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Abstract
Remote Direct Memory Access (RDMA) over Converged Ethernet (RoCE) has the potential to
provide performance that rivals traditional high performance fabrics. If this potential proves out,
significant impacts on system procurement decisions could follow. This work provides a series of
small scale performance results which are used to compare and contrast the performance of
RoCE-enabled Ethernet with TCP-based Ethernet and an HPC network. Additionally, a
discussion of the maturity of RoCE firmware/software stacks and documentation is provided
along with useful approaches for probing performance. A detailed description of two
experimental setups known to have good RoCE performance is given, including step-by-step
configuration and the exact hardware and software revisions employed. At small scales, RoCE is
found to have significant performance advantages over "out-of-the-box" TCP protocols and is
competitive with state-of-the-art high performance networks. Further examination of RoCE using
a wider array of benchmarks and at greater scale is warranted.
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1. Introduction

Our facility recently installed a 288 node Linux cluster, named Carnac, to support growing
network emulation and cybersecurity workloads. [5] Such work typically involves standing up
large numbers of virtual machines on the system. Thus, this cluster was procured with a
director-class 100Gb/s Ethernet switch (Arista DCS-7512N) in order to keep virtual machine
configuration easy and ensure that the switch data plane would have sufficient resources for the
large number of virtual hosts. Carnac was added to an existing environment which uses an
Infiniband interconnect to support more traditional high performance computing (HPC)
workloads, depending largely upon message passing (MPI). A significant increase in flexibility
and economy of scale would ensue if both user communities could be supported by a single
switching fabric. If Remote Direct Memory Access (RDMA) over Converged Ethernet (RoCE)
could adequately support MPI workloads on Ethernet fabrics, we could dynamically provision
Carnac based on user demand as well as consider procuring future clusters with a single Ethernet
fabric to support our entire range of workloads. [8, 9, 3]

In this report we describe the work which we have performed to date evaluating RoCE-enabled
Ethernet as an HPC interconnect. While our experience is that small to mid-scale
Infiniband/Omni-Path clusters are more or less plug-and-play from a performance standpoint,
there is significant overhead in understanding how to properly configure networks for RoCE.
Additionally, and quite impactful in our investigation, RoCE technologies are evolving relatively
rapidly and struggling to reach a state of maturity. Our current conclusion is that at small scale
RoCE can perform very well, but the path to reaching that conclusion was fairly arduous. We
hope to provide enough detail that this work can serve as a primer to assist further research on
RoCE. In the following sections we provide a simplified overview of RoCE as it pertains to HPC
workloads, detail our initial struggles with RoCE along with some helpful strategies for probing
performance, and provide limited small-scale performance results for a well-specified set of
hardware/software components demonstrated to provide good RoCE performance.
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2. RDMA over Converged Ethernet

First, it is important to remind ourselves that Ethernet development is driven by the needs of large
commercial data centers, not the needs of HPC. [6] It is, in fact, the desire to eliminate Fibre
Channel storage networks and use a single "converged Ethernet" network within data centers that
has largely driven the development of the technology which enables RoCE. The IEEE 802.1 Data
Center Bridging Task Group standardized a number of technologies, typically referred to
collectively as Data Center Bridging (DCB), supporting converged Ethernet. Protocols like Fibre
Channel over Ethernet are sensitive to packet loss, so the best-effort or lossy nature of Ethernet is
a serious obstacle for converged data center Ethernet. Priority Flow Control (PFC) was developed
as an extension to earlier global flow control capabilities, allowing the fabric to pause flows
belonging to selected priority levels in response to congestion. The ability to pause flows before
resources are overwhelmed and packets need to be dropped allows the fabric to appear lossless
under most operating conditions, though the credit-based flow control commonly found in HPC
networks is more robust under extreme conditions. Combining PFC with quality of service (QoS)
capabilities, storage traffic can be given a dedicated, essentially lossless share of the converged
network.

Similar to Fibre Channel, the RDMA protocols which allow high-performance MPI
implementations to bypass the kernel for messaging operations also assume a lossless fabric.
With flow control providing a "lossless" Ethernet, RDMA operations can be performed by
encapsulating Infiniband (IB) packets in Ethernet frames, and the RoCE standards specify how to
do this. [4] There are v 1 and v2 RoCE standards. Unlike RoCE v 1, RoCE v2 is routable (can
work across multiple subnets). Additionally, some switches may have poor performance for
RoCE v 1 — so it seems prudent to stick with RoCE v2 although in most small HPC clusters there
is likely no difference in performance.
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3. Experimental Setups

The benchmark results reported in this work were obtained using the experimental setups
described in Table 3-1.

