
Data Transfer Experiments with a
Fusion-io Flash-Memory Disk and an

 XtremeData FPGA Accelerator
2008 Status Report for the Storage Intensive Supercomputing (SISC) Project

Craig Ulmer

Sandia National Laboratories
Livermore, California

1. Executive Summary
The Storage Intensive Supercomputing (SISC) project at Lawrence Livermore National
Laboratory is an effort to improve the performance of data-driven applications through advances
in system architectures. The Sandia contribution to this project during the summer of 2008
focused on the task of evaluating how data can be moved efficiently between disk and processing
resources that are of interest in the SISC project. Specifically, we focused on a commercial flash-
memory hard drive from Fusion-io and an FPGA accelerator from XtremeData.

Flash memory experiments were performed using Fusion-io’s ioDrive. The ioDrive is a high-
performance flash-memory device that is capable of delivering close to 700 MB/s of read
performance and over 100K I/O operations per second (IOPS) to an end application. After
observing that the ioDrive’s performance improved when multiple I/O operations are issued at the
same time, we developed a set of threaded data-analysis microbenchmarks to determine whether
we could exploit this characteristic to improve application performance. In all four examples we
found that flash memory boosted performance (2x-200x) and in general enabled applications to
make better use of a multicore environment. We conducted additional data transfer experiments
to gain a better understanding of the ioDrive’s current capabilities as well as to estimate the
complexity involved in utilizing different I/O techniques.

We then conducted data transfer experiments between different components of the XtremeData
system. This system employs an XD1000 FPGA accelerator that plugs into an Opteron processor
socket. We modified the hardware reference design for the XD1000 and built a small number of
hardware configurations for measuring how fast data can be exchanged with the FPGA. After
numerous attempts, we concluded that it was not possible to move data directly between the
ioDrive and the XD1000 due to limitations of the FPGA’s HyperTransport core and the Linux
kernel’s restrictions on direct data transfers. Instead, we focused on modifying the software for a
previous n-gram text classification application to perform one-copy transfers between the ioDrive
and the XD1000 in a threaded, double-buffered manner. Ultimately we were able to boost the
overall processing rate of the system from <5 MB/s to 100 MB/s when processing a large number
of small (2 KB) files.

2. Flash Memory Experiments
A key portion of our research this year focused on determining how application designers could
exploit the fundamental characteristics of Fusion-io’s ioDrive[1]. The ioDrive (Figure 1) is an
emerging flash-memory storage device that is optimized for performance instead of compatibility
with traditional interfaces for storage devices. The ioDrive’s hardware has three characteristics
that set it apart from other devices. First, it is a PCIe x4 card that can support high-bandwidth data
transfers with the host. Second, the card employs a large number of flash-memory chips that are

arranged to exploit parallelism both horizontally (i.e., bus width) and vertically (i.e., die stacks).
Finally the card implements a high-throughput transaction manager in hardware that allows
multiple transactions to be processed concurrently. These architecture features enable a single
card to deliver up to 700 MB/s of read performance and 100K IOPS I/O operations per second
(IOPS) to an end application.

Figure 1: Fusion-io's ioDrive is a PCIe x4 card populated with 80-320 GB of NAND-
Flash memory and an FPGA that is capable of managing many concurrent I/O
operations.1

During the early stages of our investigating into the low-level performance characteristics of the
ioDrive we observed an interesting effect: in several applications, increasing the number of I/O-
performing threads increased the overall data-transfer performance of the ioDrive. This effect is
opposite of what we have come to expect from traditional hard drives, where concurrent
transactions generally degrade performance because they result in disk thrashing. As such we
devised a number of tests to quantify the low-level performance characteristics of the ioDrive and
provide examples of how threaded applications on a multicore system could exploit these
characteristics. Additionally, we explored asynchronous I/O methods for achieving high-
performance without resorting to threads.

The performance numbers reported are for a single server that employs two quad-core CPUs
(2.33MHz Intel E5345s), 2 GB of memory (PC2-5300f), one 80 GB Fusion-io ioDrive, and three
SATA drives arranged in a software-controlled RAID0. The system utilizes the Linux 2.6.23 OS
found in Fedora 8. We utilized 8 GB input files (64 million vectors of 32 single-precision
floating-point values) as well as cache-flushing routines to negate caching effects.

2.1. Multithreaded Microbenchmarks
As a means of observing the impact of multithreaded performance on storage devices, we
constructed four multithreaded microbenchmarks that perform operations commonly found in
data-intensive applications. While the applications all perform computations involving vectors of
floating-point numbers, we selected operations that are I/O bound instead of compute bound in
order to stress the storage subsystem. The microbenchmarks are threaded at a coarse granularity
and assume out-of-core operation, where datasets are much larger than the capacity of main
memory. While a reasonable amount of effort has been made to maximize performance, we have
not taken heroic measures to optimize the microbenchmarks to a particular system architecture
(e.g., application-level caching). The intent is to give an idea of the performance that can be
obtained using built-in features of the hardware (e.g., multiple cores) and operating system (e.g.,
OS file caches). The microbenchmarks are block transfer, k-nearest neighbors (kNN), external
sort, and binary search.

