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Abstract

Reconfigurable computing leveraging field programmable
gate arrays (FPGAs) is one of many accelerator technolo-
gies that are being investigated for application to high perfor-
mance computing (HPC). Like most accelerators, FPGAs are
very efficient at both dense matrix multiplication and FFT
computations, but two important aspects of how to deliver
that performance to applications have received too little at-
tention. First, the standard API for important compute ker-
nels hides parallelism from the system. Second, the issue of
system architecture is virtually never addressed. This paper
explores both issues and their implications for applications.
We find that high bandwidth, low latency connectivity can
be important, but the right API can be even more important.
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1 Introduction

Despite renewed interest in accelerator technologies for use
in high performance computing (HPC), there has been rel-
atively little research on the broad system implications of
this technology. FPGAs are an excellent example. FPGAs
are known to greatly accelerate a large class of applications;
however, the classic usage model for FPGAs is to select a
portion of the application that consumes a large percentage
of the overall execution time and minimizes the necessary
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I/O. This has been driven by the traditionally loose coupling
between host processors and accelerator boards. It does not
make sense to tightly couple resources across a PCI bus. Un-
fortunately, traditional HPC applications are not amenable to
this model.

Many traditional HPC applications fall in the domain of
scientific computing. While there are exceptions (notably
molecular dynamics (MD)[Kindratenko and Pointer 2006;
Scrofano et al. 2006]), these applications tend to be hun-
dreds of thousands of lines of code without a small section
that dominates execution time. This led researchers to begin
by focusing on kernel operations that are used in HPC and
can be provided through a standard library interface. Op-
erations from BLAS [Underwood and Hemmert 2004;
Zhuo and Prasanna 2004; Dou et al. 2005;
Zhuo and Prasanna 2005a; Zhuo and Prasanna 2005b]
to FFTs[Hemmert and Underwood 2005] to the
sparse matrix operations at the core of an
iterative solver[deLorimier and DeHon 2005;
Zhuo and Prasanna 2005c] and even a full CG
solver[Morris et al. 2006] have been studied. The fun-
damental challenge for each of these efforts is the communi-
cations with the host. Accelerators cannot receive data faster
than the host processor’s memory bandwidth, but they are
often further constrained by the I/O bus. Overcoming the
I/O limit typically requires large operations, but large, dense
operations are seldom used in scientific applications. More
common are large numbers of small, dense operations. For
example, Climate and MD codes perform a large number of
small 1D-FFTs and some quantum chemistry codes perform
a large number of small matrix multiplies. Even some
solvers have been adapted to use many calls to small, dense
matrix multiplies. This has lead many to question whether
an accelerator can accelerate scientific computations.

Given the growth in vendors offering accelerators from
Clearspeed parts to FPGAs, there are major questions that
need to be addressed regarding how applications can use
these accelerators. For example, how much bandwidth is
needed by the accelerator? How much does latency matter?
Will our current APIs work? Even the best technologies can
fail if these issues are incorrectly addressed.

This paper examines the complex double precision FFT and
double precision, dense matrix multiplies (DGEMM) oper-



Table 1: Typical system parameters
System Type Latency Bandwidth

PCI-X 1000 ns 1000 MB/s
PCI-Express 8X 800 ns 3.6 GB/s

HyperTransport (HT) 250 ns 3.2 GB/s
Memory 250 ns 3.6 GB/s

ations in the context of the way they are often used: large
numbers of small operations. It begins by analyzing the
implications of the traditional blocking function call found
in traditional libraries. Then, experimental results from the
Cray XD1 platform demonstrate that even FPGAs with mod-
est interconnections to the host can provide measurable wins
over a microprocessor when using a better API. System level
simulations extend this work to explore the requirements for
next generation FPGAs. The findings indicate that both the
architecture and the API are critically important. High la-
tency, low bandwidth interfaces can clearly be limiting fac-
tors, but no realistic system is going to provide a low enough
latency, high enough bandwidth interface to cope with the
blocking procedure calls that are typically used to interface
to today’s libraries.

