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1. Executive Summary

The Storage Intensive Supercomputing (SISC) projeictLawrence Livermore National
Laboratory is an effort to improve the performantelata-driven applications through advances
in system architectures. The Sandia contributiorthie project during the summer of 2008
focused on the task of evaluating how data can deethefficiently between disk and processing
resources that are of interest in the SISC projgecifically, we focused on a commercial flash-
memory hard drive from Fusion-io and an FPGA aces#be from XtremeData.

Flash memory experiments were performed using Resis ioDrive. The ioDrive is a high-
performance flash-memory device that is capabledaifvering close to 700 MB/s of read
performance and over 100K I/O operations per sedd@®S) to an end application. After
observing that the ioDrive’s performance improvdtew multiple 1/0O operations are issued at the
same time, we developed a set of threaded datgsemahicrobenchmarks to determine whether
we could exploit this characteristic to improve lgadion performance. In all four examples we
found that flash memory boosted performance (2x«p@nd in general enabled applications to
make better use of a multicore environment. We gotetl additional data transfer experiments
to gain a better understanding of the ioDrive’srent capabilities as well as to estimate the
complexity involved in utilizing different I/O teciques.

We then conducted data transfer experiments betdi#fament components of the XtremeData

system. This system employs an XD1000 FPGA acdelettaat plugs into an Opteron processor
socket. We modified the hardware reference desigmhe XD1000 and built a small number of

hardware configurations for measuring how fast data be exchanged with the FPGA. After
numerous attempts, we concluded that it was nosilplesto move data directly between the
ioDrive and the XD1000 due to limitations of the@#®s HyperTransport core and the Linux

kernel's restrictions on direct data transferstdad, we focused on modifying the software for a
previous n-gram text classification applicatiorpyform one-copy transfers between the ioDrive
and the XD1000 in a threaded, double-buffered mandkimately we were able to boost the

overall processing rate of the system from <5 MB/$00 MB/s when processing a large number
of small (2 KB) files.

2. Flash Memory Experiments

A key portion of our research this year focuseddetermining how application designers could
exploit the fundamental characteristics of Fusiws-ioDrive[l]. The ioDrive (Figure 1) is an
emerging flash-memory storage device that is ogghifor performance instead of compatibility
with traditional interfaces for storage deviceseTibDrive's hardware has three characteristics
that set it apart from other devices. First, & iBCle x4 card that can support high-bandwidth data
transfers with the host. Second, the card empldgsge number of flash-memory chips that are



arranged to exploit parallelism both horizontallg.( bus width) and vertically (i.e., die stacks).

Finally the card implements a high-throughput teei®n manager in hardware that allows

multiple transactions to be processed concurreiffiese architecture features enable a single
card to deliver up to 700 MB/s of read performaaod 100K IOPS I/O operations per second

(IOPS) to an end application.

Figure 1: Fusion-io's ioDrive is a PCle x4 card poplated with 80-320 GB of NAND-

Flash memory and an FPGA that is capable of managin many concurrent I/O

operations?
During the early stages of our investigating irtte tow-level performance characteristics of the
ioDrive we observed an interesting effect: in savapplications, increasing the number of 1/O-
performing threads increased the overall data-teanmerformance of the ioDrive. This effect is
opposite of what we have come to expect from tiaud hard drives, where concurrent
transactions generally degrade performance bedheseresult in disk thrashing. As such we
devised a number of tests to quantify the low-lgpegformance characteristics of the ioDrive and
provide examples of how threaded applications omudticore system could exploit these
characteristics. Additionally, we explored asynctmas /0O methods for achieving high-
performance without resorting to threads.

The performance numbers reported are for a singtees that employs two quad-core CPUs
(2.33MHz Intel E5345s), 2 GB of memory (PC2-5300f)¢ 80 GB Fusion-io ioDrive, and three
SATA drives arranged in a software-controlled RAIODe system utilizes the Linux 2.6.23 OS
found in Fedora 8. We utilized 8 GB input files (&4llion vectors of 32 single-precision
floating-point values) as well as cache-flushingtires to negate caching effects.

