
 

 
 
 
 
 
 
 
 
 
ECP-U-2017-XXX  
SAND 2018-XXXX 
 
 
 

SPARC: Demonstrate burst-buffer-based checkpoint/restart 
on ATS-1 

WBS 2.3.4.04 STDV04-SNL ATDM Data and Visualization 
Projects, Milestone ST-MW-05-1300 

 
 
 

Authors: Ron Oldfield, Craig Ulmer, Patrick Widener, Lee 
Ward 

Author Affiliation: Sandia National Laboratories 

 
 
 

January, 2018

SAND2018-0299R



 

 

 

 

 

DOCUMENT AVAILABILITY 

Reports produced after January 1, 1996, are generally available free via US Department of Energy 
(DOE) SciTech Connect. 
 
 Website http://www.osti.gov/scitech/ 
 
Reports produced before January 1, 1996, may be purchased by members of the public from the 
following source: 
 
 National Technical Information Service 
 5285 Port Royal Road 
 Springfield, VA 22161 
 Telephone 703-605-6000 (1-800-553-6847) 
 TDD 703-487-4639 
 Fax 703-605-6900 
 E-mail info@ntis.gov 
 Website http://classic.ntis.gov/ 
 
Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange 
representatives, and International Nuclear Information System representatives from the following 
source: 
 
 Office of Scientific and Technical Information 
 PO Box 62 
 Oak Ridge, TN 37831 
 Telephone 865-576-8401 
 Fax 865-576-5728 
 E-mail reports@osti.gov 
 Website http://www.osti.gov/contact.html 

 

 
This report was prepared as an account of work sponsored by an 
agency of the United States Government. Neither the United States 
Government nor any agency thereof, nor any of their employees, 
makes any warranty, express or implied, or assumes any legal liability 
or responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents 
that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, 
trademark, manufacturer, or otherwise, does not necessarily constitute 
or imply its endorsement, recommendation, or favoring by the United 
States Government or any agency thereof. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of 
the United States Government or any agency thereof. 

 

 

http://www.osti.gov/scitech/
http://classic.ntis.gov/
http://www.osti.gov/contact.html


 

 

ECP-U-2017-XXX 
 

 

 

 

 

 

 

 

 

ECP Milestone Report 

SPARC: Demonstrate burst-buffer-based checkpoint/restart on ATS-1 

WBS 2.3.4.04, Milestone ST-MW-05-1300 
 

 

 

 

 

 

 

 

 

 

 

 

 

Office of Advanced Scientific Computing Research 

Office of Science 

US Department of Energy 

 

 

 

Office of Advanced Simulation and Computing 

National Nuclear Security Administration 

US Department of Energy 

 

 

January, 2018



 



 

ECP-U-2017-XXX iii 

ECP Milestone Report 
SPARC: Demonstrate burst-buffer-based checkpoint/restart on ATS-1 

WBS 2.3.4.04, Milestone ST-MW-05-1300 

APPROVALS 

Submitted by:  

    

Ron A. Oldfield, Manager, Scalable Analysis and Visualization Date 
Sandia National Laboratories 

 

 

Concurrence: 

    

Author, Title Date 

Affiliation 

 

 

Approval: 

    

Author, Title Date 

Affiliation 

 

 



 

 

 



 

ECP-U-2017-XXX v 

REVISION LOG 

Version Creation Date Description Approval Date 

1.0 01-04-2018 Original  

    

    

    

 



 

 

 



 

ECP-U-2017-XXX vii 

CONTENTS 

APPROVALS .............................................................................................................................................. iii 

REVISION LOG ........................................................................................................................................... v 

CONTENTS ................................................................................................................................................vii 

LIST OF FIGURES ...................................................................................................................................... ix 

LIST OF TABLES ........................................................................................................................................ ix 

EXECUTIVE SUMMARY ......................................................................................................................... 11 

1. INTRODUCTION ............................................................................................................................... 12 