The next section discusses the motivating applications and
architectures behind this work, along with the methodology
used. In Section 3, the nonblocking approach is presented
and contrasted with the traditional approach. Following that,
Section 4 presents an analysis of the impacts of the latency
and bandwidth of the connection between the FPGA and the
host processor. Sections 5 and 6 present measured results
from the Cray XD1 and a system simulation environment,
respectively. The paper concludes with related work (Sec-
tion 7) and conclusions (Section 8).

2 Motivation and Methodology

There has been a recent surge in work on new system ar-
chitectures supporting FPGAs (and accelerators in general).
Each system has different implications for the aggregate
bandwidth and latency of the connection to the processor
(Table 11). While a large body of work has explored the
potential of these systems for scientific computing, little
work has discussed the context of real applications. Re-
search tends to explore the power of FPGAs to address large
dense matrix algorithms (DGEMMs) and large FFTs, but
such work seldom comments on any applications that actu-
ally use such operations (mostly because such applications
are rare). More importantly, few analyses have looked at the
salient properties of the architectures to determine their rela-
tive importance.

1HyperTransport (HT) can achieve over twice the listed rate, but it is
constrained by FPGA I/O capabilities.

2.1 Motivating Applications

Generally speaking, scientific applications do not leverage
large dense matrix operations. Indeed, we know of no
supercomputer applications at Sandia that leverage them.
Small dense matrix operations are a different story. For
example, a large number of small, double precision, com-
plex 1D Fast Fourier Transforms (FFTs) is used in parallel
molecular dynamics codes (e.g. LAMMPS[Plimpton 1995;
Plimpton et al. 1997]) as part of a distributed 3D FFT. The
typical approach to a distributed 3D FFT is to perform three
iterations of N2 FFTs of size N with data transpositions be-
tween the iterations. The typical size of a call is on the order
of 128 to 256 and N2 consecutive, independent calls to the
function are made. Similarly, forecasting codes can use thou-
sands of small (size 256 to 1500), consecutive, independent
1D FFT calls[Williamson et al. 1992]. FFTs are a signifi-
cant, although not dominant, contributor to overall run-time
for these applications.

Another example is the dense matrix multiply opera-
tion (DGEMM). While none of Sandia’s applications use
DGEMM operations for large operations (dimensions of
hundreds or more), many of them do small, dense, double
precisions matrix multiplies. For example, MPQC[Janssen ]
is a quantum chemistry code that uses thousands of small, in-
dependent matrix multiplies ranging from 15×15 to 50×50.
Similar patterns occur in sparse matrix multiplies that are
used in Mondo SCF (another quantum chemistry code). Fi-
nally, modern solver techniques are moving to locally dense,
globally sparse matrices with multiple right-hand sides. This
also leads to a large number of independent DGEMM opera-
tions that tend to be approximately 16×16. It is anticipated
that the DGEMM calls will become as much as 90% of the
execution time as other aspects of the codes are tuned.

2.2 Methodology

This effort used two hardware platforms and a system level
simulator to run the same benchmarks. The first hardware
platform was the Cray XD1, which was used as both the
FPGA platform and as a processor platform to measure the
performance of the Opteron. The second hardware platform
was a Pentium-4 Xeon workstation that was used as an ex-
ample of the best available processor performance, since the
Pentium-4 is known to have a higher peak floating-point rate
on dense matrix operations than the Opteron.

2.2.1 Cray XD1

Figure 1 depicts an XD1 compute blade containing two
AMD Opteron processors. One CPU connects directly to
a network interface (NI) chip using a HyperTransport (HT)
link. This NI uses a Xilinx Virtex2Pro FPGA that limits the



Figure 1: The XD1 architecture

CPU to network interface link to 1.6 GB/s per direction (1.4
GB/s after overhead). The user-programmable FPGA is on
an expansion board connected to an HT interface on the sec-
ond processor. As Figure 1 illustrates, the user FPGA is con-
nected to a second NI through a simplified version of HT.
This interface enables the FPGA to read and write the hosts
memory, as well as respond to memory requests issued by
the host processor. The XD1 utilized for this work is popu-
lated with V2P50-7 expansion boards and Opteron 248 pro-
cessors, which are clocked at 2.2GHz and have a peak of 4.4
GFLOPs.