Carnac

CPU
OS/Kernel
NIC
NIC Drivers/Firmware
Switch
Switch OS

2x Intel E5-2683 v4
CentOS Linux release 7.6.1810 / Linux 3.10.0-957.e17.x86_64
Mellanox ConnectX-5 MT27800, hw_ver: OxO, board_id: MT_0000000011
MLNX_OFED_LINUX-4.6-1.0.1.1, fw_ver: 16.24.1000
Arista DCS-7512N 100Gb/s Ethernet, HW Version: 14.00
Arista EOS, Software image version 4.17.6M

Carnac/mlx

CPU
OS/Kernel
NIC
NIC Drivers/Firmware
Switch
Switch OS

2x Intel E5-2683 v4
CentOS Linux release 7.6.1810 / Linux 3.10.0-957.e17.x86_64
Mellanox ConnectX-5 MT27800, hw_ver: OxO, board_id: MT_0000000011
MLNX_OFED_LINUX-4.6-1.0.1.1, fw_ver: 16.24.1000
Mellanox SN2700 100Gb/s Ethernet, HW Rev. B2
Mellanox Onyx, version 3.8.1304

Serrano

CPU
OS/Kernel
NIC
NIC Drivers/Firmware
Switch

2x Intel E5-2695 v4
Red Hat Enterprise Linux Server release 7.7 / Linux 3.10.0-1062.1.1.1chaos.ch6.x86_64
Intel Omni-Path HFI 100, hw_ver: Ox11
fw_ver: 1.26.1
Intel Edge Switch 100 100Gb/s Omni-Path

Table 3-1. Experimental setups.
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4. RoCE Configuration

In the end, it turned out to be quite straightforward to configure a small Ethernet network for good
RoCE performance. However, arriving at that configuration took considerable time and effort.
Documentation for RoCE is quite limited. Switch user manuals specify how to turn features on
and off, but do not go into any detail on the theory of the features or how they should be
employed in concert to reach a certain result. Many internet articles provide step by step
instructions, but these are very specific as to hardware, software, configuration utilities, and
network architecture; such documentation goes stale quickly and over time the volume of articles
confuses efforts to determine the ideal configuration approach. Additionally, the churn of
Ethernet standards, networking hardware and software, and even Linux kernels provides so many
moving targets that the ecosystem lacks maturity and stability.

We settled on what eventually proved to be an effective RoCE configuration for the Carnac cluster
relatively quickly. While initial point-to-point MPI tests were very encouraging, we quickly ran
into a roadblock running High Performance Linpack (HPL) [2] at scales near full machine size
(288 nodes) where HPL would fall off a performance cliff and essentially cease to make progress.
It seemed likely that flow control was not working adequately and that congestion at this scale
was causing packet loss. While attempting to analyze the poor HPL performance, it became
apparent that the MPI implementations which HPL was running on top of were often obscuring
exactly how the network stack was being utilized. Depending on the MPI implementation used,
performance variation was high and more importantly transports which failed would be quietly
swapped out at runtime for the TCP transport. At times this fallback to TCP was not even
indicated by MPI debugging output and was only recognized through examination of hardware
performance counters. Discouraged by this setback, we decided to remove the MPI wild card and
develop a simpler benchmark as an application proxy.

From user space, RoCE-capable hardware appears much like Infiniband hardware, including the
availability of an IBVerbs interface which can be used to perform RDMA operations. Thus, most
of the typical Infiniband tools (e.g. i b s t at u s) are installed with Mellanox's Open Fabrics
Enterprise Distribution (OFED) package. While we could have written a benchmark directly to
the IBVerbs interface, the availability of ib_write_bw allowed the rapid development of a
Python script which can setup patterns of RDMA traffic and report observed bandwidths. As
many-to-one incast can rapidly cause congestion in network links, we used incast patterns created
with this script as a simple proxy for high bandwidth HPC applications. The congestion created
by this incast benchmark can be tuned by varying the number of sources. This benchmark was
used for subsequent debugging and testing, and results from it will be presented in Section 5 and
Section 6.