2. MILESTONE OVERVIEW................................................................................................................. 12 
2.1 DESCRIPTION ......................................................................................................................... 12 
2.2 EXECUTION PLAN ................................................................................................................. 12 
2.3 COMPLETION CRITERIA ...................................................................................................... 13 
2.4 MILESTONE DEPENDENCIES.............................................................................................. 13 

2.4.1 Milestone Predecessors ................................................................................................ 13 

3. TECHNICAL WORK SCOPE, APPROACH, RESULTS.................................................................. 13 
3.1 Stage-In/Stage-Out .................................................................................................................... 13 
3.2 Checkpoint using HIO Library .................................................................................................. 14 
3.3 Checkpoint using IOSS and HDF5 ........................................................................................... 15 
3.4 Checkpoint using Kelpie ........................................................................................................... 16 

4. RESOURCE REQUIREMENTS ......................................................................................................... 17 

5. CONCLUSIONS AND FUTURE WORK .......................................................................................... 17 

6. ACKNOWLEDGMENTS ................................................................................................................... 17 

7. REFERENCES .................................................................................................................................... 18 
 

 



 

 

 

 



 

ECP-U-2017-XXX ix 

LIST OF FIGURES 

 

 

LIST OF TABLES 

Table 1 Estimated resources consumed ....................................................................................................... 17 
 

 



 

 

 



 

ECP-U-2017-XXX 11 

EXECUTIVE SUMMARY 

Recent high-performance computing (HPC) platforms such as the Trinity Advanced Technology System 

(ATS-1) feature burst buffer resources that can have a dramatic impact on an application’s I/O 

performance. While these non-volatile memory (NVM) resources provide a new tier in the storage 

hierarchy, developers must find the right way to incorporate the technology into their applications in order 

to reap the benefits. Similar to other laboratories, Sandia is actively investigating ways in which these 

resources can be incorporated into our existing libraries and workflows without burdening our application 

developers with excessive, platform-specific details. 

This FY18Q1 milestone summaries our progress in adapting the Sandia Parallel Aerodynamics and 

Reentry Code (SPARC) in Sandia’s ATDM program to leverage Trinity’s burst buffers for 

checkpoint/restart operations. We investigated four different approaches with varying tradeoffs in this 

work: (1) simply updating job script to use stage-in/stage out burst buffer directives, (2) modifying 

SPARC to use LANL’s hierarchical I/O (HIO) library to store/retrieve checkpoints, (3) updating Sandia’s 

IOSS library to incorporate the burst buffer in all meshing I/O operations, and (4) modifying SPARC to 

use our Kelpie distributed memory library to store/retrieve checkpoints.  

Team members were successful in generating initial implementation for all four approaches, but were 

unable to obtain performance numbers in time for this report (reasons: initial problem sizes were not large 

enough to stress I/O, and SPARC refactor will require changes to our code). When we presented our work 

to the SPARC team, they expressed the most interest in the second and third approaches. The HIO work 

was favored because it is lightweight, unobtrusive, and should be portable to ATS-2. The IOSS work is 

seen as a long-term solution, and is favored because all I/O work (including checkpoints) can be deferred 

to a single library. 

 

  



 

 

 

1. INTRODUCTION 

This report documents completion of milestone “SPARC: Demonstrate burst-buffer-based 

checkpoint/restart on ATS-1”, listed as STDA04-10 with the milestone ID ST-MW-05-1300 in the ECP 

Jira site.  One of the primary objectives of Sandia’s ATDM Data and Visualization project is to provide 

application support for the ATDM applications of interest to Sandia’s ASC mission.  For this milestone, 

the objective is to demonstate a checkpoint/restart capability for the  Sandia Parallel Aerodynamics and 

Reentry Code (SPARC) that leverage the non-volatile-memory (NVM) burst-buffers available on the 

ATS-1 system at LANL.  