1 Photo credit: Fusion-io.

Block Transfer
Similar to other benchmark programs such as IOzone [2], the block transfer microbenchmark
measures raw data-transfer performance characteristics of a storage device. The block transfer
program invokes multiple threads that issue either read or writes to sequential or random
locations within one or more files. Transfers are intentionally misaligned in order to minimize
overlap and reduce caching effects. Performance is reported in terms of the aggregate amount of
data transferred per second.

The results of the read tests for both the ioDrive and the SATA RAID are presented in Figure 2(a-
b). In terms of (a) sequential read performance, the ioDrive provided 5x the bandwidth of the
SATA RAID for all burst sizes, and achieved a maximum of 683 MB/s compared to the SATA
RAID’s 125 MB/s. Performance degraded in both devices when multiple reader threads were
employed. We speculate that this drop for the ioDrive may be due to the fact that the kernel can
orchestrate large, sequential transactions for a single thread very efficiently (i.e., large sequential
transactions are broken into a set of smaller, independent transactions).

0

100

200

300

400

500

600

700

100 1,000 10,000 100,000 1,000,000 10,000,000

Burst Size (B)

A
gg

re
ga

te
 B

an
dw

id
th

 (
M

B
/s

)

ioDrive - 1 Thread

ioDrive - 2 Threads

ioDrive - 4 Threads

SATA RAID - 1 Thread

SATA RAID - 2 Threads

SATA RAID - 4 Threads

(a) Sequential Reads

0

100

200

300

400

500

600

700

100 1,000 10,000 100,000 1,000,000 10,000,000

Burst Size (B)

A
gg

re
ga

te
 B

an
dw

id
th

 (
M

B
/s

)

ioDrive - 1 Thread

ioDrive - 2 Threads

ioDrive - 4 Threads

SATA RAID - 1 Thread

SATA RAID - 2 Threads

SATA RAID - 4 Threads

(b) Random Reads

Figure 2: Read performance for (a) sequential and (b) random access patterns using
the ioDrive and a three hard drive SATA RAID.

While the ioDrive’s sequential performance is very good, the true benefit of flash memory
becomes apparent when I/O is nondeterministic. The results of the random read test are presented
in Figure 2(b). For all burst sizes the ioDrive provided at least a 17x improvement over the SATA
RAID for random I/O. Additionally, the ioDrive’s performance improved when multiple threads
operated concurrently. The dip in performance at 256 KB for the ioDrive can be attributed to the
internal block size that the hardware employs. Peak2 performance measurements for all tests are
listed in Table 1.

Table 1: Peak performance measurements in the block transfer microbenchmark.
Test SATA RAID ioDrive Speedup

Sequential Read 125 MB/s 683 MB/s 5x
Sequential Write 139 MB/s 661 MB/s 4x
Random Read 34 MB/s 580 MB/s 17x
Random Write 46 MB/s 658 MB/s 14x

2 Peak performance refers to the best value seen for all transfer sizes. It is particularly unfair in the random

read benchmark, where the SATA drives provide less than 5 MB/s until large (512 KB) block sizes are
used.

k-Nearest Neighbors (kNN)
The second microbenchmark implements the k-Nearest Neighbors (kNN) algorithm for
classifying input vectors based on their similarity to labeled, training vectors. Each thread in the
program reads its own section of the training data and locates the k training vectors that have the
shortest Euclidean distance to an input vector. The kNN microbenchmark is also capable of
processing multiple input vectors at a time. Increasing the number of input vectors that are
processed in a single pass of the training dataset increases the amount of computation that must
be performed in a pass, but decreases the number of passes that are required to process multiple
input vectors. As such, it is possible to use the number of input vectors as a parameter for
adjusting whether the application is compute bound or I/O bound.

0

20

40

60

80

100

120

140

160

1 2 4 8 16 32 64

Input Vectors per Pass

S
in

gl
e

P
as

s
T

im
e

(s
)

SATA RAID - 1 Thread
SATA RAID - 2 Threads
SATA RAID - 4 Threads
ioDrive - 1 Thread
ioDrive - 2 Threads
ioDrive - 4 Threads

(a)

0

50

100

150

200

250

1 2 4 8 16 32 64 128

Threads

S
in

gl
e

P
as

s
T

im
e

(s
)

SATA RAID - 8 Vectors per Pass
SATA RAID - 32 Vectors per Pass
ioDrive - 8 Vectors per Pass
ioDrive - 32 Vectors per Pass

(b)

Figure 3: Total time required for kNN to complete a single pass of an 8 GB dataset
when (a) varying the number of input vectors processed at a time and (b) varying
the number of concurrently operating threads.