2.1. Multithreaded Microbenchmarks

As a means of observing the impact of multithreagediormance on storage devices, we
constructed four multithreaded microbenchmarks geaform operations commonly found in
data-intensive applications. While the applicatialgerform computations involving vectors of
floating-point numbers, we selected operations &natl/O bound instead of compute bound in
order to stress the storage subsystem. The miccbbmarks are threaded at a coarse granularity
and assume out-of-core operation, where datasetsnach larger than the capacity of main
memory. While a reasonable amount of effort has lmeade to maximize performance, we have
not taken heroic measures to optimize the micrdimiacks to a particular system architecture
(e.g., application-level caching). The intent isgiwe an idea of the performance that can be
obtained using built-in features of the hardwarg.(enultiple cores) and operating system (e.g.,
OS file caches). The microbenchmarks are blockstesin k-nearest neighbors (KNN), external
sort, and binary search.

! Photo credit: Fusion-io.



Block Transfer

Similar to other benchmark programs such as 10Z4@hethe block transfer microbenchmark

measures raw data-transfer performance charaasrist a storage device. The block transfer
program invokes multiple threads that issue eittesxd or writes to sequential or random
locations within one or more files. Transfers argemtionally misaligned in order to minimize

overlap and reduce caching effects. Performanoepisrted in terms of the aggregate amount of
data transferred per second.

The results of the read tests for both the ioDand the SATA RAID are presented in Figure 2(a-
b). In terms of (a) sequential read performance,itibrive provided 5x the bandwidth of the
SATA RAID for all burst sizes, and achieved a maximof 683 MB/s compared to the SATA
RAID’s 125 MB/s. Performance degraded in both dewigvhen multiple reader threads were
employed. We speculate that this drop for the ie®may be due to the fact that the kernel can
orchestrate large, sequential transactions fonglesithread very efficiently (i.e., large sequdntia
transactions are broken into a set of smaller,peddent transactions).
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Figure 2: Read performance for (a) sequential andh) random access patterns using
the ioDrive and a three hard drive SATA RAID.

While the ioDrive’s sequential performance is vegod, the true benefit of flash memory
becomes apparent when I/O is nondeterministic.rébelts of the random read test are presented
in Figure 2(b). For all burst sizes the ioDrive yided at least a 17x improvement over the SATA
RAID for random 1/O. Additionally, the ioDrive’s pearmance improved when multiple threads
operated concurrently. The dip in performance & RB for the ioDrive can be attributed to the

internal block size that the hardware employs. Ppakformance measurements for all tests are
listed in Table 1.

Table 1: Peak performance measurements in the blodkansfer microbenchmark.

Test SATA RAID | ioDrive | Speedup
Sequential Read 125 MB/s| 683 MB/s 5x
Sequential Writg 139 MB/s | 661 MB/y§  4x
Random Read 34 MB/s 580 MBYs 17x
Random Write 46 MB/s 658 MB/s 14x

2 Peak performance refers to the best value seail fbansfer sizes. It is particularly unfairtime random

read benchmark, where the SATA drives providetleas 5 MB/s until large (512 KB) block sizes are
used.



k-Nearest Neighbors (KNN)

The second microbenchmark implements the k-NeaMsighbors (KNN) algorithm for
classifying input vectors based on their similatitylabeled, training vectors. Each thread in the
program reads its own section of the training @i locates the k training vectors that have the
shortest Euclidean distance to an input vector. KINBl microbenchmark is also capable of
processing multiple input vectors at a time. Insieg the number of input vectors that are
processed in a single pass of the training datasetases the amount of computation that must
be performed in a pass, but decreases the numiparseés that are required to process multiple
input vectors. As such, it is possible to use thenlmer of input vectors as a parameter for
adjusting whether the application is compute boomidO bound.
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Figure 3: Total time required for kNN to complete asingle pass of an 8 GB dataset
when (a) varying the number of input vectors procesed at a time and (b) varying
the number of concurrently operating threads.

The amount of time required to make a full pastheftraining data for a given number of input
vectors and threads is presented in Figure 3(a)thfeooptimal number of threads, the ioDrive is
at least 3x faster than the SATA RAID for all inmetctor loads. Both systems switch from being
I/O bound to compute bound when 32 input vectoesmpcessed simultaneously. Figure 3(b)
highlights the impact of threading for fixed numbef input vectors. While the SATA RAID’s
performance degrades with multiple threads, theii@» improves, up to approximately 4 to 8
threads. Execution times for peak performanceistedl in Table 2.

Table 2: Peak performance measurements in the kNN isrobenchmark. Values are
reported in terms of total execution time.