Demonstrating a performant checkpoint/restart capability using burst-buffers addresses two important 

issues for our ATDM and ECP program.  First, application resilience is a requirement to ensure progress 

for our mission-critical codes on our large-scale systems.  Application-directed checkpoint/restart is the 

most common approach used by our codes and providing that capability is an important step toward 

developing a production-capable code.  Second, burst buffers are a fairly new technology on our large-

scale systems.  Developing the software abstractions that enable applications to leverage these burst 

buffers in a portable way allows a more rapid integration of this technology into other ATDM and ECP 

codes, and it provides a way to evaluate and compare performance of these new technologies.   

2. MILESTONE OVERVIEW 

2.1 DESCRIPTION 

This milestone demonstrates a checkpoint/restart capability for the Sandia Parallel Aerodynamics and 

Reentry Code (SPARC) that leverage the NVRAM burst-buffers available on the ATS-1 system.  This 

work will builds on the checkpoint/restart prototype developed in FY17 into a stable capability that 

SPARC users can leverage in production jobs. The checkpoint/restart code will (1) interact with the burst 

buffers to decrease the overhead of checkpointing and (2) coordinate data exchanges between the burst 

buffers and the parallel file system.  

2.2 EXECUTION PLAN 

The execution plan involves four different approaches, in increasing complexity: 

1. Stage-in/Stage-out: This approach uses simple scripts to direct existing I/O to burst buffers.  This 

should be a relatively simple solution, but will likely not be portable across HPC systems. 

2. Use the HIO library from LANL: The HIO library is a bust-buffer library developed by LANL 

staff. It is intended to be portable across HPC systems, but it has an overly simplistic view of the 

memory and storage hierarchy (e.g., it has no memory tier).  This would also be a SPARC-

specific solution. In other words, the API we generate for SPARC would have little relevance to 

other codes that need a checkpoint/restart capability. 

3. IOSS+HDF5: The third approach is to use Sandia’s commonly-used I/O library IOSS, which uses 

an HDF5 backend. This requires an HDF capability to use the Trinity burst buffers. The 

advantage of this approach is that it provides a capability that would be immediately available to 

other applications that use IOSS, including a good portion of our ASC integrated codes.  



 

ECP-U-2017-XXX 13 

4. Kelpie: The final approach is to develop code that would checkpoint to Sandia’s research-grade 

intermediate data-management layer, Kelpie.  The long-term advantage of this approach is that 

we would be able to offload or direct I/O and analysis to external components (e.g., visualization 

tools).   This approach goes beyond what is requested by the application team, but helps us 

sustain some of our more research-driven technologies.  

2.3 COMPLETION CRITERIA 

As evidence of completion, we will integrate our code into SPARC code base, provide performance 

measurements for checkpointing/restarting job on Trinitite, and provide scripts for demonstrating how to 

launch a job, checkpoint it, and then relaunch the job starting from the checkpoint. To ensure progress and 

completion, the team will require continued access to SPARC codebase and developers. Early notification 

of any significant changes to SPARC I/O, and access to burst buffers on Cray systems. 

 

2.4 MILESTONE DEPENDENCIES 

2.4.1 Milestone Predecessors 

No prior milestone completion required. 

3. TECHNICAL WORK SCOPE, APPROACH, RESULTS 

3.1 STAGE-IN/STAGE-OUT 

The first approach we explored in this work was simply to add DataWarp staging directives to SPARC’s 

SLURM batch job scripts to redirect checkpoint/restart data to the burst buffer. This approach generally 

provides the easiest way for application developers to retrofit an existing application to work with burst 

buffers because platform parameters are adjusted in the job script instead of the actual application. It was 

straightforward to adapt SPARC to work with this approach because the SPARC executable defaults to 

using the local directory to write/read state data. As such, the jobs script needed to be modified to perform 

the following: 

 Allocate Burst Buffer Space: DW directives are used to allocate space in the burst buffer for 

checkpoint data. 

 Stage In: DW directives are then used to move any existing checkpoint data from the parallel 

filesystem to the burst buffer. 

 Change Directory and Execute SPARC: The compute nodes in the job change directory to the 

local mount point for the burst buffer and then launch the SPARC executable with a supplied 

input deck. SPARC defaults to performing I/O in the local directory and therefore use the burst 

buffer for I/O. 