The amount of time required to make a full pass of the training data for a given number of input
vectors and threads is presented in Figure 3(a). For the optimal number of threads, the ioDrive is
at least 3x faster than the SATA RAID for all input vector loads. Both systems switch from being
I/O bound to compute bound when 32 input vectors are processed simultaneously. Figure 3(b)
highlights the impact of threading for fixed numbers of input vectors. While the SATA RAID’s
performance degrades with multiple threads, the ioDrive’s improves, up to approximately 4 to 8
threads. Execution times for peak performance are listed in Table 2.

Table 2: Peak performance measurements in the kNN microbenchmark. Values are
reported in terms of total execution time.

Test SATA RAID ioDrive Speedup
16 inputs per pass 66 s 21 s 3x
32 inputs per pass 73 s 22 s 3x

External Sort
The external sort microbenchmark converts an unsorted file of vectors into a sorted file of
vectors. Due to the large size of the input file, this implementation must process data out-of-core
in two phases. First, multiple threads read in different sections of the input file, quicksort the
individual sections, and then write out the results to intermediate files. Second, a single thread
merges all of the intermediate files into an output file in a streaming manner. This thread utilizes
a tree data structure3 to minimize the number of comparisons performed when merging the data
streams.

0

200

400

600

800

1,000

1,200

1 2 4 8 16 32

Number of Threads

T
ot

al
 T

im
e

(s
)

ioDrive

SATA RAID

(a)

0

50

100

150

200

250

300

350

400

450

256 512 768 1024

Total Buffer Size (MB)

T
ot

al
 T

im
e

(s
)

ioDrive - 1 Thread
ioDrive - 2 Threads
ioDrive - 4 Threads
SATA RAID - 1 Thread
SATA RAID - 2 Threads
SATA RAID - 4 Threads

(b)

Figure 4: External sort performance for ioDrive and a three hard drive SATA
RAID varying (a) the number of threads when using a total buffer size of 512 MB
and (b) the total buffer space available to the application.

Performance measurements for the external sort microbenchmark are presented in Figure 4(a-b).
In (a) the number of threads is varied while the total buffer space available to the program for
holding data values is limited to 512 MB. In terms of execution time, the ioDrive tests completed
2-4x sooner than the fastest SATA RAID test. Performance decreased for the SATA RAID when
more threads were employed while the ioDrive achieved maximum performance at 4 threads. In
(b) the total buffer size for the application was varied while employing a small number of threads.
While buffer size did not have a significant impact on execution time for the SATA RAID, the
ioDrive’s degraded as buffer size increased. This characteristic is likely to be a side effect of the
algorithm’s implementation4, as opposed to deficiencies in the hardware. Peak performance
values are summarized in Table 3.

Table 3: Peak performance measurements in the external sort microbenchmark.
Values are reported in terms of total execution time.

Test SATA RAID ioDrive Speedup
8 GB Sort 361 s 81 s 4x

3 When merging n files, this structure reduces the number of comparisons performed for each output from

n to log(n).
4 The impact of decreasing the total buffer size is that a larger number of smaller intermediate files are

generated. A well-tuned system would find the size and number of files that yields the best performance.

Binary Search
The final microbenchmark performs a binary search on a sorted file to determine whether it
contains one or more input vectors. This search requires log(n) vector comparisons to determine
where the vector should be located within the sorted file. In order to minimize the number of disk
read requests that are issued when searching for an input vector, the microbenchmark utilizes an
index that is built in main memory at start time. Performance is reported in terms of the average
amount of time required to process an input vector and does not include the one-time
initialization cost of building the index.

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

1 2 4 8 16 32

Number of Threads

A
ve

ra
ge

 V
ec

to
r

P
ro

ce
ss

in
g

T
im

e
(µ

s)

ioDrive
SATA RAID

(a)

0

10

20

30

40

50

60

70

80

90

1 2 4 8 16 32

Number of Threads

A
ve

ra
ge

 V
ec

to
r

P
ro

ce
ss

in
g

T
im

e
(µ

s)

ioDrive

(b)

Figure 5: Average amount of time to perform an indexed binary search (a) for both
the ioDrive and the SATA RAID and (b) the ioDrive by itself.

The results of an experiment where 64K input vectors were located in an optimally-indexed 8 GB
file using a variable number of threads are presented in Figure 5(a-b). For both the ioDrive and
the SATA RAID, performance improved as the number of threads increased. When averaging all
runs, the ioDrive’s average vector processing time was 40.1 µs, which is 132x faster than the
SATA RAID’s average vector processing time of 5.3 ms. As summarized in Table 4, the ioDrive
gave a peak performance speedup of 210x when 32 threads were utilized.