12



On the Carnac Arista switch the incast benchmark was able to easily create congestion and large
numbers of dropped packets using only a handful of nodes. This was exhibited in our testing as a
significant drop-off in aggregate throughput for larger message sizes as the number of source
nodes was increased with our incast benchmark. After exhausting our configuration options with
the Arista switch, we obtained a loaned Spectrum SN2700 switch from Mellanox for further
testing. Initial testing with the Mellanox switch showed performance problems very similar to
those observed on the Arista switch. At this point we were mostly convinced that Ethernet flow
control just isn't responsive enough to handle heavy congestion without dropping packets and
causing severe RoCE performance degradation.

After a long delay in this project and consultation with technical support at both switch vendors,
we revisited our testing after upgrading to the latest version of Mellanox OFED on the hosts.
With the latest versions of firmware, drivers and utilities now available on the hosts, the RoCE
performance on both switches suddenly improved tremendously. It is interesting to note that
performance using PFC is excellent, while global pause flow control still exhibits poor
performance. Our best guess is that some optimizations (or bug fixes) were made to the host PFC
implementation which resulted in greatly improved RoCE performance. Note that precise
hardware and software version information for our experimental setups is given in Table 3-1.
While the performance results will be presented in the following sections, we will close this
section by providing a detailed discussion of our RoCE configuration.

With the Connect-X5 NIC and Mellanox OFED, RoCE comes up when the device's kernel
modules are loaded and is available without any additional configuration. The familiar IB utilities
are available and working — for example ibv_devinfo shows a host channel adaptor (HCA)
with Inifiniband transport but Ethernet link layer.

[carnac_host]# ibv_devinfo

hca_id: mlx5_0

transport: InfiniBand (0)

fw_ver: 16.25.1020

node_guid: ecOd:9a03:0048:7266

sys_image_guid: ecOd:9a03:0048:7266

vendor_id: Ox02c9

vendor_part_id: 4119

hw_ver: Ox0

board_id: MT_0000000011

phys_port_cnt: 1

Device ports:

port: 1

state: PORT_ACTIVE (4)

max_mtu: 4096 (5)

active_mtu: 4096 (5)

sm_lid: 0

port_lid: 0

port_lmc: Ox00

link_layer: Ethernet

And show_gids gives us a listing of identifiers for the HCA port. We chose index 3,
corresponding to RoCE v2 and IPV4, for our testing.

[carnac_host]# show_gids

DEV PORT INDEX GID

13
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mlx5_0 1 0 fe80:0000:0000:0000:ee0d:9aff:fe48:7266 vl ethl

mlx5_0 1 1 fe80:0000:0000:0000:ee0d:9aff:fe48:7266 v2 ethl

mlx5_0 1 2 0000:0000:0000:0000:0000:ffff:0a64:0569 10.100.5.105 vl ethl

m1x5_0 1 3 0000:0000:0000:0000:0000:ffff:0a64:0569 10.100.5.105 v2 ethl

n_gids_found=4

The only configuration that actually needs to occur on the host is enabling flow control. On
Carnac, storage and management traffic goes over a dedicated network so the 100Gb
"experiment" network only carries traffic related to our benchmarking. Since there is only one
type of traffic there is no need to differentiate between priorities — we can use PFC and enable all
priorities for flow control. We used PFC for all RoCE results that we report since we tested global
pause flow control on the Arista switch and found poor performance (see Section 5).

With Mellanox OFED the mlnx_qos utility is used to enable PFC on the host interface.

[carnac_host]# mlnx_gos ethl --pfc 1,1,1,1,1,1,1,1

DCBX mode: OS controlled

Priority trust state: dscp

dscp2prio mapping:

prio:0 dscp:07,06,05,04,03,02,01,00,

prio:1 dscp:15,14,13,12,11,10,09,08,

prio:2 dscp:23,22,21,20,19,18,17,16,

prio:3 dscp:31,30,29,28,27,26,25,24,

prio:4 dscp:39,38,37,36,35,34,33,32,

prio:5 dscp:47,46,45,44,43,42,41,40,

prio:6 dscp:55,54,53,52,51,50,49,48,

prio:7 dscp:63,62,61,60,59,58,57,56,

Receive buffer size (bytes): 262016,262016,0,0,0,0,0,0,

Cable len: 7

PFC configuration:

