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ABSTRACT

Modern workflows for high-performance computing (HPC) platforms rely on data management and storage services
(DMSSes) to migrate data between simulations, analysis tools, and storage systems. While DMSSes help researchers
assemble complex pipelines from disjoint tools, they currently consume resources that ultimately increase the work-
flow’s overall node count. In FY21-23 the DOE ASCR project “Offloading Data Management Services to SmartNICs”
explored a new architectural option for addressing this problem: hosting services in programmable network interface
cards (SmartNICs). This report summarizes our work in characterizing the NVIDIA BlueField-2 SmartNIC and defin-
ing a general environment for hosting services in compute-node SmartNICs that leverages Apache Arrow for data
processing and Sandia’s Faodel for communication. We discuss five different aspects of SmartNIC use. Performance
experiments with Sandia’s Glinda cluster indicate that while SmartNIC processors are an order of magnitude slower
than servers, they offer an economical and power efficient alternative for hosting services.
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EXECUTIVE SUMMARY

The Offloading Data Management Services to SmartNICs project was a three-year effort
(FY21-23) funded by the U.S. Department of Energy’s Office of Science to investigate whether
emerging programmable network interface cards (or SmartNICs) could improve the way scientific
computing workflows execute on high-performance computing (HPC) platforms. The problem we
identified in our proposal was that current architectures are hindered by the fact that workflows
must allocate additional processing and memory resources from the platform’s compute nodes to
host data management and storage services (DMSSes) that migrate data between the workflow’s
applications and insulate users from I/O overheads. Our hypothesis was that the overall efficiency
of the system could be improved by adding SmartNICs to a portion of the platform’s compute
nodes and adapting the services to be offloaded to the SmartNICs. We theorized that this
approach would free host resources for other tasks while still preserving data locality benefits.
This report documents our work in confirming this hypothesis over the last three years. Topics are
organized into three primary themes:

• Characterizing Current-Generation Hardware: We conducted a wide range of
performance experiments on the BlueField-2 SmartNIC to determine the strengths and
weaknesses of current generation hardware. While the embedded processors found on these
cards are an order of magnitude slower than host processors, the BlueField-2 SmartNIC
features sufficient resources to manipulate in-transit data and perform useful tasks such as
hardware-accelerated data compression. An examination of procurement and operation
costs of Sandia’s Glinda cluster confirmed that the BlueField-2 is power efficient (30W
idle, 43W active) and cost effective compared to adding other compute nodes.

• Creating an Environment for Offloading Services: We constructed a flexible
environment for hosting services on SmartNICs through a combination of Apache Arrow,
Sandia’s Faodel software, and multiple libraries we developed to simplify interactions with
the BlueField-2 (e.g., compression, host-to-card injection, and a dynamic query interface).

• Offloading Services: Finally, we constructed multiple examples of data management
services to demonstrate that the SmartNIC could offload data management services in a
heterogeneous platform. These examples include a service for reorganizing particle
datasets; a query service for inspecting in-transit data that automatically determines if a
query should be executed at the SmartNIC or the client; and job-local storage services that
use NVMe-oF to place storage at the local SmartNIC without disturbing the host.

With the caveat that commercial SmartNICs could benefit from improvements in cost, power
utilization, and quality-of-service controls, we assert that our original hypothesis was correct.
There are future opportunities in this space to design low-interference, distributed storage
systems, create customized disaggregated compute platforms, and leverage new GPU and
hardware accelerators that are available in emerging commercial products.
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1. INTRODUCTION

The responsibilities of the I/O subsystem in high-performance computing (HPC) platforms have
grown significantly over the last decade. In addition to delivering high-bandwidth, high-volume
storage for results and checkpoints, the platform is expected to provide a variety of data
management and storage services (DMSSes) that have become an essential part of users’
workflows. These services include lightweight key/value stores for aggregating state, in-memory
object stores for data handoffs between workflow applications, I/O libraries that manage shared
state for complex structured data, and programmable storage frameworks that generate live
annotations of simulations.

The importance of these DMSSes has driven the scalable I/O community to re-evaluate how
services are architected and deployed in modern HPC platforms. Rather than build fixed,
system-level services (e.g., burst buffers), many researchers embrace flexible, user-level services
that are co-scheduled with simulations. Current research advocates a “composable service”
model [1] where a small number of communication components are used to create services that
are highly customized to a workflow’s requirements. This approach provides users with freedom
to specify when and where their DMSSes run on a platform.

A valid criticism of this work is that current architectures lack an optimal location for hosting
these services. Researchers have explored hosting services in the simulation’s compute nodes [2],
supplemental compute nodes [3, 4, 5, 6, 7], the storage system, and “bump-in-the-wire” network
hardware. These approaches either steal resources from the simulation, increase network
congestion, or are impractical due to security or cost.

In the Offloading Data Management Services to SmartNICs project we have explored an
alternative approach: embedding DMSSes in Smart Network Interface Cards (SmartNICs)
located in a platform’s compute nodes. Emerging SmartNICs such as the NVIDIA BlueField-2
card supplement a traditional NIC with processing and memory resources that are user
programmable. Transitioning a composable service library to function on these SmartNICs places
services in close proximity to simulations without consuming host resources. Our work seeks to
resolve fundamental challenges that arise from this architectural change and evaluate how well
DMSSes perform in an environment that mixes compute nodes and SmartNICs.

1.1. Background

The scalable I/O community has a long history of developing data management and storage
services (DMSSes) to improve the way in which large datasets are migrated between different
resources in HPC platforms. A significant portion of this work originated in caching services that
were built in I/O forwarding nodes to mitigate the high cost of writing simulation results and
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Figure 1-1. Workflow Example: Modern workflows use multiple DMSSes to connect concurrent, parallel appli-
cations that are distributed across the compute nodes of an HPC platform. These services allow data to flow
between jobs without disrupting internal MPI communication or relying on the file system for handoffs.

checkpoints to disk. These nodes use volatile (and now non-volatile) memory to absorb a
simulation’s periodic I/O bursts and convert the data flows into a trickle the storage system can
sustain [8]. Additional in-transit efforts have examined the benefits of offloading the task of
packaging datasets into well-known file containers [9]. In addition to offloading work from
compute nodes, there can be efficiency benefits to moving serial I/O software from the
data-parallel processors found in compute nodes to general-purpose processors found elsewhere
in the platform [10].

Other communities have driven the need for better DMSSes on HPC platforms. Visualization
efforts have developed services that allow analysis jobs to be co-scheduled with simulations to
permit users to extract information and render visualizations as the simulation progresses [7]. The
workflow community needs DMSSes that enable parallel datasets to be routed from one
simulation tool to another. High-performance data analytics (HPDA) users are also requesting
more access to HPC platforms to solve large, data-intensive problems; these users often work
outside of the MPI space and simply need sophisticated DMSSes that can move large volumes of
data between different machine-learning and deep-learning tasks. It is not uncommon to find all
of these communities working together to solve larger problems. As illustrated in Figure 1-1, an
advanced particle simulation workflow at Sandia needed to move data through several, concurrent
tools on the same platform. DMSSes routed data between multiple simulations, a visualization
framework, a TensorFlow predictor, and a caching service that helped stage data out to disk.

Realizing that each of these communities is implementing similar functionality for different
reasons, there have been recent efforts to build DMSSes that can be reused in different contexts.
Rather than design one-size-fits-all services, the trend in this research has been to create a
collection of communication components that can easily be combined to build new services that
are customized to an application’s requirements. This “composable service” idea is present in
multiple DMSS frameworks such as Mochi [1], BESPOKV [11], and Faodel [12]. In general,
these effort include (1) an RDMA portability layer for efficient communication that does not
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interfere with MPI, (2) a communication engine for sequencing asynchronous operations, (3)
naming services for locating resources, and (4) higher-level APIs such as key/value stores for
simplifying data references.

1.1.1. Service Placement

A key question in DMSS research is: Where should services be placed on an HPC platform to
maximize benefits? In current architectures, there are four common places for hosting services:

1. Simulation Compute Nodes: DMSSes occupy resources on a compute node that is also
participating in a simulation. In situ approaches generally provide the most performant
coupling between simulations and services due to locality. However, in situ services
consume resources which would otherwise be available to simulations and can even change
performance characteristics of the running simulation (e.g., jitter, scalability). This category
typically includes consistency management, peer caches, and on-node burst buffers.

2. Supplemental Compute Nodes: DMSSes occupy extra compute nodes outside of the
simulation. In vitro services can provide significant capability without perturbing
simulations, but they reduce the efficiency and throughput of the HPC system by
consuming powerful resources that could otherwise be used for other or larger simulations.
This strategy also places a buffer between the simulation and storage, potentially requiring
extra network bandwidth. This category often includes key/value stores, databases, and
publish/subscribe distributed memory services.

3. In Storage: DMSSes execute entirely within the storage system or other servers within the
service section of the HPC system. This approach provides bandwidth efficiency, as
services have unfettered access to data on the storage system. Compute nodes are no longer
withheld from simulation work, yielding increased throughput. However, services provided
by the storage system are the most stringently controlled. Security is paramount, as services
have more direct access to underlying infrastructure in a privileged portion of the platform;
and performance management is necessary to keep the storage system responsive to other
users. These considerations typically restrict in-storage services to a core set of system
services, and have entirely precluded running any user code.