Table 4: Peak performance measurements in the block transfer microbenchmark.
Test SATA RAID ioDrive Speedup

Create 128 MB index 387 s 38 s 10x
Process 64k inputs 315 s 1.5 s 210x

2.2. Asynchronous I/O Experiments
In conversations with Fusion-io, the ioDrive’s developers reported that they had had a great deal
of success in boosting IOPS performance by switching from a threaded approach to a single-
thread performing asynchronous I/O (AIO). The developers explained that the ioDrive’s hardware
queues are deep enough that a host application can have more than 32 requests in flight before the
ioDrive’s performance saturates. Observing that our test system only has eight processor cores,
we theorized that it was possible that our threaded tests were not reaching peak performance
because the processor cores needed to be oversubscribed with threads in order to generate enough
I/O requests. Therefore we performed a preliminary investigation into AIO possibilities.

We conducted a brief survey of AIO options that are available for modern Linux systems. After
confirming that traditional I/O operations are always blocking commands when used with storage
devices5, we investigated the built-in AIO support provided by glibc’s realtime library. The glibc
AIO interface is straightforward and easy to use: the user simply issues one or more lists of I/O
operations and then polls for completion of the work. We constructed a simple benchmark
program to measure the speed at which a file could be read in a streaming, double-buffered
manner using glibc’s AIO functions. In this test the application manages two sets of buffers. Each
read request is comprised of a set of I/O operations that fill independent regions in the buffers.

0

50

100

150

200

250

300

350

400

450

100 1,000 10,000 100,000 1,000,000 10,000,000 100,000,000

Buffer Size per Set (B)

B
an

dw
id

th
 (

M
B

/s
)

ioDrive 1 Op/Set

ioDrive 4 Ops/Set

ioDrive 8 Ops/Set

ioDrive 16 Ops/Set

ioDrive 32 Ops/Set

SATA RAID 1 Op/Set

SATA RAID 4 Ops/Set

Figure 6: Asynchronous I/O performance with the glibc AIO interface for both the
ioDrive and a three hard drive SATA RAID.

We conducted an experiment that varied the number of I/O operations issued in a request (or set)
as well as the amount of buffer space available. The test utilized both the Fusion-io ioDrive and
three SATA hard drives arranged in a RAID0. As depicted in Figure 6, the ioDrive’s performance
improved when a small number of outstanding requests were issued at once and the total request
size was between 16 KB and 512 KB. Four operations per set provided the best general
performance. The SATA RAID did not demonstrate any performance difference when using AIO.

While the glibc’s AIO interface demonstrated that performance could be improved in a single-
threaded application by allowing multiple I/O transactions to be in flight at the same time,
performance was considerably less than what we have observed in the block transfer tests

5 Passing O_NONBLOCK to an open() call reported success, but read() commands always blocked until

they completed. Kernel mailing lists explain that this is due to the one-sided nature of file operations,
compared to the two-sided nature of sockets (i.e., file reads in the kernel do not have a thread managing
the file that can be left alone to do its work).

reported in section 2.1. One observation is that the block transfer test assigns different portions of
the input file to each thread in order to remove caching effects. This assignment may provide the
ioDrive hardware with better parallelism, as data may be more evenly distributed across different
die planes. However, it is also quite probably that we are losing performance in the glibc AIO
implementation. While investigating the AIO implementation, we learned that glibc’s AIO calls
are implemented through user-space threads. It has been widely reported that the Linux kernel’s
support for asynchronous file I/O is a better approach because these I/O operations are managed
by kernel threads. The libaio library provides AIO through the kernel’s asynchronous file I/O
interface. However, this library is more challenging to use than glibc. Our initial tests indicate
that it does give better performance (approximately 430 MB/s), but we have not yet conducted a
full set of experiments with libaio.

Our experiences with both the glibc and libaio AIO interfaces have provided us with insight into
the hardships of working with AIO. In general, AIO can be challenging to utilize in a manner
that maximizes performance because the developer must do a fair amount of profiling and hand
tuning to make sure transactions are scheduled properly. While this optimization may not be
difficult to perform in applications that have regular I/O patterns, many typical applications will
not map well to this form of I/O. As such, our preference is to continue developing parallel I/O
applications using threads.

2.3. Additional Experiments: Fusion-io RAID
Fusion-io reported in April that their drivers were stable and that multiple cards could be used
together in a single computer. We inserted three ioDrive cards in sisc2.llnl.gov6 and attempted to
configure them as a single RAID. While the device drivers recognized all of the cards and were
able to perform the low-level formatting operations that are specific to the ioDrive, the system
locked up when we attempted to create a software RAID with the drives. Fusion-io confirmed
that there were still physical-layer compatibility issues with PCIe in some motherboards that were
being examined. While Fusion-io has since reported that this bug has been fixed in newer
firmware, we have not had time to conduct the experiment again.