Test SATA RAID ioDrive Speedup
16 inputs per pass 66 s 21s 3X
32 inputs per pass 73s 22s 3X




External Sort

The external sort microbenchmark converts an uedofile of vectors into a sorted file of
vectors. Due to the large size of the input fites implementation must process data out-of-core
in two phases. First, multiple threads read inedéht sections of the input file, quicksort the
individual sections, and then write out the restdtsntermediate files. Second, a single thread
merges all of the intermediate files into an outidatin a streaming manner. This thread utilizes
a tree data structutéo minimize the number of comparisons performe@mvmerging the data
streams.
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Figure 4: External sort performance for ioDrive and a three hard drive SATA
RAID varying (a) the number of threads when using aotal buffer size of 512 MB
and (b) the total buffer space available to the agjcation.

Performance measurements for the external sorbbecichmark are presented in Figure 4(a-b).
In (&) the number of threads is varied while theltbuffer space available to the program for
holding data values is limited to 512 MB. In teroisexecution time, the ioDrive tests completed
2-4x sooner than the fastest SATA RAID test. Penfonce decreased for the SATA RAID when
more threads were employed while the ioDrive addemaximum performance at 4 threads. In
(b) the total buffer size for the application wasigd while employing a small number of threads.
While buffer size did not have a significant impact execution time for the SATA RAID, the
ioDrive’s degraded as buffer size increased. Thagacteristic is likely to be a side effect of the
algorithm’s implementatidh as opposed to deficiencies in the hardware. Reaformance
values are summarized in Table 3.

Table 3: Peak performance measurements in the exteal sort microbenchmark.
Values are reported in terms of total execution tira.

Test SATA RAID ioDrive
8 GB Sort 361s 81s

Speedup
4x

¥ When merging n files, this structure reducesniber of comparisons performed for each outpumfro
n to log(n).

* The impact of decreasing the total buffer sizéhig a larger number of smaller intermediate files
generated. A well-tuned system would find the simd number of files that yields the best perforneanc



Binary Search

The final microbenchmark performs a binary searnhaosorted file to determine whether it
contains one or more input vectors. This searchires log(n) vector comparisons to determine
where the vector should be located within the siofite. In order to minimize the number of disk
read requests that are issued when searching fmpah vector, the microbenchmark utilizes an
index that is built in main memory at start timerflérmance is reported in terms of the average
amount of time required to process an input ve@ond does not include the one-time
initialization cost of building the index.
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Figure 5: Average amount of time to perform an ind&ed binary search (a) for both
the ioDrive and the SATA RAID and (b) the ioDrive by itself.

The results of an experiment where 64K input veciagre located in an optimally-indexed 8 GB
file using a variable number of threads are preskin Figure 5(a-b). For both the ioDrive and
the SATA RAID, performance improved as the numifehreads increased. When averaging all
runs, the ioDrive’s average vector processing twaes 40.1 us, which is 132x faster than the
SATA RAID’s average vector processing time of 5.8 s summarized in Table 4, the ioDrive
gave a peak performance speedup of 210x when 82dbmvere utilized.

Table 4: Peak performance measurements in the blodkansfer microbenchmark.
Test SATA RAID ioDrive Speedup

Create 128 MB index 387 s 38s 10x

Process 64k inputs 315s 15s 210x




2.2. Asynchronous I/O Experiments

In conversations with Fusion-io, the ioDrive’s diyeers reported that they had had a great deal
of success in boosting IOPS performance by switchiom a threaded approach to a single-
thread performing asynchronous I/O (AlO). The depels explained that the ioDrive’s hardware
gueues are deep enough that a host applicatiohasanmore than 32 requests in flight before the
ioDrive’s performance saturates. Observing thatteat system only has eight processor cores,
we theorized that it was possible that our threadsts were not reaching peak performance
because the processor cores needed to be oveibelsaith threads in order to generate enough
I/O requests. Therefore we performed a prelimimawvgstigation into AlO possibilities.

We conducted a brief survey of AlO options that available for modern Linux systems. After
confirming that traditional 1/O operations are ajwdlocking commands when used with storage
devices, we investigated the built-in AlO support provideyl glibc’s realtime library. The glibc
AIO interface is straightforward and easy to ube: tiser simply issues one or more lists of I/O
operations and then polls for completion of the kvdNe constructed a simple benchmark
program to measure the speed at which a file cbeldead in a streaming, double-buffered
manner using glibc’s AIO functions. In this tes¢ thpplication manages two sets of buffers. Each
read request is comprised of a set of I/O operatibat fill independent regions in the buffers.
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Figure 6: Asynchronous I/0O performance with the glbc AIO interface for both the
ioDrive and a three hard drive SATA RAID.