priority 0 1 2 3 4

enabled 1 1 1 1 1

buffer 1 1 1 1 1

tc: 0 ratelimit: unlimited, tsa: vendor

priority: 1

tc: 1 ratelimit: unlimited, tsa: vendor

priority: 0

tc: 2 ratelimit: unlimited, tsa: vendor

priority: 2

tc: 3 ratelimit: unlimited, tsa: vendor

priority: 3

tc: 4 ratelimit: unlimited, tsa: vendor

priority: 4

tc: 5 ratelimit: unlimited, tsa: vendor

priority: 5

tc: 6 ratelimit: unlimited, tsa: vendor

priority: 6

tc: 7 ratelimit: unlimited, tsa: vendor

priority: 7

5 6 7

1 1 1

1 1 1

Likewise, PFC must be enabled on the switch. For the Arista EOS operating system an interface
is configured for flow control on all priorities as follows.

ccorel(config)#priority-flow-control mode on

ccorel(config)#priority-flow-control priority 0 no-drop

ccorel(config)#priority-flow-control priority 1 no-drop

ccorel(config)#priority-flow-control priority 2 no-drop

ccorel(config)#priority-flow-control priority 3 no-drop

ccorel(config)#priority-flow-control priority 4 no-drop

14



ccorel(config)#priority-flow-control priority 5 no-drop

ccorel(config)#priority-flow-control priority 6 no-drop

ccorel(config)#priority-flow-control priority 7 no-drop

Similarly, for Mellanox Onyx PFC is enabled via the following commands.

100g-mlnx(config) # dcb priority-flow-control enable force

100g-mlnx(config) # dcb priority-flow-control priority 0 enable

100g-mlnx(config) # dcb priority-flow-control priority 1 enable

100g-mlnx(config) # dcb priority-flow-control priority 2 enable

100g-mlnx(config) # dcb priority-flow-control priority 3 enable

100g-mlnx(config) # dcb priority-flow-control priority 4 enable

100g-mlnx(config) # dcb priority-flow-control priority 5 enable

100g-mlnx(config) # dcb priority-flow-control priority 6 enable

100g-mlnx(config) # dcb priority-flow-control priority 7 enable

100g-mlnx(config) # dcb priority-flow-control priority 8 enable

100g-mlnx(config) # dcb priority-flow-control mode on force

Surprisingly, once the software stacks and firmware were brought up to the versions listed in
Table 3-1 simply enabling PFC on the hosts and switches resulted in excellent RoCE performance
for our small-scale testing.
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5. RoCE Tuning

As previously discussed, a simple incast benchmark was useful in evaluating RoCE performance
and recognizing poorly performing systems at small scale. A listing of the Python script used to
perform this benchmark is provided in Appendix A.1. This benchmark is conceptually quite
simple. The script shells into a collection of hostnames and starts the client/server benchmark
executables as requested. However, since starting the remote shell can have both significant
duration and variability it is important to run the benchmark for a long duration (5 seconds was
used in this work). The sleep statements in the script have also proven critical to allow the
subprocesses to start up and finish before moving on to the next stage of communication. An
example invocation of this benchmark follows in which up to ten streams are sent from three
round-robin hosts using an 8KB message size.

python traffic.py --test ib_write_bw --destination myhostl --sources myhost[2,3,4] --options "-D 5 -s 8192"

The aggregate throughputs for each pair of source node and sending process numbers (each node
can have multiple sending processes) can be plotted as seen in Figure 5-1, where results are
shown for the Arista switch performing RoCE incast with PFC enabled. Good performance is
indicated by high and consistent aggregate throughput, as seen for all message sizes greater than 1
byte. There is an increase in throughput variability with the large 1MB messages, but the
throughput does not fall off significantly.

Contrasting with the good performance observed on the Arista switch using PFC, the results from
the Arista switch using global pause flow control are shown in Figure 5-2. A significant
difference between the PFC and global pause results is seen for the 1MB message size where
incast from multiple source nodes using global pause results in a precipitous drop in performance
as the number of sending processes increases. The global pause implementation is clearly not as
successful as PFC in handling the congestion caused by the incast traffic. Similarly poor
performance of global pause was observed when running the same tests over the Mellanox
SN2700 switch. This benchmark also showed similar poor results for the earlier
software/firmware versions that we tested on this hardware, but in this case the performance
degradation was even more severe and observed at message sizes as small as 100KB. When we
upgraded software/firmware we were easily able to observe the performance improvements using
the incast benchmark with only 5 nodes as opposed to the hundreds of nodes needed to hit
performance problems with the less demanding application benchmark that we were originally
using for testing (High Performance Linpack).