6 This machine utilizes AMD components. All of our other tests have been conducted on Intel components.

3. XtremeData XD1000 Experiments
XtremeData is a company that develops data-analysis systems that are optimized for applications
with massive datasets. While XtremeData largely utilizes commodity hardware and software in
their commercial, distributed-database product, they have developed two key pieces of
intellectual property that give their products a competitive advantage. First, they have adapted a
PostgreSQL database engine to run in a distributed manner across a cluster. Second, they have
developed an FPGA accelerator that plugs into an Opteron socket and can be used to accelerate
data-processing operations. LLNL purchased a single XD1000 system in order to evaluate the
performance characteristics of the FPGA accelerator. While the database software is not available
on this platform, there are sufficient hardware and software examples available that we can
prototype SISC data-processing applications on this system. Our primary goal during this phase
of the project was to install the Fusion-io ioDrive in the XD1000 and measure how fast the
system could process data from the disk.

Figure 7: The XtremeData 1000 FPGA accelerator features an Altera FPGA that
plugs into a standard AMD Opteron socket and communicates with the host using
HyperTransport. 7

3.1. XD1000 Environment
The XtremeData XD1000 is an FPGA accelerator board that plugs into an AMD Opteron socket
and communicates with the host via a HyperTransport (HT) link that operates at 800+800 MB/s.
The XD1000 board features an Altera Stratix-II part, 4 MB of on-board SRAM, and a DDR
interface to the socket’s memory slots.

XtremeData provides a reference hardware design for the FPGA that demonstrates the basic
components of the XD1000. The design employs two interfaces for exchanging data with the
host: one for host-initiated transactions (i.e., control) and another for FPGA-initiated transactions
(i.e., DMA). Host-initiated transactions are handled by a control unit that uses the address
specified in the transaction to select the hardware unit in the design that is the target of the
operation. The control unit is expected to be used as a means of interacting with control/status
registers in the FPGA, and therefore was not designed to support high-bandwidth
communication8. High-bandwidth transfers are instead achieved through a pair of DMA engines

7 Photo credit: XtremeData, Inc.
8 The control bus only extracts the first 32-bit value extracted from a HyperTransport packet.

that allows the FPGA to initiate block transfers of data with the host. This DMA interface
operates in a streaming manner that is regulated with FIFOs.

Based on these interfaces, the procedure for utilizing the FPGA to process an application’s data is
as follows.

• Compute Engine Setup: A user application issues programmed-I/O (PIO) operations to
the control unit to configure the computational core loaded in the FPGA (e.g.,
computation length, job ID).

• DMA Setup: The application pins and translates host memory for both input data and
output data. The physical addresses and sizes for each transfer are programmed into the
FPGA’s read and write DMA engines.

• Streaming DMA: The FPGA’s DMA read engine pulls data in and sends it word-by-
word to the computational circuit. As the user’s circuit processes data it pushes it to the
DMA write engine, which in turn pushes data out to host memory9.

• Completion Interrupt : Notification of completion is typically handled with an interrupt.
Either of the two DMA engines can be configured to issue an interrupt when a specific
number of transactions have completed.

• Compute Engine Read: A user may also use the control interface to read data out of the
FPGA (e.g., status registers or final results).

3.2. Previous XD1000 Work at LLNL
During the summer of 2007, Arpith Jacob implemented an n-gram classification application that
utilized the XD1000 FPGA as a means of performing many comparisons in parallel. Ideally this
program would read data from disk, stream the data to the XD1000 for analysis, and then extract
statistics from the analysis to estimate the language of the file. After initial tests confirmed that
the hard drive could not source data fast enough to keep the XD1000 saturated, Arpith modified
his software to read all data files into host memory a priori and then measured the rate at which
data in host memory could be processed. In the best case, the system was able to achieve 478
MB/s. The next step in this work would have been to measure how fast the system could process
data using the ioDrive as a disk source. Unfortunately, these tests were not possible last year due
to firmware incompatibilities between the ioDrive and the XD1000. Since then driver
enhancements have fixed these problems, thus allowing us to reopen work with the XD1000.

3.3. FPGA Experiments
As a first step in building hardware accelerators for the XD1000’s FPGA, we examined the
reference design in detail and made modifications to speedup the build process.

Minimal Design: While the reference design demonstrates all of the hardware components on the
XD1000, it takes hours to build due to the timing requirements and sizes of the high-speed
components. Our first hardware effort was to make a minimal design that housed a simple
processing core. Removing the unwanted cores (DDR and SRAM) was a straightforward task, as
the reference design allows the user to select a NIL architecture implementation for each
component at the top level of the design. We then updated the computational unit of the design
with instrumentation registers to monitor data flow from the host. Finally, we modified the build

9 The outgoing DMA engine requires both a valid DMA transaction from the host and data from the user’s

FPGA hardware in order to complete a transaction. This requirement is the source of many lockups when
debugging an application.

directory for the design to be more organized and added Makefiles to allow the user to build the
design without having to use the Altera Quartus GUI. The minimal design now builds in
approximately 15 minutes on fpga2.llnl.gov.