We conducted an experiment that varied the numbE©operations issued in a request (or set)
as well as the amount of buffer space available. fest utilized both the Fusion-io ioDrive and
three SATA hard drives arranged in a RAIDO. As d&g in Figure 6, the ioDrive’s performance
improved when a small number of outstanding reguaste issued at once and the total request
size was between 16 KB and 512 KB. Four operatipes set provided the best general
performance. The SATA RAID did not demonstrate pesformance difference when using AlO.

While the glibc’s AIO interface demonstrated thatfprmance could be improved in a single-
threaded application by allowing multiple I/O tran8ons to be in flight at the same time,
performance was considerably less than what we lwpgerved in the block transfer tests

®> Passing O_NONBLOCK to an open() call reported:ess, but read() commands always blocked until
they completed. Kernel mailing lists explain thaistis due to the one-sided nature of file operstio
compared to the two-sided nature of sockets file.reads in the kernel do not have a thread miaigag
the file that can be left alone to do its work).



reported in section 2.1. One observation is thatbibck transfer test assigns different portions of
the input file to each thread in order to removehoag effects. This assignment may provide the
ioDrive hardware with better parallelism, as datyrbhe more evenly distributed across different
die planes. However, it is also quite probably tivatare losing performance in the glibc AlO
implementation. While investigating the AIO implemtation, we learned that glibc’s AlO calls
are implemented through user-space threads. Ibéeas widely reported that the Linux kernel's
support for asynchronous file I/O is a better apphobecause these I/O operations are managed
by kernel threads. The libaio library provides Al@rough the kernel's asynchronous file 1/0O
interface. However, this library is more challerggito use than glibc. Our initial tests indicate
that it does give better performance (approximad@9 MB/s), but we have not yet conducted a
full set of experiments with libaio.

Our experiences with both the glibc and libaio At@erfaces have provided us with insight into
the hardships of working with AlO. In general, Aian be challenging to utilize in a manner
that maximizes performance because the developst doua fair amount of profiling and hand
tuning to make sure transactions are schedulededyop/Nhile this optimization may not be

difficult to perform in applications that have régul/O patterns, many typical applications will

not map well to this form of /0. As such, our @ednce is to continue developing parallel 1/0
applications using threads.

2.3. Additional Experiments: Fusion-io RAID

Fusion-io reported in April that their drivers westable and that multiple cards could be used
together in a single computer. We inserted thréeive cards in sisc2.linl.gévand attempted to
configure them as a single RAID. While the deviciwats recognized all of the cards and were
able to perform the low-level formatting operatidhat are specific to the ioDrive, the system
locked up when we attempted to create a softwartDR#ith the drives. Fusion-io confirmed
that there were still physical-layer compatibilisgues with PCle in some motherboards that were
being examined. While Fusion-io has since repottet this bug has been fixed in newer
firmware, we have not had time to conduct the erpamt again.

® This machine utilizes AMD components. All of ather tests have been conducted on Intel companents



3. XtremeData XD1000 Experiments

XtremeData is a company that develops data-anadysiems that are optimized for applications
with massive datasets. While XtremeData largeliizes commodity hardware and software in
their commercial, distributed-database product,y tieave developed two key pieces of
intellectual property that give their products anpetitive advantage. First, they have adapted a
PostgreSQL database engine to run in a distribotgdner across a cluster. Second, they have
developed an FPGA accelerator that plugs into ate@p socket and can be used to accelerate
data-processing operations. LLNL purchased a sik@@000 system in order to evaluate the
performance characteristics of the FPGA accelerdlthile the database software is not available
on this platform, there are sufficient hardware aoftware examples available that we can
prototype SISC data-processing applications ondygtem. Our primary goal during this phase
of the project was to install the Fusion-io ioDriire the XD1000 and measure how fast the
system could process data from the disk.

3
Figure 7: The XtremeData 1000 FPGA accelerator feates an Altera FPGA that
plugs into a standard AMD Opteron socket and commuitates with the host using
HyperTransport. ’

3.1. XD1000 Environment

The XtremeData XD1000 is an FPGA accelerator bdfzat plugs into an AMD Opteron socket
and communicates with the host via a HyperTrangjptr) link that operates at 800+800 MB/s.
The XD1000 board features an Altera Stratix-1l pdrtMB of on-board SRAM, and a DDR
interface to the socket’'s memory slots.