The FPGA design flow used Xilinx’s ISE 6.3.03 tool chain
including the Xilinx Synthesis Tool (XST) for VHDL syn-
thesis. The XD1 system runs the 1.1 release of Cray’s sys-
tem software with a modified Linux 2.4.21 kernel. The 1.1
release of the XD1 system software can only pin one 2MB
block of contiguous host memory for sharing data with the
FPGA. This typically requires a data copy, but the more re-
cent 1.3 release of XD1 system software uses the Graphics
Address Resolution Table (GART) to address up to 1 GB of
host memory from the FPGA and eliminates the need for a
copy. Our tests emulate this behavior by not performing the
final copy in the 1.1 release.

2.2.2 Pentium-4 Xeon Workstation

A Pentium-4 Xeon workstation was used as one of the pro-
cessor baselines for comparison. The workstation has two
3.2 GHz Pentium-4 Xeon processors with EM64T technol-
ogy. It is equipped with 8 GB of RAM and is running the
RedHat Enterprise 4 WS Linux distribution. The compiler
used was GCC 3.4.5, but the compiler only compiled the
outer loop. Matrix operations were measured using FFTW
version 3.1[Frigo and Johnson 1998] and the Intel Math Ker-
nel Library (MKL) version 8.1. FFTW was faster for the
FFT portion of the test, and so it was reported in the results
section.

2.2.3 Structural Simulation Toolkit

To explore configurations beyond the XD1, we used the
Structural Simulation Toolkit (SST). The Structural Sim-
ulation Toolkit is built around Enkidu, a hybrid simula-
tion framework that optimizes for the common case in
architectural simulation by providing low-overhead syn-
chronous time-stepping to handle most functionality. For
less frequent communication between components, an asyn-
chronous event mechanism is provided. SST integrates
the SimpleScalar (v3.0) toolkit’s sim-out-order processor
model[Burger and Austin ] to model conventional proces-
sors. For these experiments, an execution-based front end
supporting PowerPC Mach-O binaries was used.

2.3 Benchmarks

Two benchmarks were used to test these concepts and pro-
vide a comparison point against traditional microprocessors.
These simple benchmarks were designed to capture the way
applications work; thus, they differ slightly from a traditional
benchmark. A comparison is shown in Figure 2 — the differ-
ence is subtle, but critical. Where a typical benchmark does
a large number of iterations over a single buffer, real appli-
cations tend to do a large number of iterations over different
buffers. Thus, the benchmarks reflect that.

3 Approach

Virtually every major HPC system shipped today requires
standard libraries to be available for the Basic Linear Alge-
bra Subroutines (BLAS) and FFT. Some vendors have pro-
posed using hardware accelerators to intercept these calls
and, thus, provide improved performance. The problem,
however, is in the traditional semantics of a blocking subrou-
tine call. Contrast the examples in Figure 3. The blocking
calls are perfectly suitable for either execution on a host mi-
croprocessor or for performing large routines on a compute
accelerator; however, when there is a large number of small
operations to do, the nonblocking calls expose more paral-
lelism to the system and enable the system to pipeline these
operations. The net effects can be seen in the timeline in Fig-
ure 4, where the nonblocking calls can leverage the double
buffering on the accelerator to overlap communication be-
tween the host processor and accelerator with computation
that is occurring on the accelerator. While this is conceptu-
ally straightforward, this paper aims to quantify the impact
in the context of a specific technology to motivate the devel-
opment of appropriate APIs.