4. In Network: DMSSes execute in “bump-in-the-wire” resources that exist in the network
fabric. Active network researchers have proposed supplementing the network fabric with
processing elements that can process data as messages move through the communication
fabric. When implemented with streaming processors such as FPGAs, this approach is
beneficial because there is very little overhead between the network and processor.
Unfortunately, the lack of commercial support for this option makes it expensive to realize.

1.1.2. SmartNICs

Recently, network vendors have introduced new Smart Network Interface Cards (SmartNICs) to
solve customization problems that arise in commercial data centers and clouds. As illustrated in
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Figure 1-2(a), SmartNICs supplement traditional NIC hardware with processor, memory, and
storage resources that can be programmed to implement custom functionality at the network’s
edge. While network security researchers have used SmartNICs to monitor and secure enterprise
networks for several years, the primary consumer of SmartNICs today is multi-tenant cloud
providers. Both Amazon Web Services and Microsoft Azure [13] employ SmartNICs to securely
route messages between a customer’s virtual machines. Offloading these operations to the NIC
removes extra traversals through the host’s facilities and guarantees traffic is always encrypted
when it leaves the node. The sheer volume of SmartNIC hardware required by the cloud industry
is helping to drive SmartNIC prices to affordable levels.

ARM
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Host
GPUs
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System
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Figure 1-2. SmartNICs: (a) SmartNICs provide on-card resources for processing data close to the network. (b)
New platforms will include SmartNICs in a portion of the compute nodes, enabling DMSSes to be embedded at
these nodes without host overhead.

NVIDIA’s BlueField, BlueField-2, and BlueField-3 product lines demonstrate that vendors can
create viable commercial products that embed user-programmable processing resources in
high-speed NICs. The current-generation BlueField-2 features eight 64-bit Arm processor cores,
16GB of DRAM, 60GB of eMMC storage, and one to two 100Gb/s network ports that can
communicate with InfiniBand or Ethernet. The BlueField-2 SmartNIC’s processors run an OS
that is independent of the host. While security researchers typically configure the SmartNIC as an
in-line, packet-processing engine for manipulating the host’s network traffic, the card can be
configured to allow the Arms to share the network with the host. As such, the SmartNIC simply
appears as just another compute node on the communication fabric. Current BlueField-2
SmartNICs are roughly 80% more expensive than a traditional InfiniBand adapter card.
NVIDIA’s BlueField-3 features improvements in architecture and is expected to be available in
volume by 2024.

1.1.3. Placing DMSSes in SmartNICs

The availability of reasonably-priced SmartNICs presents an opportunity for system architects to
add a large number of user-programmable processors to the system architecture without needing
to increase either the compute node or network switch port counts. As illustrated in Figure 1-2(b),
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we envision future platforms will equip a portion of the system’s compute nodes with SmartNICs.
These SmartNICs effectively become extra communication endpoints in a job allocation that can
implement embedded tasks. These resources provide a new option for hosting DMSSes:

5. At the Network’s Edge: The service is hosted on smaller, user-controlled resources that
are at the boundary of each compute node. This fifth paradigm has the potential to blend
benefits of on-node, in-compute, and in-storage paradigms while avoiding many of their
downsides.

Prior to this project, no DMSS was designed for this type of deployment as the only practical
location for executing services was a host’s processors. This project has focused on creating a
heterogeneous environment where workflows can place services in host processors and
SmartNICs.

1.1.4. Potential Benefits of SmartNICs for Services

From a research perspective, there are multiple ways offloading services to SmartNIC could add
value:

• Increased simulation scalability and efficiency: Moving portions of libraries and
frameworks from the compute node can reduce jitter; moving large buffers with
asynchronous tasks to the NIC will increase a code’s ability to leverage asynchronous I/O
mechanisms. Avoiding in-compute strategies may significantly reduce the energy
consumption of such services.

• Accomplish more with in-transit data: Much data is discarded due to a lack of storage
system ability to store it all, and the simulation’s requirement to use its memory and
processors to make forward progress. Allowing non-reduced data to be processed by
services in the NIC can give simulations a better chance to find interesting phenomena or
generate better reductions in parallel with the simulation.

• Software-defined, hierarchically-managed storage: Placing data management services in
node-local hardware provides developers with freedom to implement application-specific
mechanisms for dictating how data is cached and migrated between distributed resources.
Programmable storage services will leverage this capability to implement streaming
analytics, a capability that is challenging to provide in current HPC software environments.

• Utilization and resilience opportunities: Staging data in the SmartNIC provides an
opportunity for services to make better scheduling decisions for the network fabric.
Similarly, services may offer greater resilience in scenarios where host software crashes but
the NIC survives.
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1.1.5. Bridging the Gap

One of the hardships of high-performance computing research is the heartbreaking gap between
theoretical possibilities and realization in commercially-viable hardware. It is common for new
technologies to go through multiple product iterations before the hardware and software is finally
mature enough to meet the envisioned goals. As researchers our responsibility is to be both
critical and encouraging of new technologies to help elevate their technical readiness. Prior to the
start of this project in 2020, multiple research communities had already begun to investigate how
SmartNICs could be leveraged for different purposes, including network traffic analysis [14] and
services such as distributed key/value stores [15]. However, these efforts were primarily
path-finding efforts at small scale. There was little information about how SmartNICs performed
in an HPC environment and no empirical data for SmartNICs operating at medium to large scales.
We proposed exploring this space to illuminate the characteristics of current SmartNICs and
better shape the direction of hardware and software used in upcoming platforms.

1.2. The Offloading Data Management Services to SmartNICs Project

As a means of better evaluating what role SmartNICs could play in hosting data services in future
architectures, the DOE’s Office of Science funded a three year research project in FY21 named
“Offloading Data Management Services to SmartNICs” in the Advanced Scientific Computing
Research (ASCR) program. This research project was a collaboration between Sandia National
Laboratories and UC Santa Cruz. As illustrated in Figure 1-3 (a) this environment includes (1)
communication software to enable interactions between applications and services in local or
remote nodes and (2) a data processing layer to standardize data representation and allow users to
express data-parallel computations. Once this environment exists, collections of SmartNICs will
be able to implement distributed workflows to increase performance.
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Figure 1-3. Building DMSSes for Smart NICs: (a) Three example services for Smart NICs will leverage different
components from Faodel. (b) The tabular data pipelines example will route data through multiple Smart NICs.
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1.2.1. Statement of Proposed Research

The proposal for this project stated the following hypothesis:

“Our hypothesis is that adding SmartNICs to a portion of the com-
pute nodes in the platform will improve the efficiency of the over-
all system because they will provide a way to offload data manage-
ment and storage services from hosts while preserving locality.

”
The proposal identified three different research thrusts for the project:

Making SmartNICs Accessible in HPC Platforms: We will address funda-
mental communication challenges that arise when transitioning to a platform
that allows DMSSes to execute on both hosts and SmartNICs. As illustrated in
Figure 1-3(a), we will adapt our existing Faodel communication infrastructure
to SmartNICs to permit applications to interact with local and remote Smart-
NICs. This work involves characterizing SmartNIC hardware and adapting
current communication components to exploit the hardware capabilities of
these devices.

Offloading Operations to SmartNICs: We will investigate three different
application scenarios in which we expect there to be a benefit from delegating
work to an embedded processor at the edge of the network. These scenarios
include (1) offloading asynchronous operations commonly required in DMSS
client libraries, (2) performing streaming analytics on HPC data, and (3)
constructing a transformation pipeline for object-based tabular data.

Hosting Services in a Mixed Environment: We will explore the tradeoffs of
hosting services in a platform where work can be offloaded to SmartNICs and/or
supplemental compute nodes. This work will develop a new set of service
benchmarks and leverage workflows drawn from production computing to quan-
titatively answer whether a system with SmartNICs offers an advantage.
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1.2.2. Mapping Research Plan Questions to Answers

The Offloading Data Management Services to SmartNICs proposal provided additional details
about each thrust and outlined a research plan for the project based on our knowledge of the
hardware in 2020. Table 1-1 summarizes the fundamental research questions the research plan
posed and lists a simple answer to each question. Detailed information about the answers can be
found in the corresponding chapters in this report.