XtremeData provides a reference hardware desigrtherFPGA that demonstrates the basic
components of the XD1000. The design employs twerfiaces for exchanging data with the
host: one for host-initiated transactions (i.entoal) and another for FPGA-initiated transactions
(i.e., DMA). Host-initiated transactions are hamidley a control unit that uses the address
specified in the transaction to select the hardwari in the design that is the target of the
operation. The control unit is expected to be e means of interacting with control/status
registers in the FPGA, and therefore was not desigro support high-bandwidth

communicatioh High-bandwidth transfers are instead achievedutin a pair of DMA engines

" Photo credit: XtremeData, Inc.
8 The control bus only extracts the first 32-bileaextracted from a HyperTransport packet.



that allows the FPGA to initiate block transfers dzta with the host. This DMA interface
operates in a streaming manner that is regulatddmif-Os.

Based on these interfaces, the procedure foriatilithe FPGA to process an application’s data is
as follows.

» Compute Engine Setup A user application issues programmed-1/O (PlCgrapons to
the control unit to configure the computational ecdoaded in the FPGA (e.g.,
computation length, job ID).

 DMA Setup: The application pins and translates host memorybbth input data and
output data. The physical addresses and sizesatdr eansfer are programmed into the
FPGA's read and write DMA engines.

+ Streaming DMA: The FPGA’'s DMA read engine pulls data in and sendvord-by-
word to the computational circuit. As the userscgit processes data it pushes it to the
DMA write engine, which in turn pushes data ouhést memory.

* Completion Interrupt : Notification of completion is typically handledtv an interrupt.
Either of the two DMA engines can be configuredssue an interrupt when a specific
number of transactions have completed.

* Compute Engine Read A user may also use the control interface to etd out of the
FPGA (e.g., status registers or final results).

3.2. Previous XD1000 Work at LLNL

During the summer of 2007, Arpith Jacob implemerdach-gram classification application that
utilized the XD1000 FPGA as a means of performirajmyncomparisons in parallel. Ideally this
program would read data from disk, stream the ttathe XD1000 for analysis, and then extract
statistics from the analysis to estimate the lagguaf the file. After initial tests confirmed that
the hard drive could not source data fast enoudteép the XD1000 saturated, Arpith modified
his software to read all data files into host megmepriori and then measured the rate at which
data in host memory could be processed. In the daesst, the system was able to achieve 478
MB/s. The next step in this work would have beemtmasure how fast the system could process
data using the ioDrive as a disk source. Unfortelgathese tests were not possible last year due
to firmware incompatibilities between the ioDrivenda the XD1000. Since then driver
enhancements have fixed these problems, thus alijpud to reopen work with the XD1000.

3.3. FPGA Experiments

As a first step in building hardware acceleratas the XD1000's FPGA, we examined the
reference design in detail and made modificatiorsptedup the build process.

Minimal Design: While the reference design demonstrates all ohérdware components on the
XD1000, it takes hours to build due to the timireguirements and sizes of the high-speed
components. Our first hardware effort was to makmiaimal design that housed a simple
processing core. Removing the unwanted cores (DRRSRAM) was a straightforward task, as
the reference design allows the user to select la &tthitecture implementation for each
component at the top level of the design. We thashated the computational unit of the design
with instrumentation registers to monitor data fltram the host. Finally, we modified the build

° The outgoing DMA engine requires both a valid DMansaction from the host and data from the user's
FPGA hardware in order to complete a transactitis fequirement is the source of many lockups when
debugging an application.



directory for the design to be more organized afdkd Makefiles to allow the user to build the
design without having to use the Altera Quartus GUte minimal design now builds in
approximately 15 minutes on fpga2.linl.gov.

Block RAM Design: In order to conduct the PIO experiments describexsbction 3.4 we needed

a design that allows a user to write a sizable arnofidata on to the control bus’s address space.
While the default design provides a 64 KB windots,address space only allocates 256 bytes to
each unit in the design. Therefore we modifiedrttieimal design to provide 4 KB of addressing
to each unit and then updated the design to inatard 4 KB block RAM to house data

Floating-point Design: While current generation FPGAs lack native suppartfloating point,
most vendors provide floating-point cores that ¢enutilized in a design. We investigated
Altera’s options and found that the Megawizard dolbe used to generate pipelined floating-
point units for all typical operations. As a meafnserifying that these cores functioned properly,
we updated the computational portion of the minirdakign with an array of four single-
precision floating-point units. We then loaded thesign on the XD1000 and verified that data
values programmed into the device were properheddyy the floating-point units.

