in its entirety
(performing segmentation and reassembly if necessary), and execute the function at the
receiving endpoint using the information provided.

Table C.4: The functions for sending and receiving active messages.

grim send( u32 destination resource id,
u16 function handler id,
s32 handler argument 0,
s32 handler argument 1,
s32 handler argument 2,
s32 handler argument 3,
u16 payload length,
u32* payload starting address )

grim poll()

The grim poll() function must be performed regularly at the receiving endpoint in
order to facilitate the processing of active messages. This function detects that new messages
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are available for processing in the endpoint’s incoming message queues, extracts the message,
and performs the specified computation. When POSIX threads support is enabled in GRIM,
it is not necessary for end applications to execute grim poll() operations. Instead a thread
is dedicated to periodically performing the poll operation.

C.5 Remote Memory Interface

The second programming interface provided in the GRIM communication library is one
for interacting with memory located at a remote node. Because host applications and
peripheral devices operate with different address spaces (i.e., virtual and physical), the
remote memory API must be specific about the types of addresses that it operates with as
well as provide mechanisms for translating between address spaces. In GRIM the primary
means of referencing a block of memory for end applications is a virtual memory address.
Like many communication libraries that perform remote memory operations, GRIM users
are only allowed to utilize virtual address spaces that are created with special allocation
function calls. These calls allocate and pin the requested memory regions and supply the
NI with memory translation information. The GRIM library also provides mechanisms
for remote memory transactions with physical addresses. These mechanisms operate with
low overhead because address translation is not necessary, but offer no protection if a user
supplies the mechanisms with bad addresses.

C.5.1 Managing Memory

The first part of the remote memory interface is designed to assist users in managing memory
that can be accessed by the NI. The first call listed in Table C.5 is the grim malloc pinned()

function. This function interacts with GRIM’s pinned memory device driver to allocate a
sufficient block of memory that is guaranteed to be pinned. Internally GRIM allocates
large blocks of contiguous memory and then allocates memory requests from these blocks
in order to simplify the number of virtual to physical memory address translation entries
loaded in the NI. The result of this function is a virtual address that an application can
use as a regular pointer and pass as a reference to other endpoints in the system. When an
application finishes using a block of pinned memory it can call the grim free pinned va()

call to free the allocation.

Table C.5: Function calls for managing memory used by the remote memory interface.

u8* = grim malloc pinned( u32 number of bytes )
grim free pinned va( u8* pinned virtual address )

u8* = grim get pinned pa( u8* pinned virtual address )
u8* = grim get pinned va( u8* pinned physical address )

In addition to allocating and freeing pinned memory, the GRIM library provides mecha-
nisms for translating addresses. The grim get pinned pa() function translates the virtual
address of a block of memory allocated by grim malloc pinned() into a physical address.
This address can be used for physical memory transactions that bypass address translation
in the NI. The grim get pinned va() similarly can be utilized to translate a physical ad-
dress reference of a pinned memory block into a virtual address. This function is primarily
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provided for completeness.

C.5.2 Remote Memory Operations

GRIM is designed to provide both send (see Table C.6) and fetch operations for interactions
with a remote endpoint’s memory. Both of these operations can be supplied with an optional
lock to provide a simple form of notification. A lock is simply the virtual address of a 32-
bit integer that is allocated from GRIM’s pinned memory. In the grim sendMemory()

call the sender specifies the ID of the destination endpoint, the source and target virtual
addresses of the block of data to transfer and the size of the block of memory. If a virtual
address of a lock is supplied, the receiving NI will DMA the value specified in the call’s lock
value variable into the address after the entire block of memory has been transferred. The
grim fetchMemory() function operates in a similar manner, but transfers data from the
remote endpoint to the local endpoint. Once the operation completes the NI of the node
initiating the fetch operation will transfer a zero into the local endpoint’s lock address, if
specified.

Table C.6: Functions for transferring data between an endpoint and a remote endpoint.

grim sendMemory( u32 destination resource id,
u32* target virtual address,
u32* source virtual address,
u16 number of bytes )

grim sendPhysicalMemory( u32 destination resource id,
u32* target physical address,
u32* source virtual address,
u16 number of bytes )

GRIM also supports an interface for transferring data directly to a physical address
in the remote endpoint’s system. When the NI of the receiving endpoint receives such a
message it transfers the data directly without any form of virtual memory translation, as
none is needed. While this mechanism allows for the operation to take place without the
overhead of translation, users must be aware that there is no memory protection employed
with this function. Supply erroneous information to this function can easily cause the NI
to write data into an unknown memory address in the system, which is likely to crash the
host system. The physical memory interface however is useful for interacting with devices
such as a video display device’s frame buffer.

C.5.3 Reserving NI Memory

Additional functions are provided in the GRIM library to allow NI memory to be directly
utilized by applications. While it is expected that most applications do not need such
functionality, it is conceivable that some applications may need a temporary place to store
data close to the wire (e.g., supporting a frame buffer in the NI). The first function listed
in Table C.7 is grim reserveNIMemory() and is designed to allocate a block of memory in
the NI. This function must be called before the grim enable() function is called. After
grim enable() is called the grim getReservedNIMemory() function can be utilized to gain
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both virtual and physical memory address pointers to the region of memory allocated in
the NI.