Table 1-1. Questions from the Research Plan

Question Simple Answer Chapter(s)

Making SmartNICs Accessible in HPC Platforms
How does the BlueField-2’s computational performance compare to hosts? ∼4-10x slower 3, 6
Does the BlueField-2 offer any compute advantages? compression 5
Can the SmartNIC’s processors saturate a 100Gb/s network? TCP:no, IB:yes 3
Can existing DMSSes be extended to leverage SmartNICs? yes (Faodel) 4
Is there a communication advantage for interactions with the local SmartNIC? slightly (6.9% more bandwidth) 3
Are there other opportunities for exploiting locality? serialization 8, D

Offloading Operations to SmartNICs
Can SmartNICs be used to insulate hosts from asynchronous I/O? partially (ephemeral storage) 9, D
Can data-parallel processing libraries improve SmartNIC performance? yes (Arrow, Kokkos) 4
Can data transformation pipelines be mapped to multiple SmartNICs? yes (particle sifting) 6
What are the benefits of leveraging collections of SmartNICs? distributed workloads 6

Hosting Services in a Mixed Environment
How can we compare the cost of compute tasks in a heterogeneous environment? MBWU, query overheads 3, 7
What impact does offloading have on workflows? decreased I/O phase 8, 6
What state information can SmartNIC’s mine to improve performance? data content, query complexity 7
Can machine learning techniques help predict when SmartNICs should offload work? yes (push down/push back) 7
What are the system costs for offloading work to the SmartNIC power and network penalties 10, 3, 8

D: Deviations from the research plan are discussed in the following section

1.2.3. Deviations from the Research Plan

We believe the work executed in this three year project is largely faithful to the original research
plan listed in the proposal. However, as we learned more about the capabilities of current
generation SmartNICs, we realized that a few of the proposed research paths would not be as
profitable as other alternatives. As such we adjusted our plans to make better use of our time in
this effort. The following are topics where we deviated from the original plan.

Asynchronous I/O Pipelines: One of our original goals was to use the SmartNIC as an engine
for offloading asynchronous I/O operations. We envisioned an environment where the SmartNIC
would interact with the RADOS object store of a Ceph storage system and make decisions about
whether data processing operations should be executed in the SmartNIC or the storage nodes (via
SkyhookDM). Unfortunately early experiments with Ceph ran into performance problems where
neither a SmartNIC nor a host could achieve more than 20Gb/s of throughput over a 100Gb/s
connection. Additional tests found that the BlueField-2 had trouble generating TCP/IP traffic with
any target. Given that Ceph’s communication is TCP/IP and Ceph’s DPDK-based Crimson
updates would not be available until the third year of this project, we considered other options for
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exploring asynchronous I/O pipelines with SmartNICs and found two related research paths.
First, we implemented a push-down/push-back query capability for SmartNICs that demonstrates
how SmartNICs can make decisions about whether to execute complex requests locally or defer
to other nodes (see Chapter 7). Second, we investigated mechanisms by which the SmartNIC
could leverage NVMe-oF to attach remote storage and mitigate ephemeral storage costs in
compute nodes (see Chapter 9).

Locality: Multiple research topics in our original proposal were based on an optimistic
assumption that current-generation SmartNICs would be tightly coupled with the host node’s
processors and would offer communication advantages over interactions with other nodes in the
system. However, early point-to-point network experiments with the BlueField-2 indicated that
there were only slight bandwidth advantages when the host communicated with its local card, and
that those situations may be difficult to exploit outside of benchmarks. While there still could be
locality benefits when factoring network congestion, the lack of a clear bandwidth advantage
precluded the need to extensively refactor the communication stack. Instead, we focused on
implementing a host-to-card transfer library that optimizes transfer times, simplifies host library
dependencies, and allows us to implement serialization tasks while data is transferred to the local
SmartNIC (see Chapter 8).
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1.3. Project Contributions

The following are the core contributions made in the Offloading Data Management Services to
SmartNICs project.

• Early BlueField-2 SmartNIC Characterization: We presented unbiased performance
evaluations of the BlueField-2 early in its product cycle and highlighted both the strengths
and weaknesses of the hardware.

• Establishment of 100+ Node SmartNIC System: Our team worked closely with Sandia’s
institutional computing team to ensure that the Glinda cluster’s SmartNICs were
successfully deployed. Glinda is one of the first SmartNIC clusters to have more than 100
nodes. We helped document the stand-up process to help other infrastructure teams work
through common problems and make better-informed decisions in their procurements.

• Adapted Faodel to the BlueField-2: We adapted the Faodel communication library to the
BlueField-2. To the best of our knowledge, this is the first time a composable data service
library has been adapted to work in a heterogeneous architecture.

• Offloading Serialization: We devised a technique for handling serialization at the same
time as data is transferred to the SmartNIC for transmission. This work recognizes that a
significant amount of overhead in ejecting data from a compute node involves gathering
data from different regions and reorganizing it into a network-transportable object. Our
approach defers serialization to the SmartNIC and reduces the number of host copies
required.

• Implemented a Distributed Particle Sifting Service: We constructed a particle sifting
service for HPC workflows that uses a large number of SmartNICs to reorganize particle
data streams into a form that is easier for analytics to consume.

• Demonstrated Apache Arrow’s Relevance to HPC: This project explored the use of
Apache Arrow to represent and process scientific data. While Arrow is not currently
appropriate for unstructured data, it is competitive with existing scientific computing
standards for hosting tabular data and enables researchers to take advantage of a wide array
of data science tools.

• Query Services for In-Transit Data: We constructed a query service for in-transit data
that uses statistics and machine learning techniques to predict whether it will be faster for a
SmartNIC to execute a query locally or simply return the raw data.

• Ephemeral Storage Offload: We demonstrated that NVMe-oF can be leveraged on
SmartNICs to enable in-node storage to be managed without interrupt and compute
penalties to the host. This work is a starting point for zero-overhead ephemeral file systems
in compute nodes.
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1.4. Project Artifacts

The Offloading Data Management Services to SmartNICs project produced several research
artifacts over the course of three years.

Peer-Reviewed Publications

• “Processing Particle Data Flows with SmartNICs” [16]: We presented work from Chapter 5 at the IEEE High
Performance Extreme Computing Conference in 2022 and received an Outstanding Student Paper award.

• “Extending Composable Data Services into SmartNICs” [17]: We presented work from Chapter 4 at the
Composable Systems Workshop at IPDPS and received a Best Paper award.

• “Opportunistic Query Execution on SmartNICs for Analyzing In-Transit Data” [18]: We presented query
work from Chapter 7 at the IEEE High Performance Extreme Computing Conference in 2023.

Ph.D. Dissertations

• Extending Composable Data Services to the Realm of Embedded Systems [19]: Jianshen Liu successfully
completed his Ph.D. defense at UC Santa Cruz in June 2023.

Technical Reports

• “Performance Characteristics of the BlueField-2 SmartNIC” [20]: This arXiv report measured performance
details for the BlueField-2 SmartNICs and is the basis for Chapter 3 1.

• “Glinda: An HPDA Cluster with Ampere A100 GPUs and BlueField-2 VPI SmartNICs”[21]: This Sandia
technical report describes the construction of Glinda and is summarized in Chapter 2.

• “Offloading Node-Local Filesystems in High Performance Computing Environments” [22]: John Shawger
documented the work presented in Chapter 9 in Sandia’s 2023 CSRI Summer Proceedings.

Poster Presentations

• Aldrin Montana presented “Decomposing Queries for Composable Data Services” at the Monterey Data
Conference in 2023.

Community Engagement

• Craig Ulmer and Matthew Curry served on the Supercomputing SmartNICs Panel Sessions in 2021 and 2022.
• Craig Ulmer and Matthew Curry served on the SmartNIC Summit Organizing Committee in 2022.
• Carlos Maltzahn organized the Computational I/O Stack Workshop at UC Santa Cruz in 2023.
• Craig Ulmer gave a guest lecture on SmartNICs to an undergraduate class at Slippery Rock University in 2023

as part of the DOE ASCR Computational Research Leadership (CRLC) Seminar Series.

Open Source Software

• Bitar2: We released a new library to simplify accessing (de-)compression accelerators.
• Faodel3: Sandia’s Faodel library was extended with support for Apache Arrow data.
• hod-carrier4 : We released a low-level library built on InfiniBand Verbs for providing high-performance

data transfer between host and SmartNIC. This library forms the basis of the SmartNIC Data Movement
Service described and evaluated in Chapter 8.

1https://www.nextplatform.com/2021/05/24/testing-the-limits-of-the-bluefield-2-smartnic/
2https://github.com/ljishen/bitar
3https://github.com/sandialabs/faodel
4https://github.com/sandialabs/hod-carrier
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1.5. Report Organization

This report provides a summary of the different contributions made in this project and is
organized as follows.

• SmartNIC-Equipped Computing Platforms: Chapter 2 describes the architectural
features of both the BlueField-2 SmartNIC and the computing platforms that were used in
this research project.

• Performance Characteristics of the BlueField-2 SmartNIC: Chapter 3 then explores
different benchmarks we conducted on the BlueField-2 to quantify its strengths and
compare it to other computing platforms. This work indicates that developers should expect
the Arm processors to be an order of magnitude slower than host processors.

• An Environment for Hosting Data Services in SmartNICs: Chapter 4 explores the
means by which we can create a reusable environment for hosting DMSSes in SmartNICs
through libraries such as Faodel and Apache Arrow.

• We then explore five different aspects of offloading services to SmartNICs:

– Leveraging Compression Hardware: Chapter 5 examines the compression hardware
accelerator found in the BlueField-2 and quantifies the impact this hardware has when
processing in-transit data using our Bitar library.

– Reorganizing Distributed Datasets: Chapter 6 details a case study where a
collection of distributed SmartNICs work together to reorganize particle simulation
data into a form that is easier for external analytics to consume.

– Querying In-transit Data: Chapter 7 explores query interfaces into SmartNICs to
allow users to inspect in-transit data. This work includes a prediction engine that
determines whether it would be quicker for the SmartNIC to execute the query
(“push-down”) or simply return the raw data back to the client (“push-back”).