Block RAM Design: In order to conduct the PIO experiments described in section 3.4 we needed
a design that allows a user to write a sizable amount of data on to the control bus’s address space.
While the default design provides a 64 KB window, its address space only allocates 256 bytes to
each unit in the design. Therefore we modified the minimal design to provide 4 KB of addressing
to each unit and then updated the design to instantiate a 4 KB block RAM to house data

Floating-point Design: While current generation FPGAs lack native support for floating point,
most vendors provide floating-point cores that can be utilized in a design. We investigated
Altera’s options and found that the Megawizard could be used to generate pipelined floating-
point units for all typical operations. As a means of verifying that these cores functioned properly,
we updated the computational portion of the minimal design with an array of four single-
precision floating-point units. We then loaded the design on the XD1000 and verified that data
values programmed into the device were properly added by the floating-point units.

3.4. Injection Tests: Programmed-IO and O_DIRECT Experiments
One issue with the XD1000 reference design is that the FPGA is expected to move data to and
from host memory. While this technique is sufficient for many applications, it implies that data
being transferred from disk must be moved in a 1-copy manner (i.e., data must be transferred to a
host buffer before being moved to the FPGA). During our conversations with Fusion-io, there
was speculation that it might be possible to perform a 0-copy (i.e., data is transferred directly
from disk to the FPGA) through simple addressing techniques. In this approach, the application
would (1) memory map a portion of the FPGA card’s address space for programmed-io access
and then (2) supply the memory-mapped address to the disk read calls. The hypothesis was that
virtual-to-physical address translation would take place when the read call was issued, and that
the translation would be sufficient for allowing the storage device to write to the intended
destination. We constructed a hardware design that contained a hardware unit for accepting data
from the control port and added instrumentation to monitor transactions.

In our first set of tests we issued data transfers using the method that was just described. While
the OS allowed us to perform these data transfers, we observed that performance was only
approximately 75 MB/s. Additional tests measuring the speed at which data could be transferred
from the host to the FPGA using PIO revealed the same performance. Traditional techniques for
overcoming PIO performance (e.g., write combining and non-temporal SSE copies) did not
provide any benefit. In discussions with XtremeData, we learned that this performance was
typical for the control port through which we had been routing data, and that in the best case the
port was only capable of operating at 133 MB/s.

Following the advice of Fusion-io, we modified the host application to open the source file in raw
mode (i.e., set the O_DIRECT flag when opening the file and page align buffers). The hypothesis
was that the previous tests were actually performing a 1-copy internally, as the kernel moved data
into a buffer cache and then issued an additional copy to transfer the data to its final location on
the FPGA. Unfortunately the O_DIRECT flag caused the read command to exit with errors.
While researching the problem, we located two other instances in newsgroups where users had
tried to move data directly from a disk to a memory-mapped location (e.g., a video card screen
buffer). Both of these threads pointed to the kernel’s current inability to allow a PIO address to be
the target of a transfer while O_DIRECT is enabled. As such we were forced to abandon a zero-
copy approach.

3.5. Injection Tests: One-Copy
The next step in our testing of the XD1000 was to determine its performance characteristics given
that a one-copy approach was necessary for moving data between the ioDrive and the FPGA. For
the hardware side of this work we utilized a minimized version of the XD1000 design, which
simply accepted and discarded all data pulled in by the DMA engine. We conducted two sets of
experiments: one for determining application injection performance when working with large
files and another for small files.

Large File Tests

The first set of one-copy injection tests focused on transferring a single, large (8 GB) file from the
ioDrive to the XD1000 FPGA using a double-buffered, one-copy approach. These tests provide
an upper bound on performance because large files generally yield better performance than small
files. Host memory for the buffering was pinned and translated during initialization to remove
kernel overheads. The experiments varied whether direct mode was enabled when reading data
from disk in order to answer whether overhead could be reduced by forcing incoming data to land
in host memory without any kernel-level buffering.

Table 5: Injection performance when moving an 8 GB file from disk to the XD1000
using an intermediate host buffer.

Transfer Source O_DIRECT Performance
no 63 MB/s

Hard Drive
yes 51 MB/s
no 401 MB/s

ioDrive
yes 513 MB/s

Performance results for the large-file injection experiments are presented in Table 5. As these
numbers indicate, the ioDrive performs approximately 9x faster than the local hard drive. While
the overhead of moving data to the FPGA degrades the ioDrive’s performance (i.e., from >600
MB/s to 513 MB/s), the ioDrive is still is able to deliver a considerable amount of bandwidth.
Interestingly, the O_DIRECT flag hinders the hard drive’s performance while improving the
ioDrive’s. In terms of concurrent DMA operations, we found that an application needs to issue
16-32 page-sized transfers (64 KB – 128 KB of data) to the XD1000’s DMA engine at a time in
order to achieve more than 500 MB/s.