Table C.7: Functions for reserving memory in the local NI card.

grim reserveNIMemory( u32 size )
grim getReservedNIMemory( u8** virtual memory address,

u8** physical memory address )

C.6 Multicast

GRIM provides support for multicast and broadcast operations. The current implemen-
tation is tree based and performs message replication in the NI cards. A multicast tree
is referenced in GRIM by a string and an integer value. Once a multicast tree is defined
an endpoint can subscribe or unsubscribe from its data distribution. All endpoints in the
cluster are allowed to inject messages into a multicast tree.

C.6.1 Multicast Tree Management

Table C.8 lists the API provided in GRIM for managing the multicast distribution trees.
The function grim findMulticastTree() is used to determine a unique integer value to
reference a particular multicast tree in the cluster. If the requested tree name has not been
referenced, the library constructs a new tree and assigns ownership of the tree to the end-
point that first attempted to locate the tree. After a tree has been identified an endpoint can
specify that it whishes to be a part of the tree and subscribe to multicast traffic. An endpoint
can use the grim subscribeMulticast() function if a multicast tree has been identified
or the grim subscribeMulticastByName() function if the tree id is not yet known. In
both cases the use must specify which NI logical channels will be subscribing to the mul-
ticast messages. The channel list is a Boolean mask. The grim unsubscribeMulticast()

function is utilized to remove the endpoint from the multicast distribution tree.

Table C.8: Functions for managing multicast distributions.

u32 = grim findMulticastTree( string name )
u32 = grim subscribeMulticase( u32 multicast id,

u8 channels )
u32 = grim subscribeMulticaseByName(

string name,
u8 channels )

grim unsubscribeMulticast( u32 multicast id,
u8 channels )

C.6.2 Sending Multicast and Broadcast Messages

Table C.9 lists the functions utilized to inject messages into the broadcast and multicast
trees. These functions are identical to the normal active message send functions except
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that the grim sendMC() function requires the specification of the multicast tree id instead
of the destination endpoint, and the grim broadcast() does not require the specification
of a destination endpoint. All endpoints are allowed to utilize these functions, whether they
subscribe to a multicast tree or not. Any active message function handler can be utilized
with these functions, although users must be aware that the sending of a multicast active
message may result in the invocation of the function handler at multiple nodes. Therefore
users must be cautious when designing active message function handlers that are intended
for multicast operations. In the current implementation, the original sending endpoint
identification information is not accurately provided to the endpoint invoking the function
handler. Therefore if such information is required it is necessary to include it in one of the
active message function arguments that are passed with the message.

Table C.9: Functions for injecting multicast and broadcast messages.

grim sendMC( u32 multicast id,
u16 function handler id,
s32 handler argument 0,
s32 handler argument 1,
s32 handler argument 2,
s32 handler argument 3,
u16 payload length,
u32* payload starting address )

grim broadcast( u16 function handler id,
s32 handler argument 0,
s32 handler argument 1,
s32 handler argument 2,
s32 handler argument 3,
u16 payload length,
u32* payload starting address )

C.7 Advanced API Functions: TPIL

As a means of provided accelerated performance for applications injecting data into periph-
eral devices a library has been constructed for x86 host endpoints named TPIL: the tunable
PCI injection library. TPIL provides basic mechanisms for transferring data to a PCI device
using hardware units that have evolved in the x86 architecture. When users need to add
new peripheral devices to the GRIM communication library, it may be beneficial to utilize
the TPIL API in order to enhance performance. The API is summarized in Table C.10
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Table C.10: The TPIL API for accelerating injections of data into a peripheral device
from a host CPU.

Tdev = tpil create( u32 device file id,
u8* device mmap,
u32 mmap size,
u32 device ioctl )

tpil h2c( Tdev* tpil device,
u8* destination,
u8* source,
u32 number bytes )

Tcfg = tpil benchmark( Tdev* tpil device )
tpil configure( Tdev* tpil device,

Tcfg* tpil configuration )

The function tpil create() is utilized to initialize TPIL and generate a reference that
can be utilized in subsequent API calls. This function provides pointers to the file handler of
the device and its memory map, the size of the memory map, and a reference to the ioctl()
functions that TPIL can utilize to transfer data with the assistance of a kernel driver.
The ioctl() calls are optional and are a means of utilizing a card’s DMA engines. The
tpil h2c() function is utilized to perform host-to-card transfers of data. The user must
supply a pointer to where data is to be written (i.e., a pointer to somewhere in the card’s
memory map), a pointer to the data that is to be injected, and the size of the transfer.
TPIL will utilize internal information to determine which transfer mechanism is the best
option.

TPIL provides mechanisms for configuring how transfers are performed. First the
tpil benchmark() function can be utilized to examine the characteristics of the host ma-
chine. Generally this operation is performed offline as it performs several lengthy tests to
determine how long it takes to inject data into a peripheral device. The results of these
measurements can be exported for use in other programs. The tpil configure() function
is utilize to configure the transfer mechanisms for a particular device. Users can either uti-
lize the information obtained from the benchmarking operations or supply custom settings.
These settings are simply the cutoffs in which different transfer mechanisms are employed.
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