– Optimizing Host-to-Card Data Transfers: Chapter 8 addresses performance
concerns of moving data between the host and its local SmartNIC and evaluates our
SmartNIC Data Movement Service for simplifying high-performance data transfers
between host and SmartNIC memory.

– Storage Services: Chapter 9 investigates options for attaching a node’s NVMe
storage to the SmartNIC via NVMe-over-Fabric in preparation for future work that
will offload ephemeral storage to compute nodes.

• Costs: Chapter 10 investigates the costs associated with procuring and operating a platform
with SmartNICs. This work estimates the BlueField-2 SmartNIC’s power use and discusses
the ramifications of operational cost on broader SmartNIC adoption.

• Conclusion: Chapter 11 provides our closing thoughts on the current state of SmartNICs
and lists opportunities for future work.
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2. SMARTNIC-EQUIPPED COMPUTING PLATFORMS

The availability of low-cost Arm and RISC-V IP cores has motivated several hardware vendors to
include reprogrammable resources in hardware products that have traditionally only offered fixed
functionality. For example, storage vendors sell computational storage devices (CSDs) that allow
users to perform data transformations at the disk to assist in deduplication and error
handling [23]. Similarly, network vendors are including user-programmable processing resources
in their network cards and switches to offload collective communication operations [24], enhance
security [25, 26], and present disaggregated storage to the host [27]. While the embedded
processors in these devices may be an order of magnitude slower than host processors, vendors
have demonstrated that there is great value in placing small pieces of embedded software in
hardware devices that are distributed throughout a computing platform [28].
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Figure 2-1. The (a) BlueField-2 DPU SmartNIC and its (b) SoC Architecture

In the Offloading Data Management Services to SmartNICs project we focus on leveraging
programmable network interface cards (SmartNICs) to host services that are useful for HPC
workflows. In this chapter we provide background information about the BlueField-2 SmartNIC
that was selected for this project and answer fundamental questions about its operating
characteristics based on our experiences with the hardware. We then describe two
SmartNIC-equipped platforms where we conducted our experiments in this project. First,
CloudLab is an NSF-funded cloud that provides university researchers with access to a wide
range of computing technologies. Second, Glinda [21] is a high-performance data analytics
(HPDA) cluster at Sandia that was deployed in the second year of this project.
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2.1. The BlueField-2 SmartNIC

The Offloading Data Management Services to SmartNICs project selected the NVIDIA
BlueField-2 DPU (data processing unit) to serve as the SmartNIC for this work because it
supplements a traditional HPC InfiniBand network interface with multiple, user-programmable
Arm processor cores. As illustrated in Figure 2-1b the BlueField-2 System-on-Chip (SoC) ASIC
contains a ConnectX-6 network interface, a PCIe switch, Arm processors, and hardware
accelerators. This section describes how the BlueField SmartNIC architecture evolved over time
and answers basic questions about how the card operates.

2.1.1. SmartNIC Evolution at Mellanox/NVIDIA

Mellanox Technologies, Ltd. had a long history of developing high-performance network
products before they were acquired by NVIDIA in 2019. Mellanox initially achieved success in
the early 2000’s by producing low-cost switches and network interface cards (NICs) for HPC that
implemented the InfiniBand network standard. In 2007 they expanded their customer base by
developing a NIC with a ConnectX ASIC that could communicate with either InfiniBand or
10Gb/s Ethernet. While the ConnectX family of ASICs has never been user programmable,
Mellanox has constructed specialty NICs such as the Innova Flex that feature FPGA resources
that security researchers can leverage to monitor and manipulate network traffic. In response to
requests by commercial cloud vendors to provide a programmable NIC that could help secure
cloud infrastructure, Mellanox developed the BlueField SmartNIC product line. The original
BlueField SmartNIC supplemented a ConnectX-4 network chip with 8-16 Arm processor cores
and 16GB of DDR DRAM. While the Arm processors had limited performance due to power and
thermal constraints, multiple researchers demonstrated that useful work can be offloaded into the
SmartNICs [29, 30].

The BlueField-2 SmartNIC was announced in 2019 and made available in late 2020. While the
BlueField-2 employs only half the processor cores of its predecessor, the cores run at three times
the clock rate (2.75GHz vs 800MHz). The BlueField-2 cards also include custom hardware to
accelerate cryptography, compression, and regular expression operations. NVIDIA offers
multiple variations of the card with different network speeds (25Gb/s-200Gb/s), network fabrics
(Ethernet or Ethernet/InfiniBand), and processor speeds (2.0GHz-2.75GHz). NVIDIA also
produces the BlueField-2X converged card, which combines a BlueField-2 DPU and an Ampere
A100 GPU into a single PCIe card. The converged card may be desirable in situations where
several GPUs are attached to a system through InfiniBand and users simply need a minimal
hardware path for accessing remote GPU resources.
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2.1.2. BlueField-2 Operating Modes

The Arm processors on the BlueField-2 SmartNIC have dedicated memory and boot an operating
system that is independent of the host. As illustrated in Figure 2-2, the BlueField-2 can be
configured to boot into one of two modes:

• Embedded Function Mode (default): In Embedded Function Mode traffic between the
host and the network is routed through software that runs on the Arm processor. Packet
processing software and applications such as Open vSwitch can be used to inspect,
manipulate, and route packets on behalf of the host. This mode is commonly used in
network security applications where the SmartNIC serves as an embedded hypervisor for
protecting the host system.

• Separated Host Mode: The BlueField-2 SmartNIC can alternatively be configured to run
with the Arms functioning as an independent host that shares the node’s network
connection. In this mode, the host exchanges data directly with the ConnectX network
interface. The host may communicate with the Arm processors through traditional network
operations, such as sockets or RDMAs.
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Figure 2-2. BlueField-2 Operating Modes

These two modes are commonly referred to as on-path and off-path processing of network data in
the literature. While on-path processing is desirable in streaming situations (e.g., packet
inspection), it can be challenging to implement higher-level functionality that involves complex
APIs or data that is larger than a self-contained message. Research efforts such as INCA [31]
seek to remedy these issues, but require additional support. Our experience with the BlueField-2
has been that InfiniBand does not work properly when Embedded Function Mode is enabled. As
such the BlueField-2 cards used in our work are configured to operate in Separated Host Mode
except where noted in this report.
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2.1.3. Software Development and the NVIDIA DOCA SDK

Once a BlueField-2 DPU is properly installed in a system, developers can log into it and use it in
a manner that is very similar to other hosts in the platform. The Ubuntu OS on the card includes a
gcc 9.4.0 compiler and build tools, and can be easily updated with other tools from Ubuntu’s
repositories. We have successfully built a full suite of additional tools and libraries from source
using LLNL’s Spack1. Host applications do not require special libraries to interact with the
BlueField-2 other than libraries used for traditional network operations (e.g., TCP/IP sockets or
ibverbs). The Data Plane Development Kit (DPDK2) does include device-specific support for the
BlueField-2 that streamlines IP communication with the card and enables users to take advantage
of the compression accelerator.

NVIDIA provides the DOCA SDK as a means of simplifying development costs when
constructing applications that leverage the BlueField-2’s capabilities. DOCA is a collection of
host and card libraries that target a mix of different use cases. While a central part of DOCA
focuses on creating a trusted environment for offloading security operations, the SDK includes
libraries that help optimize host/card data transfers and simplify access to the card’s accelerators.
However, users should carefully review the DOCA EULA3 before committing to DOCA. Item 4(c)
of the current EULA has the following restriction:

You may not disclose the results of benchmarking , competitive analysis , regression
or performance data relating to the SOFTWARE without the prior written permission
from NVIDIA Mellanox.

1https://spack.io
2https://www.dpdk.org/
3https://docs.nvidia.com/doca/sdk/eula/index.html

32

https://spack.io
https://www.dpdk.org/
https://docs.nvidia.com/doca/sdk/eula/index.html


2.1.4. General Questions and Answers

One of the challenges of being an early adopter of BlueField-2 equipment was that there was a
shortage of general information about the hardware. Table 2-1 provides a short list of questions
and answers about BlueField-2 hardware, based on our experiences.