To target the way Sandia’s applications use DGEMM and
FFT calls, we focus on implementations that can accelerate
large numbers of small calls. Thus, rather than one large unit



choose operation size();

buffer=allocate buffer();

begin timer();

for (i = 0; i < N; i++)

do op(buffer);

end timer();

choose operation size();

for (i = 0; i < N; i++)

buffer[i] = allocate buffer();

begin timer();

for (i = 0; i < N; i++)

do op(buffer[i]);

end timer();
(a) (b)

Figure 2: The traditional (a) and modified (b) benchmarks

choose operation size();

for (i = 0; i < N; i++)

buffer[i] = allocate buffer();

for (i = 0; i < N; i++)

do op(buffer[i]);

choose operation size();

for (i = 0; i < N; i++)

buffer[i] = allocate buffer();

for (i = 0; i < N; i++)

start op(buffer[i], request[i]);

wait all(request, status);
(a) (b)

Figure 3: (a)Blocking vs. (b)Non-blocking approaches
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Figure 4: Timeline for (a) blocking and (b) non-blocking operations
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in the FPGA, we have several smaller units that can each
handle the processing for a call. These are integrated with
the host using double buffering techniques so that data can
be transferred between the host and FPGA while the compu-
tation is occurring. Figure 5 illustrates this concept for the
FFT and DGEMM operations.

The FFT and DGEMM operations in Figure 5 take slightly
different approaches. While the FFT needs both ports of a
dual-ported RAM during the core operation, the DGEMM
operation does not. Therfore, the FFT uses full sized input,
output, and internal buffers. This is sufficient to provide dou-
ble buffering for the FFT. The DGEMM operation, on the
other hand, allows the system to manage the double buffer-
ing. An input selection mechanism makes this transparent to
the unit. In practice, this is implemented by splitting the top
and bottom of a single dual-ported RAM bank into indepen-
dent buffers and selecting based on the high order address
bit.

4 Analysis

Dense matrix operations are regular enough to lend them-
selves to direct analysis. Similarly, cycle accurate simulation
of hardware level details makes it possible to reliably capture
hardware overheads. Thus, it is possible to create analyti-
cal models that accurately reflect major portions of expected
system performance.

4.1 Fast Fourier Transform

The FFT operation requires 5Nlog2(N) operations for a
complex FFT of size N, which requires 16N bytes of in-
put and 16N bytes of output. Using a non-blocking imple-
mentation for a stream of independent FFTs, this can be im-
plemented with several, independent iterative butterfly units
(like the units used in [Hemmert and Underwood 2005]) that
perform 5N computations in a single pass over the data re-
quiring N cycles. The unit must perform log2(N) passes and
has an initialization latency of 51 cycles. Thus, from the time
the data is delivered, the hardware needs:

TF = Nlog2(N)+51 (1)

cycles to compute one FFT, and has been verified through
cycle accurate simulation at the HDL level. Since P of these
units run concurrently, the minimum average time per FFT
is:

TF =
Nlog2(N)+51

P (2)

A blocking implementation must leverage all of the FPGA
for a single operation. The best design for the domain
of interest is a fully parallel layout of P butterfly units,
as described in [Hemmert and Underwood 2005]. The time
through this unit was derived to be:

TF =
2N
BW +BL+(

N
P +BL)(log2(N)−2) (3)

This assumes an FFT of N elements and a local memory
bandwidth, BW , that is given in “complex double precision
floating-point items per cycle”. BL is the latency through a
single butterfly unit (the initialization latency) and P is the
number of units used. Only log2(N)− 2 iterations are re-
quired, because the first and last iteration happen during in-
put and output. With sufficient FPGA resources, “lead-in”
units (details available in [Hemmert and Underwood 2005])
can reduce the total time to:

TF =
2N
BW +BL+Startup+

(
N
P +BL)(log2(N)− (2+ log2(P))) (4)

where Startup is the latency through those “lead-in” stages.
An important caveat, however, is that the high latency of
the floating-point units addes significant performance penal-
ties for sizes under P ∗ 64 elements. These penalties are ac-
counted for in the simulations, but are not presented here.