The incast benchmark was also run at maximum transmission unit (MTU) sizes of 1024/1500 and
4096/4500 (IB/Ethernet — Ethernet must have a larger MTU than the IB protocol to allow
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encapsulation). We determined that an MTU of 4096/4500 gave higher bandwidths without any
observable trade-offs. All results that we report were obtained with an IB/Ethernet MTU of
4096/4500.
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6. RoCE Performance Results

Once our network testbeds were configured, tuned and performing well as indicated by our incast
benchmarks, we performed a limited set of small scale benchmarks to determine the value of
testing RoCE more thoroughly at larger scales. In this section we report the results of MPI
point-to-point bandwidth and latency tests, a comparison of TCP and RoCE performance for our
incast benchmark, and small scale High Performance Linpack results. [1, 2] Since the focus of
this work is RoCE, we did not spend time tuning the TCP stack. It is likely that significant gains
in TCP performance could be obtained employing advanced Linux capabilities like traffic pacing,
but here we compare "out-of-the-box" TCP protocols with RoCE.

Figure 6-1 presents large message bandwidths for MPI point-to-point messaging. We ran TCP
tests with both a lossy (TCP) and lossless (TCP-PFC) fabric. Using RoCE protocols both switches
attain near the nominal bandwidth of 100Gb/s while the best TCP results struggle to even
approach 40Gb/s. Figure 6-2 reports small message MPI latencies. Again, we find very sizable
performance improvements with RoCE protocols. While TCP latencies range from 12-14us, the
Arista switch achieves latency under 3us with RoCE and the Mellanox switch attains a very
impressive 1.3us, competitive with state-of-the-art HPC fabrics. Clearly, for point-to-point MPI
messaging in the absence of interfering traffic, RoCE provides enormous performance benefits
over TCP and can make Ethernet competitive with traditional high performance interconnects.

10 0
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72"'

2 40
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Figure 6-1. MPI point-to-point bandwidths for selected intercon-
nect and protocol combinations using a message size of 4MB.
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Figure 6-2. MPI point-to-point latencies for selected intercon-
nect and protocol combinations using a zero-payload message.

Our incast benchmark script can generate roughly equivalent RoCE and TCP results using
i b_w r it e_bw and iper f 3, respectively, as the underlying test executable (controlled by the
--t e st parameter). This benchmark provides another way to contrast the performance of RoCE
(Figure 6-3) and TCP (Figure 6-4) protocols. These figures were generated using the Mellanox
SN2700 switch, and for RoCE the results are very much in line with those from the Arista switch
— good performance with some variability at the largest message size. We see that TCP single
stream bandwidths only reach about 20% of the 100Gb/s nominal bandwidth. Due to windowing
protocols and the software overheads of TCP, low single-stream bandwidth is not surprising. [7]
As the number of sending processes increases the aggregate throughput steadily increases to
approximately 75% or more of nominal bandwidth.

Taken as a whole, the MPI point-to-point and incast results indicate that, for applications which
require low latency or single streams of high bandwidth, RoCE should be a big win. However, as
the number of communicating processes increases, as is likely with the increasing core counts of
current CPU's, the bandwidth effects should have less impact. We conclude our performance
results with Figure 6-5 which presents the FLOP/s performance of 32-node HPL computations.
The HPL input can be found in Appendix A.2. We include results from the Serrano cluster
(Omni-Path interconnect, see Section 3) for comparison with a typical HPC system and report
percent of peak FLOP/s to normalize results. 32 MPI tasks were utilized on all systems and
computation of peak FLOP/s was likewise based on 32 cores. As we were interested in relative
network performance, we did not go to great lengths to optimize the on-node HPL performance
and there is likely room to improve peak FLOP/s performance across the board. Though RoCE
and Omni-Path perform slightly better than the TCP runs, the benefit is minimal. The small
difference in performance is likely due to the small system scale, the large number of MPI tasks
per node negating the RoCE bandwidth advantages, and the relatively tame resource demands of
the HPL benchmark. RoCE is very competitive with Omni-Path performance for this test.
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Figure 6-3. Aggregate throughputs for incast testing of RoCE
protocol on Mellanox SN2700 100Gb/s Ethernet switch.
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7. Conclusions