Table 2-1. General Questions about the BlueField-2

Question Simple Answer

Software
Will software compiled on hosts with A72 Arms run on the BlueField-2? yes
Is the BlueField-2’s compression accelerator compatible with DEFLATE software? yes
Can the compression hardware work with streaming data? yes
Can the host access the compression hardware? yes
Can the Arm processor PXE boot its OS? yes

Resilience
Is the BlueField-2’s OS disrupted if the host reboots? no
Is the host’s OS disrupted if the BlueField-2 reboots? no
Does the BlueField-2 lose network access while the host reboots? no

Networking
Does host-to-card InfiniBand work if the port is physically unplugged? no
Are there (documented) mechanisms for the Arm to sense the host’s traffic? no
Does the host’s network traffic get priority over the Arm’s? no
Can the BlueField-2 VPI use InfiniBand on one port and Ethernet on the other? yes
Will the host and Arm both be visible if the SM does not support 2 LIDs/port? no
Does InfiniBand work properly when the card is in Embedded Compute Mode? no
Is the out-of-band network port required for the card to function? no

PCIe
Does the Arm list the host’s PCIe cards in lspci? no
Can the Arm access the host’s NVMe devices through NVMe-over-Fabric? yes
Is an external cable necessary for console access or firmware updates? no

Power
Does the BlueField-2 have a documented, on-card power monitor? no
Does the BlueField-2 really need the power/cooling listed in the specifications? yes
What is the stated maximum power of the BlueField-2? 64W
What is the idle power of the BlueField-2? 30W

Export Control Restrictions
Are there export control restrictions with the encryption hardware? yes
May foreign nationals at the labs use cards with encryption hardware? yes

1. We have not tested Embedded Compute Mode extensively, but in our firmware versions the InfiniBand port was missing or nonfunctional.
2. Cards with encryption hardware enabled are subject to export controls (Export Control Classification Number 5A002.a.2).
3. NVIDIA’s export regulation compliance page: https://www.nvidia.com/en-eu/networking/export-regulations/
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2.2. NSF’s CloudLab

One of the challenges of conducting systems research is that computing infrastructure is
expensive to procure and maintain. While the national laboratories have significant computing
resources available, lab policies limit how these resources are used to ensure that tax payer money
is not spent improperly. Recognizing that infrastructure costs were impeding scientific discovery
and collaboration in universities, the National Science Foundation established CloudLab in 2014
as a distributed platform where university researchers could conduct various cloud
experiments [32]. CloudLab hardware consists of 25,000 compute cores hosted at three locations:
the University of Wisconsin, Clemson University, and the University of Utah. After obtaining an
account through a university affiliation, a researcher may provision resources in the cloud and
control how both the systems and the network infrastructure are configured.

Given that CloudLab was an early recipient of BlueField-2 SmartNIC hardware, the UCSC
members of this project requested access and conducted a variety of experiments that influenced
the overall direction of this project. The initial BlueField-2 systems in CloudLab were connected
to a 100Gb/s Ethernet network in the cloud.

2.2.1. CloudLab Systems

One of the benefits of CloudLab is that it hosts a wide variety of architectures from different time
periods. Table 2-2 lists the architecture differences of different systems that we used for
comparisons in Chapter 3.

Table 2-2. Specifications of Stress-ng Test Platforms

Date Platform CPU Clock Cores DRAM Memory Type Network

2009 Q1 d710 Intel Xeon E5530 2.4 GHz 1 x 4 12GB DDR3-1066 4 x 1Gb
2012 Q2 r320 Xeon E5-2450 2.1 GHz 1 x 8 16GB DDR3-1600 2 x 1Gb
2012 Q4 m400 Armv8 Atlas/A57 2.4 GHz 1 x 8 64GB DDR3-1600 2 x 10Gb
2013 Q3 c6220 Xeon E5-2650 v2 2.6 GHz 2 x 8 64GB DDR3-1866 2 x 10Gb, 4 x 1Gb
2013 Q3 c8220 Intel E5-2660 v2 2.2 GHz 2 x 10 256GB DDR3-1600 2 x 10Gb, 1 x 40Gb IB
2014 Q3 c220g1 Intel E5-2630 v3 2.4 GHz 2 x 8 128GB DDR4-1866 2 x 10Gb, 1 x 1Gb
2014 Q3 c220g2 Intel E5-2660 v3 2.6 GHz 2 x 10 160GB DDR4-2133 2 x 10Gb, 1 x 1Gb
2014 Q3 d430 Intel E5-2630 v3 2.4 GHz 2 x 8 64GB DDR4-2133 2 x 10Gb, 2 x 1Gb
2014 Q3 dss7500 Intel E5-2620 v3 2.4 GHz 2 x 6 128GB DDR4-2133 2 x 10Gb
2015 Q4 m510 Intel Xeon D-1548 2.0 GHz 1 x 8 64GB DDR4-2133 2 x 10Gb
2016 Q1 xl170 Intel E5-2640 v4 2.4 GHz 1 x 10 64GB DDR4-2400 4 x 25Gb
2017 Q3 c220g5 Intel Xeon Silver 4114 2.2 GHz 2 x 10 192GB DDR4-2666 2 x 10Gb, 1 x 1Gb
2021 Q2 BlueField-2 Armv8 A72 2.5 GHz 1 x 8 16GB DDR4-1600 2 x 100 Gb/s

1. The BlueField-2 card is part number MBF2H516A-CENO_Ax
2. All platforms except the BlueField-2 ran Ubuntu 20.04 (kernel 5.4.0-51-generic).
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2.3. Sandia’s Glinda Cluster

In FY21 the Mission Computing Council at Sandia National Laboratories approved a request to
procure a new high-performance data analytics (HPDA) platform to support data-intensive
workloads. The architectural goal of this system was to create a sizable pool of single-processor,
single-GPU compute nodes that data scientists could use to prototype machine learning and deep
learning algorithms before scaling up to larger, many-GPU DGX systems that exist at Sandia. At
the request of the researchers in this ASCR project, the specifications for this procurement
required that the high-speed network interface cards for this system be implemented with
BlueField-2 SmartNICs. The intent of this request was to create a sizable SmartNIC testbed
within a cluster so that network researchers could better evaluate what role SmartNICs should
play in data-intensive workflows.

The procurement process successfully resulted in a 126-node system named Glinda that was
integrated into an existing HPDA platform named Kahuna. As documented in the Glinda stand-up
report [21], multiple factors hindered the deployment, including COVID supply chain issues,
motherboard PCIe timing issues with the BlueField-2, and power stability issues within the
compute nodes. Fortunately, all issues were resolved and the system was made available to
researchers in early 2022. As pictured in Figure 2-3 Glinda is comprised of seven racks situated
in the SNL/CA’s B902 data center.

Figure 2-3. Sandia’s Glinda HPDA Platform
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2.3.1. Glinda Compute Node

A Glinda compute node is an Atipa Procyon SE218-8G4 2U server. This server includes four
bays for hosting GPU accelerator cards and uses the Gigabyte G242-Z11-00 motherboard. As
illustrated in Figure 2-4, a compute node is composed of a single-socket EPYC processor, 512GB
of memory, an NVMe disk, a BlueField-2 DPU, and an NVIDIA Ampere A100 GPU. Fans in the
middle of the chassis pull cool air from the system’s front into the GPU bays and then route it
through the CPU, memory, and SmartNIC before venting the heat out the back. Power from the
front-middle GPU bay is routed to the BlueField-2 card through a PCIe power extension cable.
While the initial deployment exhibited timing problems during the boot process, targeted
firmware updates from Gigabyte and NVIDIA resolved PCIe issues and resulted in a stable
deployment.

Front Back

CPU

Ampere A100 GPU

GPU Bay 2 (unused)

GPU Bay 3 (unused)

GPU Bay 1 (unused)

Power used by BlueField-2

BlueField-2 DPU

ARM ConnectX-6

Fan

Fan

Fan

Fan
DRAM

Flash

U.3 Disk(s)
Airflow Airflow

Power Supply

GPU Bay 0

Figure 2-4. Overhead view of a Glinda compute node

Singra Testbed: A 16-node test cluster named Singra was also established at Sandia to aid in
development. Singra nodes are similar to Glinda nodes, with the exception that the Singra
motherboard features two AMD EPYC 7513 processors (2x32 Zen3 cores at 2.6GHz) instead of
one 7543P.

2.3.2. Processor Comparison

From a processing perspective, the Glinda compute node is interesting because it is a
heterogeneous architecture with three components: a traditional x86_64 multicore host processor,
an embedded Arm multicore processor in the SmartNIC, and a single-instruction,
multiple-threads (SIMT) GPU for data-parallel operations. Architectural details for these
processors are summarized in Table 2-3.

36



Table 2-3. Glinda Processor Details

Feature SmartNIC Host CPU GPU
Processor Arm A72 EPYC 7543P Ampere GA100
Physical Cores 8 32 108 SMs
Total Threads 8 64 -
Base Clock 2.75GHz 2.8GHz 765MHz
Max Boost Clock - 3.7GHz 1.41GHz
L1 I-Cache 384KB 1MB -
L1 D-Cache 256KB 1MB 192KB/SM
L2 Cache 4MB 16MB 40MB
L3 Cache 6MB 256MB -
Memory Capacity 16GB 512GB 40GB
Memory Channels 1 8 -
Memory Type DDR4-3200 DDR4-3200 HBM2
Memory Bandwidth 25GB/s 204GB/s 1,555GB/s
PCIe PCIe 4.0 x16 PCIe 4.0 x128 PCIe 4.0 x16
TDP 64W 225W 250W

1. NVIDIA uses an L1 I-cache in the A100 but does not disclose its size.
2. The A100’s 108 Streaming Multiprocessors (SMs) house a total of 6,912 FP32 CUDA Cores

From these numbers we see that while the clock speeds and memory interfaces are similar
between the SmartNIC DPU and the host processor, the host features more advanced processor
cores, more (4x) cores, more (40x) data cache, and substantially larger (8x) and faster (8x)
memory. In the same manner, the GPU has orders of magnitude more compute cores and much
more (7x) memory bandwidth than the host CPU. As such, we expect to see an order of
magnitude difference or more between each of these technologies.