Integrating this design with this host is more complex. The
access patterns of the FFT computation are not compatible
with typical bus interfaces. In these examples, the butterfly
operation is reversed from some traditional approaches such
that the first accesses are N/2 items apart. Thus, most sys-
tems will need to transfer the entire buffer from the host to
the FPGA before the FFT computation can begin and will
then need to build the entire buffer before it can be trans-
ferred to the host2. Thus, a blocking implementation adds
the time to transfer the data to the time to do the operation:

TTot =
2N

HostBW +TF +2×HostLat (5)

Again, the bandwidth to the host, HostBW , is given in com-
plex, double-precision items per second, and the latency to
the host is HostLat.

In a non-blocking implementation, the data is double-
buffered. This means that the operation can be overlapped
with both the transfer of the result from the last operation to
the host and the data for next operation from the host. The

2This is not strictly true. A processor connected by HT could probably
transfer data in arbitrarily placed 64 byte chunks allowing some computation
to progress while the data was being transferred. The impact is negligible
for these examples.



three dependent stages become three independent stages so
that the time per operation drops to the maximum of the time
to transfer the data (once) and the time to perform the opera-
tion:

TTot = max( N
HostBW ,TF) (6)

This is a major improvement and can be a factor of three at
operation sizes of interest. The pipelining of the communica-
tions also amortizes the cost of the latency between the host
and the FPGA across all of the FFT calls. When assuming
hundreds of calls, it is eliminated.

4.2 Dense Matrix Multiply

The basic DGEMM3 routine performs the operation C =
A×B +C. From the perspective of an accelerator, this re-
quires 2N3 operations using 3 input matrices of N2 words
and one output matrix of N2 words. The small ma-
trix multiplies are implemented with an array of multiply-
accumulates (MACCs), as described for large matrix mul-
tiplies in [Underwood and Hemmert 2004]. In principle, the
DGEMM operation is compute bound, since it performs 2N3

operations over only 3N2 data, with 4N2 memory operations.
Thus, the operation should require:

TMM =
N3

M (7)

cycles, where M is the number of MACCs used; however,
practical constraints lead to an initialization latency. Fur-
thermore, to simplify the implementation, the final output
was not overlapped with the next operation. Thus, the real
time becomes:

TMM = IL+
N3

M +OL (8)

where the initialization latency, IL, is approximately 25 cy-
cles in this implementation and includes time to setup pa-
rameters, retrieve the data from block RAM, propagate it
to the right unit, and propagate through the multiply. The
output latency, OL, is tied to the concurrency needed in
the MACC unit4 and the bandwidth of the memory associ-
ated with the output. In our implementation, that bandwidth
is one double precision floating-point item per cycle lead-
ing to OL = M ∗ 16, where 16 is the concurrency used for
each MACC unit. Each of these numbers have been verified
through cycle accurate VHDL simulation.

3We will ignore things like the application of a scalar and transposes of
the matrices for now.

4The long adder latency requires that several multiply-accumulates run
concurrently.

As with the FFT, a group of MACCs is part of a larger pro-
cessing unit. When P of these processing units are used, the
minimum average time per DGEMM operation drops to:

TMM =
IL+ N3

M +OL
P (9)

Integration with the host has very similar properties to the
FFT. Due to the access patterns of the B matrix, the data must
be transfered down in its entirety before the computation can
begin5. Thus, the time is:

TTot =
4N2

HostBW +TMM +2×HostLat (10)

The HostBW term in Equation 10 is given in double-
precision floating-point items per cycle in this case. Double-
buffering with a non-blocking implementation significantly
reduces the time per operation:

TTot = max(3N2HostBW ,TMM) (11)

Unfortunately, the bandwidth needs of the DGEMM opera-
tion are asymmetric as it reads three times as much data as it
writes. As with the FFT, we have amortized away the latency
cost.