Our results indicate that, at least at small scales, RoCE can provide improvements over TCP and
is competitive with the performance of traditional HPC fabrics. Single stream MPI point-to-point
benchmarks and a custom incast benchmark indicate that RoCE enables bandwidth and latency
performance far exceeding that of "out-of-the-box" TCP protocols. However, our chosen proxy
for HPC applications, HPL, does not show significant increased performance for RoCE, as it
likely does not stress the available system resources sufficiently. Based on this initial evaluation,
we feel that further study of RoCE for use on HPC systems, including the examination of a wider
range of benchmarks and larger scales, is warranted.

While the configuration that eventually provided good performance was very basic, it was
challenging to determine the proper configuration due to the complexity of Ethernet traffic
management and a lack of comprehensive documentation. Coupling configuration difficulty with
the immaturity of tools and software/firmware stacks severely complicated completion of this
seemingly modest course of work. While consumer Ethernet products are mostly plug-and-play,
large organizations that require sophisticated Ethernet networks devote significant resources to
designing, configuring, testing, monitoring and maintaining their networks. While the
performance of current RoCE implementations may make Ethernet networks viable for HPC
systems, the likely increased costs of running an HPC Ethernet fabric must be factored into any
procurement decisions.

24



References

[1] MVAPICH Home Page, 2019.

[2] Netlib HPL Webpage, 2019.

[3] Infiniband Trade Association et al. Supplement to infiniband architecture specification
volume 1, release 1.2. 1: Annex a16: Rdma over converged ethernet (roce), 2010.

[4] Motti Beck and Michael Kagan. Performance evaluation of the rdma over ethernet (roce)
standard in enterprise data centers infrastructure. In Proceedings of the 3rd Workshop on
Data Center-Converged and Virtual Ethernet Switching, pages 9-15. International Teletraffic
Congress, 2011.

[5] J Floren, J Friesen, C Ulmer, and S T Jones. A Reference Architecture for Emulytics Clusters.
In Sandia Report, volume SAND2009-5574, 2017.

[6] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni, Jianxi Ye, Jitu Padhye, and Marina
Lipshteyn. Rdma over commodity ethernet at scale. In Proceedings of the 2016 ACM
SIGCOMM Conference, pages 202-215. ACM, 2016.

[7] Justin Hurwitz and Wu-chun Feng. Initial end-to-end performance evaluation of 10-gigabit
ethernet. In 1 lth Symposium on High Performance Interconnects, 2003. Proceedings., pages
116-121. IEEE, 2003.

[8] Michael Oberg, Henry M Tufo, Theron Voran, and Matthew Woitaszek. Evaluation of rdma
over ethernet technology for building cost effective linux clusters. In 7th LCI International
Conference on Linux Clusters: The HPC Revolution, 2006.

[9] Jerome Vienne, Jitong Chen, Md Wasi-Ur-Rahman, Nusrat S Islam, Hari Subramoni, and
Dhabaleswar K Panda. Performance analysis and evaluation of infiniband fdr and 40gige roce
on hpc and cloud computing systems. In 2012 IEEE 20th Annual Symposium on
High-Performance Interconnects, pages 48-55. IEEE, 2012.

25



Appendix A.

A.1. Incast Python Code Listing

from future import print_function

import sys
import argparse

import subprocess

import time

import re

from sets import Set

def get_ids(hostnames):

hostnames = "".join(hostnames.split())

brckt = hostnames.count("[")

hosts =
if not brckt:

spl = hostnames.split(",")
for h in spl:

hosts.append(h)

else:

spl = hostnames.split("[")
basename = spl[0]

ids = spl[1].rstrip("]")

if ids.count(",") > 0:

ids = ids.split(",")