2.4. Summary

The NVIDIA BlueField-2 SmartNIC is an HPC NIC that includes user-programmable processor
cores. While the SmartNIC can be configured as an in-line packet processing engine for Ethernet
networks, we focus on the separated host mode that treats the SmartNIC’s Arms as another
compute node connected to the network fabric. Users can execute software on these processors in
a manner that is similar to any other Linux node in the platform. This project has benefited from
two BlueField-2 platforms. First, nodes from NSF’s CloudLab system enabled us to conduct
early-access experiments. Second, Sandia’s Glinda platform provided a sizable system for
experiments involving over 100 SmartNICs.
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3. PERFORMANCE CHARACTERISTICS OF THE BLUEFIELD-2

The first step in evaluating what role SmartNICs can play in offloading data management and
storage services is understanding the strengths and weaknesses of current-generation hardware.
For this work we focus on the NVIDIA BlueField-2 SmartNIC because it features
user-programmable Arm processors and supports both Ethernet and InfiniBand networking. In
this chapter we explore four different aspects of the BlueField-2’s performance characteristics.
First, we measure the computational performance of the Arm processors with a collection of
microbenchmarks. These experiments help us understand how well the Arm processors perform
different classes of operations and allow us to compare the SmartNIC to different servers. Second,
we examine the processing headroom that is available when the SmartNIC is busy transmitting
large amounts of data to a 100Gb/s Ethernet network. These experiments demonstrate how
challenging it is for embedded processors to saturate high-speed Ethernet, but also confirm that
the BlueField-2 has sufficient resources for manipulating data at these speeds. Third, we measure
InfiniBand performance when different combinations of host and SmartNIC CPUs communicate.
These tests highlight the advantages of using InfiniBand instead of Ethernet and indicate that
there is a slight advantage for communication between a host and the Arm processors of the local
SmartNIC. Finally, we briefly describe some of the characteristics of the BlueField-2’s
computational accelerators. The compression unit is examined in greater detail in Chapter 5.

3.1. Computational Assessments

The goal of our first performance evaluation is to characterize the computational strengths and
weaknesses of the BlueField-2 hardware. This characterization is important because it helps us
determine scenarios where it may be profitable to offload computations to SmartNICs that are in a
workflow’s data path. It is often difficult to determine which hardware components in an
embedded device will have the most influence on performance without a great deal of
experimentation. Therefore this evaluation focuses on running a wide range of microbenchmarks
that help illuminate many different aspects of the hardware’s capabilities.

The stress-ng [33] tool was selected for this evaluation because it contains a large number
diverse thrashing functions (called “stressors”) that are designed to stress different software and
hardware components of a system. In contrast to integrated tests, each stress-ng stressor repeats
a specific operation continuously for a fixed period of time. For example, the msync stressor tests
the msync(2) system call while the CPU stressor tests the CPU’s floating-point, integer, and bit
manipulation performance separately, each with a different function. stress-ng contains a total
of 250 stressors that cover a wide range of resource and function domains, including disk I/O,
network I/O, DRAM, filesystem, system calls, CPU operations, and CPU cache. Inside
stress-ng these domains are used as classes to categorize stressors. Our evaluation collected
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performance measurements for several systems and analyzes differences at both the individual
stressor level as well as the broader class levels.

One challenge in comparing the performance of different stressors is that results are reported in
terms of “bogus operations per second” or bogo-ops-per-second. Each stressor simply counts the
number of times a particular operation can be performed in a given amount of time. While this
metric provides a means of comparing how well different systems perform the same task, it is
meaningless to directly compare the bogo-ops-per-second numbers of different stressors.

3.1.1. Experiment Setup

The stress-ng test was run on the BlueField-2 SmartNIC as well as a variety of host systems
available in CloudLab to better understand the computational capabilities of the card. As listed in
Table 2-2 the 12 host systems all used Intel x86_64 processors with the exception of the m400
system, which is based on the older Armv8 A57. While it may not be fair to compare the
BlueField-2 card’s embedded processor to general-purpose server processors, all of the servers
were at least three years old. The d710 is based on a 12-year old processor.

In addition to the CloudLab systems, we conducted the stress-ng experiments on a stock
Raspberry Pi 4B (RPi4) system with 4GB of RAM. While the RPi4 is not a particularly fast
embedded system, it is ubiquitous and serves as a reference hardware platform that others may
use for comparing results. Performance numbers reported in this section are normalized to the
RPi4.

On each platform, we sequentially ran all default stressors (a total of 2181), each of which ran for
60 seconds. Each stressor launches one instance on each online CPU core. We repeated this
execution on a platform five times and averaged the results. To calculate the relative performance
of a stressor for a platform, we divide the mean bogo-ops-per-second value for the platform by the
corresponding value obtained for the RPi4. Some stressors did not run on some platforms because
of a lack of support for a required capability. For example, the rdrand stressor did not run on the
BlueField-2 SmartNIC as well as on the m400 platform because the Arm CPU does not support
the rdrand instruction. The final results from all platforms are plotted in Figure 3-1.

1Some stressors were not executed on any platform because we did not use root privileges when running the tests.
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Figure 3-1. Box Plotting the Relative Performance of Different stress-ng stressors for 12 General-Purpose
Platforms and the SmartNIC. The run time of each stressor was 60 seconds. We used the 4 GB model of the
Raspberry Pi 4B as the reference platform for performance normalization. The MBF2H516A-CENO_Ax platform
is the model name of the BlueField-2 SmartNIC in question. The data points of the SmartNIC are marked with
triangles. The data points of the other platforms are plotted only if they are outliers (outside of the range of
the corresponding whisker). Stressors without any data points are because they are not executed, hence they
remain empty in the figure (e.g., aio and ioport).
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3.1.2. Individual Results Analysis

As we expected, the BlueField-2 card’s performance generally ranked lowest of all the systems
tested except the RPi4. However, there were multiple tests where the BlueField-2 excelled and
warranted a closer inspection, summarized below. The number in parentheses is the performance
ranking of the BlueField-2 for a given stressor among all test platforms.

• af-alg (#1): AF_ALG [34, 35] is the kernel crypto API user space interface. It allows user
programs to access the cipher and hash functions provided by hardware cryptographic
accelerators. The BlueField-2 SmartNIC contains multiple hardware accelerators for
cryptography such as the IPsec/TLS data-in-motion accelerator, the AES-XTS 256/512-bit
data-at-rest accelerator, the SHA 256-bit accelerator, and the true random number
accelerator. These all contribute to the outstanding performance on this stressor test.

• lockbus and mcontend (#1): The lockbus stressor keeps step forwarding a pointer while
injecting write barriers in between. The mcontend stressor starts a couple of threads to
concurrently update and read data residing in memory that is mapped to the same physical
page. These two stressors simulate aggressive memory access patterns that could be more
extensive than real-world programs. However, the BlueField-2 handles these memory
access contentions very well.

• stack (#1), mremap (#3), stackmmap and madvise (#5), msync (#6), mmap (#8),
malloc, and vm (#13): These stressors exercise the virtual memory subsystem of the OS
running on the SmartNIC. Although we see the performance of accessing some memory
interfaces on the BlueField-2 is significantly better than other servers, the most common
memory interfaces, such as mmap and malloc, do not perform well on this device.

• chattr and inode-flags (#5), ioprio (#6), file-ioctl (#7), dnotify and getdent (#12),
copy-file, dentry, dir, and fstat (#13): These stressors touch different interfaces provided
by the filesystem. We see a considerable variation among these tests. It is important to note
that the BlueField-2 does not show a performance advantage over other platforms when
accessing other common interfaces for metadata operations, such as getdent(2) and fstat(2).

• fp-error (#7), vecmath (#9), branch, funccall, bsearch, hsearch, lsearch, qsort and
skiplist (#11), longjmp and shellsort (#12), cpu, opcode, and tsearch (#13): These
stressors focus on logic and arithmetic operations and include a variety of sorting tests. The
cpu stressor performs a variety of math functions (e.g., manipulating bits, taking square
roots, finding the greatest common divisor, and computing Apéry’s constant). Surprisingly,
the relative performance of the BlueField-2 on this stressor is less than 1, meaning its
arithmetic performance is even worse than the RPi4. In contrast, the performance result of
the vecmath stressor is interesting because the BlueField-2 performs better than some of the
x86_64 CPUs on this test, including the D-1548 (Q4’15), the E5-2450 (Q2’12), and the
Xeon E5530 (Q1’09).

• cache (#11), icache (#13): The cache stressor thrashes the last-level cache of the CPU by
reading/writing content from/to the cache as fast as possible. In this test the BlueField-2
performs slightly better than the E5-2630 v3 (Q3’14), the E5-2660 v2 (Q3’13), and the
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Xeon E5-2450 (Q2’12). However, all are still worse than the RPi4. The reason for this
discrepancy is that the last-level cache on the BlueField-2 is the L3 cache, while the
last-level cache on the RPi4 is the L2 cache. The icache stressor tests the instruction cache
performance of the CPU by generating load misses using different sizes of memory pages.
Overall, the CPU cache on the BlueField-2 does not have competitive performance over
other platforms.

• sigsegv (#9), timerfd (#10), signal, clock, and timer (#11), itimer, sigpipe, sigsuspend,
and sleep (#12), nanosleep (#13): The performance of these stressors represents the
interrupt performance of the OS. These results indicate that software offloaded to the
BlueField-2 should avoid using the OS’s timing and interrupt interfaces when possible.