 Stage Out: DW directives in the job script are used to migrate SPARC data from the burst buffer 

to a location in the parallel filesystem when the application completes. 

After demonstrating that a static job script could be written to migrate SPARC data through the burst 

buffer, we constructed a general script that would make it easier for users to adjust the job parameters on 

the command line. The job scripts are included in APPENDIX A. 



 

 

Strengths/Weaknesses: The main strengths of this approach are that (1) it is easy to implement and (2) 

staging time may not be factored in as part of a job’s run time. The weaknesses are that (1) DW directives 

are currently specific to Cray and (2) the burst buffer may fill if data is not staged out until the end of the 

job. 

Current Status: The work for the stage-in/stage-out approach is complete. However, additional 

performance benchmarking needs to be performed with larger test sizes. 

Lessons Learned: While the DW directives are straightforward to use, they make job scripts more 

complicated and less portable.  

 

3.2 CHECKPOINT USING HIO LIBRARY 

The second approach we explored was updating SPARC’s checkpoint/restart code to use LANL’s 

Hierarchical I/O library (libhio) to control how checkpoint data migrates between SPARC, the burst 

buffer, and the parallel filesystem. Libhio provides a basic hierarchical storage interface that currently has 

device drivers for both DataWarp and POSIX filesystems. Application developers use libhio to write/read 

a dataset’s components for a particular timestep and then rely on the library to migrate data between 

storage resources. Policy decisions about how libhio should manage data are defined in an external 

configuration file. As such, an application that has been adapted to use libhio can be adjusted to use 

different I/O settings without having to rebuild the application or modify an application’s input deck.  

We modified SPARC’s StructuredAeroModelWrapper class to enable it to write/read checkpoint data 

using libhio. This work involved extracting key items from SPARC’s data structures and serializing them 

into contiguous objects that libhio could store. While SPARC’s use of Kokkos data structures simplified 

the serialization process (due to regular, contiguous data layouts), a sizable amount of effort went into 

determining the right place to store out objects. 

Strengths/Weaknesses: The primary strengths of this approach are that libhio (1) can migrate objects 

while the application runs, (2) provides some portability between platforms, and (3) configuration files 

provide an easy way to adjust I/O parameters for a platform. The weaknesses of this approach are that 

libhio (1) has a steep learning curve, (2) lacks a memory tier, and (3) is difficult to debug. 

Current State: A preliminary version of the libhio checkpoint/restart code for SPARC was demonstrated 

in late December. There have been code changes in SPARC that will require us to update our code before 

it can be merged into the SPARC repos. Additional performance measurements will need to be run in 

order to gain a better understanding of scenarios where the burst buffers will be of use in SPARC. 

Lessons Learned: Working with two, evolving code bases made this work more time intensive than we 

originally planned. In libhio’s case, stability issues and a lack of clear examples made it difficult to use. In 

SPARC’s case, it was difficult to keep up with the rapidly evolving code base. In retrospect we would 

have benefited from defining a standard API for I/O work at the beginning that would shelter us from 

changes elsewhere in the code. 

 



 

ECP-U-2017-XXX 15 

3.3 CHECKPOINT USING IOSS AND HDF5 

The third approach we are exploring for improving SPARC checkpoint performance is to adapt Sandia’s 

IOSS library to take advantage of burst buffer capabilities. IOSS is the main library Sandia applications 

use to interface with mesh datasets. SPARC currently uses IOSS to load its initial mesh and save its 

results, but there is interest in also using IOSS to manage checkpoint data. While adapting IOSS to 

leverage burst buffers would have a positive impact on many of Sandia’s applications including SPARC, 

IOSS is a complex software stack composed of other libraries such as CGNS, Exodus, netCDF, and 

HDF5. Our approach in this work is to make changes at the HDF5 layer that cause the least disturbances 

to the rest of the stack. 