4.3 Implications for Architecture

The analysis in this section does not account for potential
sources of overhead, ranging from bus contention to the op-
erating system to the software stack. Instead, they provide
a best-case scenario for analyzing the important aspects of
FPGA based system architecture. Figure 6 considers the im-
pact of bandwidth and latency on small, blocking FFT and
DGEMM operations. The figures present data for 8 GFLOPs
and 6.4 GFLOPs peak designs, respectively, representing the
best case for a Xilinx Virtex2Pro100-6. Each graph presents
two input sizes. The larger size stretches the bounds of what
might be useful for the applications discussed in Section 2
and for most scientific applications in use at Sandia National
Labs. The smaller size is representative of what might be
considered “typical” in Sandia’s applications.

Even at small data sizes, Figure 6 makes it clear that the
biggest issue for application usage in this domain is band-
width to the host processor. Only the smallest operations
with a high bandwidth connection show an appreciable dif-
ference when the latency of that connection is quadrupled
from 250ns to 1000ns.

In contrast, the nonblocking operations are completely in-
sensitive to latency, because they assume that numerous in-
dependent operations will be done. The first observation

5Or, an expensive transpose of B must be done on the host.
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Figure 6: Analytical impacts of bandwidth and latency on small, blocking (a) FFT and (b) DGEMM

from comparing Figures 6 and 7 is the stark contrast be-
tween the achievable performance with blocking operations
and nonblocking operations, but Figure 7 offers other inter-
esting insights. Like many dense matrix operations, the FFT
and DGEMM operations demonstrate a superlinear growth
in work as the input size is increased. Despite this, the small
operation sizes used by many scientific applications can eas-
ily leave an accelerator bandwidth bound. Indeed, it is not
until 3.2 GB/s of bandwidth that an 8 GFLOPs accelerator
can approach its peak performance for a small Nlog(N) op-
eration like the FFT. In contrast, the DGEMM operation is
an N3 operation. Though this implies more work per N, the
data grows as N2 and N is relatively small. While an N of 64
can achieve peak performance with only 1.6 GB/s, matrices
with a dimension of 8 do not achieve the peak performance
of a 6.4 GFLOPs accelerator with 6.4 GB/s of bandwidth to
the host.

5 Measurements from the XD1

To validate our analysis and simulations and to provide a
concrete comparison point between microprocessors and FP-
GAs, we took measurements from the Cray XD1 and from
commodity microprocessors. Figure 8(a) compares the FFT
performance of the FPGA on the Cray XD1 to the Opteron
on the same platform and a recent Pentium-4 Xeon proces-
sor. The first observation about the graph is that it is very
different from the “standard” benchmark graphs for the pro-
cessors used, because our benchmarks performed 1000 op-
erations over 1000 different buffers where traditional bench-
marks perform 1000 operations over the same buffer.

The next important note is that the FPGA on the Cray XD1
can achieve a 60% to 125% performance improvement, de-
pending on problem size, if a nonblocking API is used.
Using a blocking API stands in stark contrast with 60%
lower performance than the microprocessor. Results from
the Pentium-4 Xeon indicate that this 2.5 year old FPGA that

is only half as big as the largest FPGA from that era can out-
perform one of the fastest current single core processors —
if, and only if, it uses a nonblocking interface.

Figure 8(b) presents results from DGEMM and contrasts
with the FFT results. Modern microprocessors are highly op-
timized to perform operations like DGEMM; thus, the FPGA
loses by as much as a factor of 2, even when it uses a non-
blocking interface. Given that it is a relatively old, relatively
small FPGA, this is not surprising.

6 Simulation Results

Like microprocessors, FPGAs have reaped many benefits
from Moore’s Law. In fact, recent FPGA performance
gains have outstripped the performance gains of micropro-
cessors[Underwood 2004]. To explore the near-term poten-
tial of FPGAs, we leveraged a hybrid discrete-event/cycle-
driven simulator. The initial simulations were used to val-
idate the simulator. Figure 9 indicates that the simulator
captures most of the salient points of the system. For the
FFT, the only point that is not in almost perfect agreement
(within 1%) between the simulator and the XD1 implemen-
tation is the 128 point non-blocking FFT. The simulation is
more representative of what can be achieved, but there is ap-
proximately 500 ns of overhead in the XD1 implementation
that is associated with buffer management that we are trying
to eliminate.