• readahead (#11), hdd and seek (#13): The local storage hardware of the BlueField-2 is an
eMMC flash device, while the CloudLab general-purpose servers have either
enterprise-class HDDs or SSDs. The relative I/O performance of the BlueField-2 is worse
than most of the other platforms and suggests that offloaded functions should minimize
their access to local storage.

• sem-sysv (#2), fifo (#9), eventfd, poll (#11), futex (#12), hrtimers (#12), clone, exec,
fork, nice, and pthread (#13): System V inter-process communication (IPC) [36] is a set
of mechanisms provided by Linux to simplify the communication between processes. The
sem-sysv stressor measures how fast a pair of processes can safely increment and decrement
a shared semaphore when mixing both legal and illegal arguments. The BlueField-2
SmartNIC’s performance was better than all x86_64 platforms in this test. This result may
be due to an architectural advantage of the Arm processors, as the m400 Arm and RPi
platforms also ranked higher than expected. However, other scheduler-related tasks did not
perform well on the BlueField-2. For example, the BlueField-2 scored poorly on the futex
stressor, which uses the futex(2) [37] system call to wait until a condition becomes true.

• sockabuse (#11), epoll, sockmany, sock, udp-flood, and udp (#13): These stressors test
the performance of the kernel network stack. The rankings of these stressors show the
networking performance of the BlueField-2 using the kernel stack is worse than most of the
other platforms in the comparison. This result is consistent with behaviors we observed in
later tests that measured processing headroom during packet transmission.

We list the performance rankings of the SmartNIC among all test platforms for each stress test in
Table 3-1. Considering the large number of stressors, we believe that the most useful way to
represent this information is to show the best and worst results for the BlueField-2. This ordering
provides us with guidance on the types of operations that should and should not be performed on
the BlueField-2.

As a means of determining whether thermal or caching effects were impacting performance, we
reduced the duration of each stressor from 60 seconds to 10 seconds and repeated the tests on all
platforms. Table 3-2 lists the stressors where the BlueField-2 changed more than two positions in
the overall rankings. The stressors with the biggest change are the CPU and CPU cache-related
stressors. For example, the bigheap stressor exercises the virtual memory by bumping up the
memory of a process with the REALLOC(3) [38] system call until an out-of-memory error is
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Table 3-1. Performance Ranking of the BlueField-2 SmartNIC Based on the Results of Stressor Tests

Stressor Stressor Classes Ranking Stressor Stressor Classes Ranking

mcontend MEMORY 1 locka FILESYSTEM | OS 9
splice PIPE_IO | OS 1 lockofd FILESYSTEM | OS 9
stack VM | MEMORY 1 sigsegv INTERRUPT | OS 9
dev DEV | OS 2 vecmath CPU | CPU_CACHE 9
sem-sysv OS | SCHEDULER 2 chown FILESYSTEM | OS 10
get OS 3 env OS | VM 10
mremap VM | OS 3 timerfd INTERRUPT | OS 10
chattr FILESYSTEM | OS 5 ... ... ...
inode-flags OS | FILESYSTEM 5 ... ... ...
madvise VM | OS 5 ... ... ...
personality OS 5 bad-altstack VM | MEMORY | OS 14
stackmmap VM | MEMORY 5 getrandom OS | CPU 14
sysinfo OS 5 inotify FILESYSTEM | SCHEDULER | OS 14
ioprio FILESYSTEM | OS 6 netdev NETWORK 14
msync VM | OS 6 rename FILESYSTEM | OS 14
brk OS | VM 7 resources MEMORY | OS 14
file-ioctl FILESYSTEM | OS 7 rseq CPU 14
fp-error CPU 7 schedpolicy INTERRUPT | SCHEDULER | OS 14
bigheap OS | VM 8 sigabrt INTERRUPT | OS 14
mknod FILESYSTEM | OS 8 sigchld INTERRUPT | OS 14
mmap VM | OS 8 vforkmany SCHEDULER | OS 14
revio IO | OS 8 vm-addr VM | MEMORY | OS 14

* We only show the stressors that BlueField-2 SmartNIC ranks ⩽ 10 or the last among all test platforms.

triggered. Furthermore, the rankings in the 60 second test are mostly higher than the stressors’
corresponding rankings in the 10 second test. This information suggests that the Arm CPU on the
BlueField-2 may need to be warmed up for optimal performance. Regarding the thermal
dissipation, we have not seen a noticeable impact it caused on the performance of the
BlueField-2.

Table 3-2. Changes in the Performance Ranking of the BlueField-2
SmartNIC in the 10s and 60s Tests

Stressor Stressor Classes 10s Test 60s Test
af-alg CPU | OS 7 1
bigheap OS | VM 14 8
branch CPU 14 11
brk OS | VM 11 7
cache CPU_CACHE 14 11
dirdeep FILESYSTEM | OS 13 9
klog OS 5 1
seek IO | OS 7 13
sigfd INTERRUPT | OS 14 11

3.1.3. Class Results Analysis

stress-ng categorizes all stressors into 12 classes. To evaluate whether the BlueField-2 has
performance advantages over other platforms in certain classes of operations, we calculate the
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average relative performance of the stressors in a stressor class for each class and each platform
and show the result in Figure 3-2. The relevant class definitions based on our understanding are
listed below:

• DEV: Stressors that test a series of Linux device interfaces under /dev, e.g., /dev/mem,
/dev/port, /dev/null, /dev/loop*.

• PIPE_IO: Stressors that test Linux pipe I/O interfaces, e.g., fifo, sendfile(2) [39],
tee(2) [40], and splice(2) [41].

• MEMORY: Stressors that test the memory subsystem of a machine. Example stressors are
malloc, memrate, stackmmap, and mcontend.

• INTERRUPT: Stressors that test different Linux interrupt signals. Example stressors are
timerfd, sigrt, timer, and sigq.

• CPU: Stressors that thrash different functionalities of the CPU such as encryption, atomic
operations, random number generation, and arithmetic calculation. Example stressors are
crypt, atomic, getrandom, cpu, nop, matrix-3d, and vecmath.

• OS: Stressors that test various general system interfaces. Typically, stressors of this class
also belong to some other classes. For example, the aforementioned stressor fifo, sigrt, and
malloc belong to this class as well.

• NETWORK: Stressors that test the network performance and functionality of the system.
Example stressors are sockfd, sockmany, rawpkt, udp-flood, and sctp.

• VM: These stressors focus on testing the virtual memory layer managed by the operating
system. Even though as a process running on Linux, it is hard to test the hardware memory
subsystem without testing the virtual memory; stressors in this class focus on some
high-level virtual memory operations such as mlock [42], msync [43],
swapon/swapoff [44], and madvise [45].

• CPU_CACHE: Stressors that can thrash the CPU cache. The previously discussed cache and
icache stressors belong to this class.

• FILESYSTEM: As the name indicates, these stressors test various filesystem interfaces.
Example stressors are iomix, xattr, flock, getdent, and fallocate.

• IO: These stressors try to test the raw storage performance as heavily as possible. Example
stressors are revio, hdd, sync-file, and readahead.

• SCHEDULER: These stressors test the capability and stability of the system scheduler.
Example stressors are zombie, nice, affinity, mq, spawn, and yield.

45



-200

-100 0

100

200

300

400

500

600

D
E

V
 (5)

P
IP

E
_IO

 (7)
M

E
M

O
R

Y
 (36)

IN
T

E
R

R
U

P
T

 (21)
C

P
U

 (24)
O

S
 (141)

N
E

T
W

O
R

K
 (7)

V
M

 (2
3)

C
P

U
_

C
A

C
H

E
 (18)

F
ILE

S
Y

S
T

E
M

 (35)
IO

 (4)
S

C
H

E
D

U
LE

R
 (33)

Average Performance (vs. ikoula/pi4_4gb)

cloudla
b/m

400

cloudla
b/dss7500

cloudla
b/c6220

ikoula/pi4_4gb

cloudla
b/d710

cloudla
b/d430

cloudla
b/c220g1

cloudla
b/c220g2

cloudla
b/m

510

cloudla
b/c8220

cloudla
b/c220g5

cloudla
b/xl170

cloudla
b/r320

cloudla
b/M

B
F

2
H

516A
-C

E
N

O
_A

x/S
E

P
E

R
A

T
E

D
_

H
O

S
T

_m
ode

Figure
3-2.A

verage
R

elative
P

erform
ance

of
S

tressors
in

a
S

tressor
C

lass
for

a
P

articular
P

latform
.

If
a

stressor
belongs

to
m

ultiple
classes,its

relative
perform

ance
value

w
illbe

added
to

each
ofthe

belonging
classes

in
the

calculation.The
num

ber
beside

the
nam

e
ofa

stressor
class

(along
the

x-axis)is
the

num
ber

of
stressors

in
that

class.
The

w
hisker

on
a

bar
is

the
sam

ple
standard

deviation
of

the
average.

The
M

B
F2H

516A
-C

E
N

O
_A

x
platform

is
the

B
lueField-2

S
m

artN
IC

in
question.