3.4. Injection Tests: Programmed-IO and O_DIRECT Experiments

One issue with the XD1000 reference design is etFPGA is expected to move data to and
from host memory. While this technique is sufficiéor many applications, it implies that data
being transferred from disk must be moved in adyaoanner (i.e., data must be transferred to a
host buffer before being moved to the FPGA). During conversations with Fusion-io, there
was speculation that it might be possible to penfar 0-copy (i.e., data is transferred directly
from disk to the FPGA) through simple addressirapméques. In this approach, the application
would (1) memory map a portion of the FPGA cardiglr@ss space for programmed-io access
and then (2) supply the memory-mapped addressetdittk read calls. The hypothesis was that
virtual-to-physical address translation would tgitace when the read call was issued, and that
the translation would be sufficient for allowingetlstorage device to write to the intended
destination. We constructed a hardware designctiratained a hardware unit for accepting data
from the control port and added instrumentatiomtmitor transactions.

In our first set of tests we issued data transfisisg the method that was just described. While
the OS allowed us to perform these data transfeesobserved that performance was only
approximately 75 MB/s. Additional tests measurihg speed at which data could be transferred
from the host to the FPGA using PIO revealed tmesperformance. Traditional techniques for
overcoming PIO performance (e.g., write combiningl anon-temporal SSE copies) did not
provide any benefit. In discussions with XtremeDatee learned that this performance was
typical for the control port through which we hageh routing data, and that in the best case the
port was only capable of operating at 133 MB/s.

Following the advice of Fusion-io, we modified tiast application to open the source file in raw
mode (i.e., set the O_DIRECT flag when openindfiflkeand page align buffers). The hypothesis
was that the previous tests were actually perfograii-copy internally, as the kernel moved data
into a buffer cache and then issued an additiompy ¢o transfer the data to its final location on
the FPGA. Unfortunately the O_DIRECT flag caused thad command to exit with errors.
While researching the problem, we located two othstances in newsgroups where users had
tried to move data directly from a disk to a mermmgpped location (e.g., a video card screen
buffer). Both of these threads pointed to the Késroairrent inability to allow a PIO address to be
the target of a transfer while O_DIRECT is enabkesl.such we were forced to abandon a zero-
copy approach.



3.5. Injection Tests: One-Copy

The next step in our testing of the XD1000 wasdtednine its performance characteristics given
that a one-copy approach was necessary for mowtaylwetween the ioDrive and the FPGA. For
the hardware side of this work we utilized a mirded version of the XD1000 design, which
simply accepted and discarded all data pulled inheyDMA engine. We conducted two sets of
experiments: one for determining application in@ttperformance when working with large
files and another for small files.

Large File Tests

The first set of one-copy injection tests focusadransferring a single, large (8 GB) file from the
ioDrive to the XD1000 FPGA using a double-bufferede-copy approach. These tests provide
an upper bound on performance because large fiesrglly yield better performance than small
files. Host memory for the buffering was pinned arahslated during initialization to remove
kernel overheads. The experiments varied whethrectdmode was enabled when reading data
from disk in order to answer whether overhead cteldeduced by forcing incoming data to land
in host memory without any kernel-level buffering.

Table 5: Injection performance when moving an 8 GHile from disk to the XD1000
using an intermediate host buffer.

Transfer Source | O DIRECT Performance
. no 63 MB/s
Hard Drive yes 51 MB/S
ioDrive no 401 MB/s
yes 513 MB/s

Performance results for the large-file injectiorpesiments are presented in Table 5. As these
numbers indicate, the ioDrive performs approximag faster than the local hard drive. While
the overhead of moving data to the FPGA degradesaibrive’'s performance (i.e., from >600
MB/s to 513 MBY/s), the ioDrive is still is able teliver a considerable amount of bandwidth.
Interestingly, the O_DIRECT flag hinders the hamivels performance while improving the
ioDrive’s. In terms of concurrent DMA operationse iound that an application needs to issue
16-32 page-sized transfers (64 KB — 128 KB of dtdahe XD1000’s DMA engine at a time in
order to achieve more than 500 MB/s.

Small File Tests

We conducted a second set of injection tests terate how the use of small files affects
performance. In general we expect small data teansb perform worse than large transfers. For
example, the sequential block read benchmark (Eig@¢a)) shows that the ioDrive loses about
100 MB/s when burst size is reduced from 4 KB #6BL Unfortunately, the n-gram applications

a more difficult challenge because it involves regda large number of small (2 KB) files. It is
difficult to obtain high bandwidth in this scenafi@cause the amount of overhead associated
with opening and closing an individual file is stégial compared to the amount of time spent
reading data from the file.