We initially investigated using DataElevator [1] as a mechanism for incorporating the burst buffer into the 

HDF5 layer. DataElevator is composed of two parts: (1) a modified HDF vol that routes HDF5 I/O to the 

burst buffer during a simulation and (2) a special-purpose cleanup job that runs after the simulation and 

uses MPI-IO to migrate data from the burst buffer to the parallel filesystem. While the example programs 

from HDF5 ran, we found a fundamental incompatiability between DataElevator and the way IOSS jobs 

write files. Specifically, DataElevator uses rank 0 to write out a metadata file that describes which HDF5 

files are written in the simulation. IOSS ranks write their ouput files independently (i.e., one file per 

rank), and do not share knowledge about how large individual files are. As such, the current 

implementation of DataElevator did not provide a way to properly track IOSS files, resulting in the stage 

out only migrating rank 0’s data. It is expected that this deficiency could be expected in future versions of 

DataElevator by improving its metadata management. 

Our second approach was to simply use DataWarp primitives in the SLURM job to control writes to the 

burst buffer and then stage the files out to the parallel filesystem. While the IOSS test applications 

correctly wrote data to the burst buffer, the job repeatedly crashed during the DataWarp stage out. While 

we theorize that there may be an issue with how IOSS/HDF5 is closing out files, we do not have a clear 

understanding as to why this operation does not work properly. 

Our third approach in this effort was to construct our own HDF vol to intercept I/O and route it through 

the burst buffer to the parallel filesystem. The intercept portion of this work prepends the path for the 

burst buffer mount point to the filename supplied by the user during open or create. The interception also 

performs a number of checks to guard against erroneous scenarios (e.g., writing to symbolic links). We 

experimented with three alternatives to staging out data: (1) using the DataWarp job directives in the 

SLURM job, (2) calling the DataWarp stage out C functions and blocking when close is called, and (3) 

calling the DataWarp stage out C functions and not blocking when close is called. The first two options 

have proven to be the most stable. Experiments with the third option appear to be stable and are expected 

to yield better asynchronous performance. 

Strengths/Weaknesses: The primary strength of this approach is that Sandia applications such as SPARC 

already use IOSS and can benefit from updates that allow the library to leverage burst buffers. The 

weaknesses of this approach are that (1) additional effort will be required to ensure the IOSS maintains 

production quality requirements and (2) checkpoints made by IOSS will likely be larger and slower than 

customized checkpoints. 

Current State: The HDF vol provides basic features necessary to use the burst buffer, but will require 

more work to be used in production by IOSS. Additional modifications will need to be made in SPARC in 

order to manage checkpoint data with IOSS. This work is ongoing and is expected to complete by Q4. 



 

 

Lessons Learned: We encountered a mismatch of design assumptions between DataElevator and IOSS 

that was unexpected and is difficult to resolve. Jumping into the HDF code to diagnose and fix these 

problems consumed a considerable amount of effort and slowed our progress. 

 

3.4 CHECKPOINT USING KELPIE 

The fourth approach we examined was to update SPARC to use SNL’s Kelpie software to manage 

checkpoints. Kelpie is a distributed memory service being developed in ATDM that provides a flexible 

way to move datasets between memory, burst buffer, and persistent storage resources. In addition to being 

able to efficiently transfer data between ranks in a single job, Kelpie provides support for exchanging data 

between the ranks of different jobs running on the same platform. These capabilities will enable platform 

engineers to develop the new services for ECP’s workflow, analytics, and application coupling needs.  

Kelpie is currently at a research quality of technical readiness and needed improvements in order to be 

connected to SPARC. Kelpie received two important improvements this quarter. First, Kelpie was 

enhanced to provide better asynchronous handling of remote communication operations. This work 

involved updating the data object transfer protocol to stall a get operation when there is an object cache 

miss at the the remote side. Second, a new I/O module (IOM) infrastructure was created to allow data 

objects to be exchanged with storage devices. Our first IOM in this infrastructure enables Kelpie 

applications to write/read objects to/from POSIX filesystems. This enhancement provides Kelpie users 

with a straightforward way to add persistence to their applications. 