Small File Tests

We conducted a second set of injection tests to determine how the use of small files affects
performance. In general we expect small data transfers to perform worse than large transfers. For
example, the sequential block read benchmark (Figure 2(a)) shows that the ioDrive loses about
100 MB/s when burst size is reduced from 4 KB to 1 KB. Unfortunately, the n-gram applications
a more difficult challenge because it involves reading a large number of small (2 KB) files. It is
difficult to obtain high bandwidth in this scenario because the amount of overhead associated
with opening and closing an individual file is substantial compared to the amount of time spent
reading data from the file.

In order to improve concurrency, we constructed a threaded file streaming application that
performs work on multiple files at the same time. This software employs a small number of
threads for pulling data from different files into host memory, and a writer thread that pushes data

out to the FPGA. Each reader thread has a fixed amount of buffer space for housing data that is
divided into slots, and a list of input files that need to be processed. At runtime the writer selects
the first reader thread that has data and then streams through all of its buffers until the file is
transferred to the FPGA. This approach results in (1) double-buffered transfers from the disk to
the FPGA, (2) the ability for multiple page-sized DMA transfers to be in flight at the same time if
a slot is larger than a page, and (3) the file reader being able to begin reading from the next file
before the current file is completely processed by the FPGA.

(a)

(b)

(c)

(d)

Figure 8: Transfer performance was measured for different configurations. The
four views of the same data represent (a, c) the impact of slot size for a fixed number
of slots and (b, d) the impact of the number of slots for a fixed slot size.

We measured the bandwidth that could be obtained by the injection system while varying the
number of slots, the size of the slots, and the number of reader threads. The results are presented
in Figure 8 (a-d). In general the system worked best when a small number (2-3) of threads and a
small number (2-4) of slots were employed, and the slot size was large enough (16 KB) to hold an
entire file. These measurements indicate that the input files were too small to benefit from
streaming (i.e., breaking a file read into multiple transactions was not worthwhile), but at the
same time, the overhead for opening and closing files could be hidden partially by allowing
multiple files to be processed concurrently. Working on too many files at the same time caused
interference that degraded performance. Ultimately the system delivered approximately 270 MB/s
under optimal conditions.

3.6. Updating the n-gram Design
Based on our injection experiments we updated Arpith’s software to make use of the threaded file
reader. This implementation took a considerable amount of time to debug due to the complexities
involved in orchestrating DMA transfers properly in the flow of a real application. After
numerous system crashes we were forced to abandon our “pin all buffers at start time” approach
in favor of a “pin buffers at injection time” technique. This change reduces performance but was
necessary for stability. We verified that the implementation produced the same results as the
implementation from last summer.

Using the 40 MB French language reference dataset, we tested the updated n-gram design using
both the local hard drive and the ioDrive. As summarized in Table 6 the ioDrive provided a 20x
speedup over the hard drive.

Table 6: The end-to-end performance for the n-gram application.
Transfer Source Performance

Hard Drive 5 MB/s
ioDrive 100 MB/s

Observing that the FPGA design is capable of operating at speeds much higher than 100 MB/s,
we began investigating the bottlenecks in the system. We categorized the main data flow
operations in the host program into three functions: reading data from the ioDrive, using the
XD1000’s DMA engine to move data to the FPGA, and reading the result values out of the
FPGA’s memory. We then timed the application when various functions were removed. The
results of the tests are presented in Table 7. From these measurements we observe that injection
performance (Fusion-io+XD DMA) is about 70 MB/s less than what we observed in the injection
tests. This drop may be due to new overheads caused by on-demand pinning or by application-
specific PIO operations that take place when data is injected. We expect that performance could
be improved by tuning the software to guarantee that data transfers are aligned to take place in
parallel as much as possible.

Table 7: Breakdown of performance in n-gram.
Operation Performance

Fusion-io + XD DMA + Readout 100 MB/s
Fusion-io + XD DMA 135 MB/s
Fusion-io 200 MB/s

4. System-Level Observations
The work performed in this project has provided us with insight into data transfer challenges in
the local node of a SISC-like system. While the ioDrive provided a 20x performance
improvement in the end-to-end performance of the n-gram application, the current application
implementation delivers only a fraction of the performance the hardware is capable of achieving.
It is important to highlight a few of the key weaknesses of the implementation in order to shape
future efforts.

4.1. One-Copy Limitations and Injection Issues
The largest disappointment in this work was that data could not be routed directly from the disk
to the FPGA accelerator because the current Linux kernel does not allow peripheral devices to be
the target of an O_DIRECT read. This limitation forced us to employ host buffers for one-copy
transfers. While the host system provides enough memory bandwidth to support one-copy
transfers at reasonable rates, the application software requires a good bit of hand tuning to ensure
that enough transactions are in flight at the same time to keep the data flow running at peak
levels. Additionally, there is the hazard that one-copy overheads may interfere with other
processing tasks that are running in the system and vice versa.