# deal with ranges

for i in ids:

if i.count("-") == 0:

hosts.append(basename + i)

else:

rng = i.split("-")

for n in range(int(rng[0]),int(rng[1])+1):

hosts.append(basename + str(n))

return hosts

def main():

parser = argparse.ArgumentParser(description="Traffic Benchmark")

parser.add_argument("--destinations", default-"", help-"destination hostnames in slurm format")

parser.add_argument("--sources", default="", help="source hostnames in slurm format")

parser.add_argument("--outfile", default="traffic.out", help="output filename")

parser.add_argument("--max-streams", default="10", help="max number of streams (default 10)")

parser.add_argument("--options", default="", help="additional arguments to test program")

parser.add_argument("--client-options", default="", help="additional arguments to test client")

parser.add_argument("--server-options", default="", help="additional arguments to test server")

parser.add_argument("--port", default-11000, type=int, help="first in sequential block of ports used")

parser.add_argument("--test", default="ib_write_bw", help="should be ib_write_bw, ib_send_bw or iperf3")

args = parser.parse_args()

buffsize=0

outf = open(args.outfile,'w',buffering=buffsize)

clients = get_ids(args.sources) # clients do the sending

servers = get_ids(args.destinations)
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nclt = len(clients)

nsrv = len(servers)

maxn = max(nclt,nsrv)

optstr = args.options

portbase = args.port

ptest = args.test

outf.write("nsrc=%d ndest=%d\n" % (nsrv, nclt))

outf.write("test=%s\n" % ptest)

outf.write(optstr)

for nstreams in range(1,int(args.max_streams)+1):

print("starting with %d streams" % nstreams)
outf.write("*** nstreams: %d ***\n" % nstreams)
srvp = []

cltp = []

# start servers

for i in range(1,nstreams+1):

port = portbase + int(i)

server = servers[(i-1) % nsrv]

my_args = ['ssh', server, ptest, '-p %d' % port]

my_args.append(optstr)

my_args.append(args.server_options)

if ptest == "iperf3":

my_args.append("-s --one-off")

print("server %s ready to receive on port %d" % (server,port) )

outf.write(".join(my_args))
outf.write('\n')

srvp.append(subprocess.Popen(my_args, stdout=subprocess.PIPE, stderr=subprocess.PIPE))

# give servers a chance to start up

time.sleep(5.0)

#start clients

for i in range(1,(nstreams)+1):

port = portbase + int(i)
client = clients[(i-1) % nclt]

server = servers[(i-1) % nsrv]

my_args = ['ssh', client, ptest, '-p %d' % port]

my_args.append(optstr)

my_args.append(args.client_options)

if ptest == "iperf3":

my_args.append("-c %s" % server)

else:

my_args.append(server)

print("client %s sending on port %d" % (client,port) )

outf.write(".join(my_args))

outf.write('\n')

cltp.append(subprocess.Popen(my_args, stdout=subprocess.PIPE, stderr=subprocess.PIPE))

# wait for completion

for p in srvp:

p.wait ()

for p in cltp:

p.wait ()

out, err = p.communicate()

outf.write(out)

outf.write(err)

time.sleep(5.0)

if name == " main ": main()
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A.2. High Performance Linpack Input

HPLinpack benchmark input file

Innovative Computing Laboratory, University of Tennessee

HPL.out output file name (if any)

6 device out (6=stdout,7=stderr,file)

1 #4 # of problems sizes (N)

262144 # (256 * 32 * 32)

1 # of NBs

256 #1 2 3 4 NBs

0 PMAP process mapping (O=Row-,1=Column-major)

1 #3 # of process grids (P x Q)

32 #16 #2 1 4 Ps

32 #20 #2 4 1 Qs

16.0 threshold

1 #3 # of panel fact

0 #0 1 2 PFACTs (0=left, 1=Crout, 2=Right)

1 #2 # of recursive stopping criterium

2 #2 4 NBMINs (>= 1)

1 # of panels in recursion

2 NDIVs

1 #3 # of recursive panel fact.

0 #0 1 2 RFACTs (0=left, 1=Crout, 2=Right)
1 # of broadcast

0 BCASTs (0=lrg,1=1rM,2=2rg,3=2rM,4=Lng,5=LnM)

1 # of lookahead depth

0 DEPTHS (>=0)

2 SWAP (0-bin-exch,1=long,2=mix)

64 swapping threshold

0 L1 in (0=transposed,1=no-transposed) form

0 U in (0=transposed,1=no-transposed) form

1 Equilibration (0=no,1=yes)

8 memory alignment in double (> 0)
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