SPARC was updated to have a preliminary interface for writing checkpoint data to Kelpie. This work was 

similar to the libhio work described in Section 3.2 with the exception that the SPARC data components 

that were serialized were packed into labeled Kelpie objects. We found this serialization to be more 

natural because we did not have to manage explicit dataset offsets or C++/C conversions the way we had 

to with the libhio approach. Data objects written into Kelpie are written by the IOM to a POSIX mount 

point (either the parallel filesystem or a burst buffer). We verified that SPARC objects are stored correctly 

in both memory and disk. The next step for this work is to construct a corresponding reader that will 

enable checkpoint data to be loaded into SPARC. 

Strengths/Weaknesses: The strengths of the Kelpie checkpointing work are that it (1) provides a flexible 

means of checkpointing data to different resources, (2) enables developers to use Kelpie’s interfaces to 

inspect a running application, and (3) serves as a starting point for connecting other applications to 

SPARC. The primary weaknesses for this approach are that (1) it is overkill for what SPARC users 

currently require and (2) additional hardening will be required to meet production requirements. 

Current State: The current implementation provides a basic way to store checkpoints, but lacks a means 

of loading the checkpoint data to restart the simulation. The recent refactoring of SPARC components 

will also require changes to the Kelpie SPARC hook before the work can be commited into the SPARC 

repository.  

Lessons Learned: We found that it was easier to write the SPARC checkpointing functions with Kelpie 

than it was with libhio because Kelpie employs a higher level of abstraction. While preparing the 

checkpoint/restart demonstration of the code to the SPARC team we became aware that Kelpie provided a 

side benefit for monitoring and debugging the state of the running application.  

 



 

ECP-U-2017-XXX 17 

4. RESOURCE REQUIREMENTS 

Table 1 Estimated resources consumed 

Resource Estimated Usage 

People Effort 9 person-months (6 half-time people for three months) 

HPC resources 1000 core-hours on ATS development platforms 

Materials and supplies Standard office equipment: $5K 

Miscellaneous Maintanence of repo/dashboard/webpage: $11K 

Travel: $9K 

 

5. CONCLUSIONS AND FUTURE WORK 

During FY18Q1 we performed an initial investigation into four different ways that SPARC could be 

adapted to use Trinity’s burst buffers for checkpoint/restart. While performance measurements need to be 

made for larger test sizes, the work was sufficient enough to gain insight into different approaches to 

updating applications to use the burst buffers. While adding DataWarp directives to jobs does not require 

code changes, we are hesitant to rely on this approach alone due existing complexities in some of our job 

scripts and the threat of being tied to a specific vendor. Creating a new, application-specific 

checkpoint/restart capability took time but was greatly simplified by using a burst buffer aware library 

such as libhio. Adding burst buffer support to IOSS is a long term solution that will have the broadest 

impact at Sandia. However, this work will take more investment and testing due to the diverse capabilities 

of IOSS. Finally, we demonstrated our Kelpie distributed memory library can be used to route data to the 

burst buffer and has additional capabilities that may be useful in more complex workflows.  

This work will continue into the following quarters this year. Our plan is to update the libhio work in 

order to address refactoring that took place in SPARC and then conduct performance experiments on 

Trinity to obtain statistics on how well it performs. We will also transition the work to run on the ATS-2 

platform when the hardware stabilizes and libhio is ported. The IOSS work will also continue throughout 

the year in order to stabilize the burst buffer modifications. Finally, the Kelpie portion of this work will 

largely shift to supporting the ATDM EMPIRE code. This work will create new checkpoint/restart 

capabilities for EMPIRE and conduct performance experiments. 

6. ACKNOWLEDGMENTS 

This research was supported by the Exascale Computing Project (ECP), Project Number: 17-SC-20-SC, a 

collaborative effort of two DOE organizations—the Office of Science and the National Nuclear Security 

Administration—responsible for the planning and preparation of a capable exascale ecosystem—

including software, applications, hardware, advanced system engineering, and early testbed platforms—to 

support the nation's exascale computing imperative. 

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology 

and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for 

the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-

NA0003525. 