The DGEMM results are slightly less tightly correlated. For
many cases, the simulation results are within 1% of the mea-
sured values. From an N of 20 to 32, the results are within
5%. Measurements indicate that at least a 1% difference can
be attributed to the inaccuracies in the actual clock rate on the
XD1. Below an N of 16, the operations use smaller transfers
than the 128 point FFT; thus, the differences occur for the
same reason — unexplained overhead in the interaction with
the host that is being debugged. Blocking simulations were
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Figure 7: Analytical impacts of bandwidth on small, nonblocking (a) FFT and (b) DGEMM
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Figure 8: Comparison of FPGA performance to processor
performance for (a) FFT and (b) DGEMM as measured on
the XD1

only run over the range of N from 32 to 64, since those are
the only points where the blocking implementation fully uti-
lizes the resources. For these runs, the simulations are within
3% of the measured values. Overall, we believe the simula-
tions provide sufficient predictive capabilities when the pre-
dicted differences are large.

The second set of simulations focuesd on the bandwidth and
latency requirements for FPGAs now and as FPGAs increase
in performance. These simulations used nonblocking op-
erations and swept latencies from a minimum of 50 ns to
a maximum of 1000 ns. With nonblocking operations, la-
tency had no impact on the performance and those results
are omitted for brevity. FPGA sizes are modeled based on
the Virtex2Pro50-7 on the Cray XD1, the Virtex2Pro100-6
available on SRC systems, one Moore’s Law doubling (40
MACC units, 250 MHz, roughly a Virtex4-FX140) and two
Moore’s Law doublings (80 MACC units, 380 MHz)6. Re-
sults presented in Figure 10 assume a latency between the
processor and FPGA of 250 ns.

For currently available systems (Figures 10 (a) and (c)), the
choice of device matters. Larger devices deliver more perfor-
mance with bandwidths that are readily achievable. It is also
clear that PCI-X levels of bandwidth (500 MB/s/direction or
1000 MB/s total) are not sufficient for the domains of inter-
est discussed in Section 2, and, generally speaking, modern
FPGA systems need more bandwith. Even the bandwidth of
HT (1400 MB/s/direction sustained) is not quite sufficient.

A more interesting story arises from Figures 10 (b) and (d).
All but one pair of lines completely overlaps with the gen-
eration after it all the way to 5 GB/s/direction. Two parts
with a 3× difference in performance are both bandwidth con-
strained to the same performance in the domain of interest. A
more aggressive design point could take the bandwidth to the
FPGA up to 10 GB/s/direction or even 20 GB/s/direction as

6These numbers assume that a generation gives 2× the transistor count,
but somewhat under 2× the clock rate. Clock rate growth is difficult to fore-
cast for floating-point on FPGAs as it is virtually independent of technology
in the near term and depends on FPGA features introduced.
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Figure 9: Validation of the simulation models for (a) FFT and (b) DGEMM

technologies like HT-3 come online. While the graphs show
the potential for strikingly high levels of performance, the
I/O connections to FPGAs will have to improve dramatically
to leverage any of those potential gains.

While the bandwidth requirements seem extreme, there are
bright points. Foremost, it is unlikely that the largest FP-
GAs (represented by the “two doublings” line) will ever
be cost-effective for HPC applications. With the perfor-
mance of FPGAs growing faster than that of microproces-
sors[Underwood 2004], this would indicate that a smaller,
cheaper FPGA could deliver all of the performance that the
bandwidth will support. Also, with growth in computing
power comes growth in the amount and types of science that
can be done. This tends to increase the size of operations
such that 16× 16 DGEMMs and 128 point FFTs are likely
to become 32×32 DGEMMs and 512 point FFTs in another
generation. These trends will somewhat reduce the band-
width needed to achieve higher levels of FPGA performance.