In order to improve concurrency, we constructechieeaded file streaming application that
performs work on multiple files at the same timéiisTsoftware employs a small number of
threads for pulling data from different files irtiost memory, and a writer thread that pushes data



out to the FPGA. Each reader thread has a fixeduatnaf buffer space for housing data that is
divided into slots, and a list of input files theged to be processed. At runtime the writer selects
the first reader thread that has data and theamtéhrough all of its buffers until the file is
transferred to the FPGA. This approach resultsljrdpuble-buffered transfers from the disk to
the FPGA, (2) the ability for multiple page-sizeMR transfers to be in flight at the same time if
a slot is larger than a page, and (3) the file eedeing able to begin reading from the next file
before the current file is completely processedheyFPGA.
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Figure 8: Transfer performance was measured for dierent configurations. The
four views of the same data represent (a, c) the pact of slot size for a fixed number
of slots and (b, d) the impact of the number of ste for a fixed slot size.

We measured the bandwidth that could be obtainethéyinjection system while varying the
number of slots, the size of the slots, and thebmimof reader threads. The results are presented
in Figure 8 (a-d). In general the system worked béd®n a small number (2-3) of threads and a
small number (2-4) of slots were employed, andstbesize was large enough (16 KB) to hold an
entire file. These measurements indicate that tipeiti files were too small to benefit from
streaming (i.e., breaking a file read into multiplansactions was not worthwhile), but at the
same time, the overhead for opening and closirgs fdould be hidden partially by allowing
multiple files to be processed concurrently. Wogkom too many files at the same time caused
interference that degraded performance. Ultimatedysystem delivered approximately 270 MB/s
under optimal conditions.



3.6. Updating the n-gram Design

Based on our injection experiments we updated Aipioftware to make use of the threaded file
reader. This implementation took a considerableuarnof time to debug due to the complexities
involved in orchestrating DMA transfers properly ithe flow of a real application. After
numerous system crashes we were forced to abanddipia all buffers at start time” approach

in favor of a “pin buffers at injection time” tecigue. This change reduces performance but was
necessary for stability. We verified that the inmpéntation produced the same results as the
implementation from last summer.

Using the 40 MB French language reference datagetested the updated n-gram design using
both the local hard drive and the ioDrive. As sumingal in Table 6 the ioDrive provided a 20x
speedup over the hard drive.

Table 6: The end-to-end performance for the n-gramnapplication.

Transfer Source Performance
Hard Drive 5 MB/s
ioDrive 100 MB/s

Observing that the FPGA design is capable of opeyatt speeds much higher than 100 MB/s,
we began investigating the bottlenecks in the systé/e categorized the main data flow
operations in the host program into three functioesding data from the ioDrive, using the
XD1000’s DMA engine to move data to the FPGA, ardding the result values out of the
FPGA’'s memory. We then timed the application whamious functions were removed. The
results of the tests are presented in Table 7. Fhase measurements we observe that injection
performance (Fusion-io+XD DMA) is about 70 MB/sdaghan what we observed in the injection
tests. This drop may be due to new overheads cadysed-demand pinning or by application-
specific PIO operations that take place when daiajécted. We expect that performance could
be improved by tuning the software to guarantee dasa transfers are aligned to take place in
parallel as much as possible.

Table 7: Breakdown of performance in n-gram.

Operation Performance
Fusion-io + XD DMA + Readout 100 MB/s
Fusion-io + XD DMA 135 MB/s
Fusion-io 200 MB/s




4. System-Level Observations

The work performed in this project has providedwith insight into data transfer challenges in
the local node of a SISC-like system. While the rig® provided a 20x performance
improvement in the end-to-end performance of ttgram application, the current application
implementation delivers only a fraction of the peniance the hardware is capable of achieving.
It is important to highlight a few of the key weasses of the implementation in order to shape
future efforts.

4.1. One-Copy Limitations and Injection Issues

The largest disappointment in this work was thaaadauld not be routed directly from the disk
to the FPGA accelerator because the current Lirured does not allow peripheral devices to be
the target of an O_DIRECT read. This limitationcied us to employ host buffers for one-copy
transfers. While the host system provides enougimang bandwidth to support one-copy
transfers at reasonable rates, the applicatiowaddtrequires a good bit of hand tuning to ensure
that enough transactions are in flight at the séime to keep the data flow running at peak
levels. Additionally, there is the hazard that @opy overheads may interfere with other
processing tasks that are running in the systenviaedversa.