A second source of performance limitation in the XD1000 system was PIO injection
performance. The XD1000’s HyperTransport core provides a low-bandwidth PIO interface and a
high-bandwidth DMA interface. This split is based on the common false assumption that the only
way to transfer data efficiently with a peripheral device is through the device’s DMA engine.
Through techniques such as write-combining or SSE copying it is in fact possible to achieve
significant application-to-peripheral bandwidth. For example, the Cray XD1 [3], which employed
a HyperTransport FPGA accelerator much like the XD1000’s, was able to achieve over 1 GB/s in
injection performance using PIO. The advantage of using PIO is that end applications can use
simple memory copy operations to orchestrate injections instead of having to queue DMA
transaction requests and poll for completion. Additionally, one-copy transfers with PIO become
more automated, as the user simply provides the memory-mapped address of the peripheral
device’s memory to a read call, which in turn moves the data from disk to peripheral device by
way of a kernel buffer. As we have observed with the ioDrive, simplifying the programming
interface makes it easier to scale up to a larger number of threads.

4.2. FPGA Design Limitations
The original n-gram FPGA design was implemented in a streaming manner that matched the
XD1000’s reference designs: the user issues PIO requests to initialize the unit, data is streamed
into the FPGA through DMA engines, and then the user uses PIO requests to DMA the results to
host memory. While this approach works well for individual jobs or cases where all input data
can be batched in memory a priori, the book keeping overhead may be significant in applications
where there are a large number of jobs or small amounts of data. In order to improve this
performance, the design could be modified to queue multiple output results together to reduce
how frequently the application needs to pull output out of the card. Further queuing could be
employed on the input side of the design to provide slack in the data flow and allow multiple
requests to be queued at the same time.

4.3. Accelerator Data Flow Philosophy
Based on our experiences, we are currently formulating a philosophy for how applications should
be designed in order to leverage hardware accelerators. This philosophy follows a data-flow
design style and is comprised of the following key points.

• Distributed Control: Control in systems with multiple resources is managed either
centrally (e.g., the host application orchestrates all data transfers) or in a distributed
manner (e.g., each resource manages its own transfers). While centralized control
simplifies the amount of development that is required in the resources, it is challenging to
implement centralized control in a way that maximizes performance for systems with
more than one resource. Instead we advocate a distributed approach where each resource
is equipped with enough sophistication to be able to perform its computations and data
transfers without significant external guidance.

• Many Jobs In-Flight: In systems where different resources are used to perform different
computational operations, it is beneficial to allow multiple jobs to be in-flight at the same
time. This concurrency allows designers to hide overheads by overlapping data transfer
and computation at a resource without byte-by-byte streaming10 interfaces.

• Push-based Transfers: Whenever possible, data should be pushed (e.g., moved by the
sender) instead of pulled (e.g., moved by the receiver). In a push-based system data is
transferred as soon as it can be moved. In a pull-based system, the receiver may need to
block until it retrieves the data it requires. Both approaches must handle virtual/physical
address translation when exchanging data with the host.

• Input-Buffered Queues: In order to efficiently support having both many jobs in-flight
and push-based transfers, it is necessary to implement input-buffered queues at the
resources. These queues allow designers to hide injection/ejection rate mismatches
between stages and provide a system where a resource’s input data is buffered in close
proximity.

5. Summary
During this phase of the SISC project we investigated the data transfer properties of key
components in a SISC node. The Fusion-io ioDrive provided exceptional performance and
enabled several microbenchmark applications to execute in less than half the amount of time that
they had required previously. More importantly, the ioDrive works extremely well in a
multithreaded environment. This feature is especially attractive as multicore architectures become
more available. Likewise, it is reassuring that well-known programming methodologies such as
threads work well with the ioDrive.

However, as we observed with the n-gram application on the XD1000, application designers must
still pay close attention to the characteristics of the hardware in order to obtain peak performance
results. I/O work is still challenging when data transfer sizes are small. Additionally, real
applications may have constraints that cause performance to evaporate unless a developer
micromanages data transfers. Ultimately we believe these hardships can be managed, provided
that designers follow the lessons learned in data flow architectures.

References

[1] Fusion-io website: http://www.fusionio.com
[2] Iozone Filesystem Benchmark: http://www.iozone.org
[3] Cray Canada, Inc., “Cray XD1 Technical Specification Release 1.4,” 2005.

10 While streaming interfaces provide a powerful programming abstraction, they can be problematic in

several real-world instances, including instances where the computation fetches data non-sequentially
(e.g., FFT), or when an I/O bus re-orders data transfers to improve performance.