The final set of simulations explored the impact of a tradi-
tional blocking API on FPGA performance at two genera-
tions beyond the Virtex2Pro100. The latency between the
processor and the FPGA was set to an optimistic 50 ns (to
offer every advantage to the blocking approach) and band-
width was set to 5 GB/s/direction to match what should be
achievable soon with HT or PCI-Express. Assuming that
at least 1000 independent operations are required yields the
graphs in Figure 11. The blocking calls are 2× to 3× slower
than their nonblocking counterparts. More importantly, the
blocking graph for the matrix multiply starts at 32× 32 be-
cause this is the first point at which a matrix multiply could
fully utilize the device.

7 Related Work

The intersection of traditional high performance, scientific
computing and FPGA based reconfigurable computing

only recently began to mature. Studies have indi-
cated that FPGA can deliver high performance with
the levels of precision needed by scientific comput-
ing[Underwood 2004; Underwood and Hemmert 2004;
Hemmert and Underwood 2005; Govindu et al. 2003;
Govindu et al. 2004b; Govindu et al. 2004a;
Zhuo and Prasanna 2005a; Zhuo and Prasanna 2005b;
Zhuo and Prasanna 2004; Dou et al. 2005;
deLorimier and DeHon 2005; Zhuo and Prasanna 2005c;
Morris et al. 2006; Kindratenko and Pointer 2006;
Scrofano et al. 2006]. The weakness in the majority of
these studies, however, is that they do not consider either
the API to deliver the performance to the application or the
system architecture issues such as bandwidth and latency to
the accelerator.

Of these recent works, only a handful have discussed how the
performance could be incorporated with an application. The
three most notable examples are a molecular dynamics appli-
cation[Kindratenko and Pointer 2006; Scrofano et al. 2006],
a full CG solver[Morris et al. 2006], and a traffic simulation
engine[Tripp et al. 2005]. None of these efforts have consid-
ered requirements for future systems attempting to leverage
FPGAs.

In addition, each of these cases focus on a fully custom data
and control path. While this will ultimately be the best ap-
proach to deliver the maximum possible performance, many
advocates of accelerators in general believe that the first path
to general adoption is through the acceleration of common
scientific computing APIs. This paper considers what will
be required to make that approach work.

8 Conclusions

It is important to recognize the mismatch between the way
FPGA researchers assess FPGA capabilities and the way ap-
plications would use the devices. Accelerator proponents
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Figure 10: Simulated impact of bandwidths as FPGA capabilities scale for FFT ((a) and (b)) and DGEMM ((c) and (d))
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Figure 11: Simulated impact of blocking operations for (a) FFT and (b) DGEMM



like to claim that they can accelerate standard libraries, but
many applications do not call these libraries in a way that
can be exploited; thus, a new, non-blocking API is needed to
expose the parallelism to the hardware. Indeed, the issue of
API impacts performance as much or more than the issue of
architectures with as much as a 3× loss in performance if the
wrong API is used.

That said, architecture is critically important. The perfor-
mance that the Xilinx Virtex4-FX140 should deliever will
far outstrip the bandwidth that is readily available to it. With
5 GB/s/direction of bandwidth, this part (which should be
available soon) would greatly outstrip the capabilities of a
microprocessor. And, modern interfaces can deliver almost
that level of bandwidth, but FPGA I/Os often limit the per-
formance of those interfaces (e.g. HT). This challenge mul-
tiplies with the next generation, where those parts cannot be
distinguished from current parts without delivering drasti-
cally more bandwidth.

As a final note, while these results were obtained with an
FPGA focus, many of them are generally applicable to accel-
erator technologies. Accelerator proponents typically offer
to accelerate DGEMM and FFT operations by attaching an
accelerator to a commodity microprocessor and using stan-
dard BLAS calls. These results indicate that this may work
in the near term for large operations, but in the longer term,
the traditional blocking BLAS calls will hide the parallelism
that is required. Furthermore, for many of the DGEMM and
FFT operations used by scientific applications, the API is
already a major barrier and the system architecture (partic-
ularly bandwidth) will be an enormous barrier in the near
future. This is not meant to say that accelerators are infeasi-
ble, only that traditional library calls will not be a productive
way to use them.
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