A second source of performance limitation in the D0 system was PIO injection
performance. The XD1000’s HyperTransport core gtesia low-bandwidth PIO interface and a
high-bandwidth DMA interface. This split is basadtbe common false assumption that the only
way to transfer data efficiently with a periphedavice is through the device’s DMA engine.
Through techniques such as write-combining or S8@yiag it is in fact possible to achieve
significant application-to-peripheral bandwidth rlexample, the Cray XDR], which employed

a HyperTransport FPGA accelerator much like the 8@s, was able to achieve over 1 GB/s in
injection performance using P1O. The advantagesiigiPIO is that end applications can use
simple memory copy operations to orchestrate iigast instead of having to queue DMA
transaction requests and poll for completion. Addélly, one-copy transfers with PIO become
more automated, as the user simply provides the anemapped address of the peripheral
device’'s memory to a read call, which in turn motles data from disk to peripheral device by
way of a kernel buffer. As we have observed with thDrive, simplifying the programming
interface makes it easier to scale up to a largerter of threads.

4.2. FPGA Design Limitations

The original n-gram FPGA design was implemented iatreaming manner that matched the
XD1000's reference designs: the user issues PlQestg to initialize the unit, data is streamed
into the FPGA through DMA engines, and then the uses PIO requests to DMA the results to
host memory. While this approach works well foriidiual jobs or cases where all input data
can be batched in memory a priori, the book keepirerhead may be significant in applications
where there are a large number of jobs or smalluatsoof data. In order to improve this
performance, the design could be modified to quaudiple output results together to reduce
how frequently the application needs to pull output of the card. Further queuing could be
employed on the input side of the design to prodldek in the data flow and allow multiple
requests to be queued at the same time.

4.3. Accelerator Data Flow Philosophy

Based on our experiences, we are currently forimglat philosophy for how applications should
be designed in order to leverage hardware accetsrathis philosophy follows a data-flow
design style and is comprised of the following kejnts.



» Distributed Control: Control in systems with multiple resources is nugth either
centrally (e.g., the host application orchestrabsdata transfers) or in a distributed
manner (e.g., each resource manages its own trapsMhile centralized control
simplifies the amount of development that is reggiiin the resources, it is challenging to
implement centralized control in a way that maxiesizperformance for systems with
more than one resource. Instead we advocate #distl approach where each resource
is equipped with enough sophistication to be ablpdrform its computations and data
transfers without significant external guidance.

* Many Jobs In-Flight: In systems where different resources are usedrform different
computational operations, it is beneficial to allowltiple jobs to be in-flight at the same
time. This concurrency allows designers to hiderlowads by overlapping data transfer
and computation at a resource without byte-by-Beaming’ interfaces.

* Push-based TransfersWhenever possible, data should be pushed (e.geadnby the
sender) instead of pulled (e.g., moved by the veckiln a push-based system data is
transferred as soon as it can be moved. In a jpskd system, the receiver may need to
block until it retrieves the data it requires. Baipproaches must handle virtual/physical
address translation when exchanging data with ¢isé h

» Input-Buffered Queues: In order to efficiently support having both mamp$ in-flight
and push-based transfers, it is necessary to inguiermput-buffered queues at the
resources. These queues allow designers to hi@etimj/ejection rate mismatches
between stages and provide a system where a re&imput data is buffered in close
proximity.

5. Summary

During this phase of the SISC project we investidathe data transfer properties of key
components in a SISC node. The Fusion-io ioDrivevigied exceptional performance and
enabled several microbenchmark applications towggda less than half the amount of time that
they had required previously. More importantly, tlaebrive works extremely well in a
multithreaded environment. This feature is espicaitractive as multicore architectures become
more available. Likewise, it is reassuring thatls#eabwn programming methodologies such as
threads work well with the ioDrive.

However, as we observed with the n-gram applicatiothe XD1000, application designers must
still pay close attention to the characteristicshef hardware in order to obtain peak performance
results. 1/0 work is still challenging when datarnsfer sizes are small. Additionally, real
applications may have constraints that cause pedoce to evaporate unless a developer
micromanages data transfers. Ultimately we belifase hardships can be managed, provided
that designers follow the lessons learned in data &rchitectures.
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10 While streaming interfaces provide a powerfulgseanming abstraction, they can be problematic in

several real-world instances, including instanchera the computation fetches data non-sequentially
(e.g., FFT), or when an I/O bus re-orders datasfean to improve performance.