Also acknowledge any other assistance provided by other staff, projects, institutions (e.g., HPC 

resources), programs, etc. 



 

 

7. REFERENCES 

 

[1]  B. Dong, S. Byna, K. Wu, H. Johansen, J. Johnson and N. Keen, "Data Elevator: Low-Contention 

Data Movement in Hierarchical Storage System," in IEEE 23rd International Conference on High 
Performance Computing (HiPC), 2016.  

 

 

 



 

ECP-U-2017-XXX 1 

APPENDIX A.  Example Job Script 

The following template was used to launch SPARC jobs while using the burst buffer. An additional bash 

script was used to take command line arguments and substitute them into the job script template (e.g., 

@BBCAPACITY@). 

#!/bin/bash -l 
 
#SBATCH -N @NUMNODES@ 
#SBATCH -t @TIMELIMIT@ 
#SBATCH -J blunt_wedge 
#SBATCH -C haswell 
#DW jobdw type=scratch access_mode=striped capacity=@BBCAPACITY@ 
 
#DW stage_in type=directory source=@STAGEINDIR@ destination=$DW_JOB_STRIPED/rundir.bb 
#DW stage_out type=directory destination=@STAGEOUTDIR@ source=$DW_JOB_STRIPED 
 
## We will copy the input and run the PFS job here. 
PFS_RUN_DIR=rundir.pfs.@SUBMITTIME@ 
## We will rename the DW stage in destination to this. 
BB_RUN_DIR=rundir.bb.@SUBMITTIME@ 
 
 
cd $DW_JOB_STRIPED 
mv $DW_JOB_STRIPED/rundir.bb $DW_JOB_STRIPED/$BB_RUN_DIR 
cd $DW_JOB_STRIPED/$BB_RUN_DIR 
 
echo 'BB Started at ' `date` 
 
srun --cpu_bind=core --ntasks=@NUMTASKS@ --ntasks-per-node=@TASKSPERNODE@ \ 
     --cpus-per-task=2 @SPARCEXE@ -i sparc.inp > sparc.out 2>&1 
 
echo 'BB Ended at ' `date` 
 
## Copy the input deck to a per job directory on the PFS. 
cp -a @STAGEINDIR@ @STAGEOUTDIR@/$PFS_RUN_DIR 
 
cd @STAGEOUTDIR@/$PFS_RUN_DIR 
 
echo 'PFS Started at ' `date` 
 
srun --cpu_bind=core --ntasks=@NUMTASKS@ --ntasks-per-node=@TASKSPERNODE@ \ 
     --cpus-per-task=2 @SPARCEXE@ -i sparc.inp > sparc.out 2>&1 
 
echo 'PFS Ended at ' `date` 





 

ECP-U-2017-XXX A-1 

 

  



 

A-2 ECP-U-2017-XXX 

 


	ECP Milestone Report
	SPARC: Demonstrate burst-buffer-based checkpoint/restart on ATS-1
	WBS 2.3.4.04, Milestone ST-MW-05-1300
	ECP Milestone Report
	SPARC: Demonstrate burst-buffer-based checkpoint/restart on ATS-1
	WBS 2.3.4.04, Milestone ST-MW-05-1300
	APPROVALS
	REVISION LOG
	CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	EXECUTIVE SUMMARY
	1. INTRODUCTION
	2. MILESTONE OVERVIEW
	2.1 DESCRIPTION
	2.2 EXECUTION PLAN
	2.3 COMPLETION CRITERIA
	2.4 MILESTONE DEPENDENCIES
	2.4.1 Milestone Predecessors


	3. TECHNICAL WORK SCOPE, APPROACH, RESULTS
	3.1 Stage-In/Stage-Out
	3.2 Checkpoint using HIO Library
	3.3 Checkpoint using IOSS and HDF5
	3.4 Checkpoint using Kelpie

	4. RESOURCE REQUIREMENTS
	5. CONCLUSIONS AND FUTURE WORK
	6. ACKNOWLEDGMENTS
	7. REFERENCES
	APPENDIX A.  Example Job Script