46



From Figure 3-2 we can see that the average performance of the BlueField-2 is on par with the
12-year-old x86_64 server d710 and the Arm server m400. However, since the average
performance of almost all stress classes has a large variation, the comparison between them
becomes less meaningful because the differences are not statistically significant. For example, the
I/O stressor class only has four stressors, but on each test platform the standard deviation of the
stressor results is almost as large as the average performance. These computational experiments
confirm that the BlueField-2 SmartNIC platform performs worse than general-purpose x86_64
platforms, and that statistically there is not a single class of operations that the BlueField-2 Arm
processors perform better than a traditional server’s processors.

3.1.4. Summary and Insights

To summarize our findings, the computational advantage boundary of the BlueField-2 is small.
Therefore, offloading functions to the SmartNIC requires careful consideration about the resource
usage and operations of the functions to ensure the design is tailored to the given embedded
environment. Specifically, the function should avoid containing operations working on local
storage and filesystem I/O, heavy CPU calculation, or relying on frequent software interruptions
and system scheduling. Most importantly, avoid using the kernel network stack whenever
possible by migrating the network stack to either user space or hardware-accelerated solutions.
With that being said, some operations are profitable to be offloaded to the SmartNIC such as
memory contention operations, cryptographic operations, and IPC operations. In general,
executing memory-related operations is better than executing CPU, storage I/O, and kernel
network-related operations on the SmartNIC. The exceptions to the CPU operations are
encryption and vector calculations. The former is due to the built-in accelerators in the SmartNIC.
The latter may be due to the optimization of the Arm CPU.

3.2. Network Assessments: Packet Processing Headroom During Ethernet Transfers

The goal of our second performance evaluation is to determine how much processing headroom is
available on the BlueField-2 card’s embedded processors when the SmartNIC is busy transmitting
network data at maximum speed using a 100Gb/s Ethernet network fabric. For this experiment we
run a packet generator on the SmartNIC and then insert a variable amount of delay between
packet bursts to model a scenario where computations are applied to a network stream. Finding
the maximum amount of delay that can be tolerated before the network’s performance drops gives
an estimate of the amount of time the hardware has available for offloading computations. Given
that we are seeking an upper bound on this time, it is useful to select a packet generator that yields
maximum network bandwidth with minimal overhead. After our initial experiments with user
space utilities such as iPerf [46], nuttcp [47], and Netperf [48] yielded suboptimal performance,
we transitioned to the Linux pktgen [49, 50] traffic generation tool. pktgen is a kernel space tool
that injects UDP packets directly into the kernel IP network stack.
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3.2.1. Benchmark Considerations

There are multiple benefits to using pktgen in this evaluation. First, we observed that its
performance was roughly 15% higher than the aforementioned user space benchmark utilities in
resource-restricted environments. Second, pktgen has built-in support for symmetric
multiprocessing and can start a kernel thread on each CPU core. This feature is important in
100Gb/s Ethernet environments where it is nearly impossible to saturate the network with a single
core (e.g., a single-instance of iPerf achieved less than 40Gb/s in a previous study [51]). Finally,
pktgen provides multiqueue support that allows a socket buffer’s transmission queue to be
mapped to the running thread’s CPU core. This optimization reduces the overhead of cross-core
communication and improves throughput.

There are three main options that we supplied to pktgen to adjust the settings of our experiments.
First, the “delay” option was used to regulate the minimum amount of time allocated to send a
batch (or burst) of packets. Varying this option provides us with a way to determine how much
additional processing the SmartNIC can perform before network throughput drops. Second, the
“clone_skb” option controls how often a network packet is reused for transmission. Setting this
option to zero removes memory allocation times. Future tests may use larger values to increase
allocation costs for communication. Finally, the “burst” option specifies the number of packets
queued up before enabling the bottom half of the network stack. This option can be used to adjust
interrupt coalescing.

3.2.2. Experiment Setup

pktgen threads use an infinite loop model such that when a pktgen thread is enabled, the
associated CPU core will be fully occupied. Therefore, measuring the processing headroom with
this tool requires two steps. In the first step, we need to measure the minimum configuration with
which the SmartNIC can achieve the highest possible bandwidth. To be specific, we set the
“clone_skb” to 0, and gradually increased the number of threads and the value of “burst” while
recording the throughput changes. Once we have found the minimum configuration, the second
step is to modify the “delay” setting to inject an artificial delay for each burst of packets. We find
the maximum delay the SmartNIC can withstand before throughput drops for a particular number
of threads. Thus, the maximum processing headroom available when transmitting a given batch
of packets can be calculated by subtracting the time spent on sending the batch of packets without
delay evaluated in the first step from the maximum delay evaluated in this step. Note that we kept
the default MTU value (1500B) in all experiments as this should be the most common scenario.
The experiments were conducted with the BlueField-2 card in both the separated host mode and
the embedded function mode.

3.2.3. Evaluation in the Separated Host Mode

Conducting the first step of the experiment involved performing a sweep of packet sizes to find
the minimum configuration settings that would generate the maximum bandwidth. Packet sizes
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ranged from 128B to 10KB. Packets larger than exactly 10KB caused the test process to crash.
Throughput measurements are presented in Figure 3-3.
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Figure 3-3. Throughput Results from the BlueField-2 SmartNIC in Separated Host Mode

The results for the BlueField-2 surprised us. While we knew that the BlueField-2 card’s
embedded processors would have trouble saturating the 100Gb/s network link, we expected that
many worker threads generating large packets would be able to fill a significant portion of the
available bandwidth. At best we found the card could only generate approximately 60% of the
total bandwidth. On the one hand, this evaluation shows that the packet processing task itself is
resource-intensive, even for the most advanced SmartNICs available nowadays. On the other
hand, we see that offloading functions to this SmartNIC without changing the traditional network
processing path used by these functions cannot achieve the best performance.

After accepting that the BlueField-2 can only realistically support approximately 50 Gb/s of
traffic, the next step in our evaluation was to measure how much delay can be added to packet
generation to determine how much processing headroom exists for this data rate. As presented in
Figure 3-4 the maximum delay before bandwidth degradation is approximately 320µs. If we
subtract the time required for each burst of transmission without delay from this delay, and
convert the result to the available CPU percentage per core per burst of transmission (10KB x 25
= 250KB), we get 22.8% of CPU time left for application logic on the Arm cores if we only aim
to use up to 50% of the full network bandwidth.

For comparison with a general-purpose processor, we ran a similar set of tests on the host where
the BlueField-2 card resides (CloudLab machine type r7525). The host has two 32-core AMD
7542 CPUs (2.9 GHz) and 512GB DDR4-3200 memory. We varied packet sizes from 128B to
1KB and saw that the 100Gb/s link could be saturated with a packet size of only 832B. The
results are presented in Figure 3-5. Thanks to the host’s much more powerful system resources,
saturating the network can be accomplished with only 5 threads (corresponding to 5 vCPU cores)
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Figure 3-4. Throughput Results from the BlueField-2 SmartNIC with Different Delay Configurations (8 Threads,
10KB Packets, 25 Packet Bursts)

and a burst size of 25. While additional threads had a minimal impact on throughput for the 832B
packet case, we observed a performance drop in larger packet sizes such as 1KB when more
threads were added. We believe this drop is due to resource contention.
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Figure 3-5. Throughput Results from the r7525 Machine in Separated Host Mode

Using the minimum configuration (5 threads and a burst of 25), we can then inject a small delay
per burst to see how well the full bandwidth can sustain on the host (Figure 3-6). Based on the
results, the host can afford 8µs delay per burst without using additional threads. This delay is
equivalent to <1% of CPU time available for handling application logic on these five cores.
However, this savings is not significant given that the host has an additional 123 vCPU cores
available for use by applications.

50



0

20000

40000

60000

80000

100000

0 2000 4000 6000 8000 10000 12000 14000 16000

T
H

R
O

U
G

H
P

U
T

 (
M

b/
se

c)

DELAY (ns)

1 threads

2 threads

3 threads

4 threads

5 threads

6 threads

7 threads

8 threads

Figure 3-6. Throughput Results from the r7525 Machine with Different Delay Configurations (832B Packets, 25
Packet Bursts)

3.3. Network Assessment: InfiniBand RDMA Performance

While 100Gb/s Ethernet performance is important for data centers and clouds, HPC users require
a high-speed interconnect such as InfiniBand to ensure that their parallel computing applications
minimize the amount of time spent exchanging data. InfiniBand hardware features low-latency
message queues and high-bandwidth remote direct memory access (RDMA) engines to allow a
low-level communication library to move data between user space applications and the network
fabric efficiently. While message passing libraries such as MPI must wrap a great deal of
functionality around an RDMA communication library to make InfiniBand usable to application
developers, it is useful to characterize the performance of the RDMA hardware because it gives
an upper bound for what the network is capable of performing.

This section characterizes RDMA performance for InfiniBand and focuses on three fundamental
questions. First, what are the raw RDMA transfer rates between different pairs of hosts and
SmartNICs in the network? These measurements provide insight into how quickly the hardware
can execute network operations and help us estimate whether the Arm processors have sufficient
compute power to saturate an InfiniBand network link. Second, is there a performance advantage
for a host to interact with its local SmartNIC compared to a remote host or SmartNIC? Substantial
locality benefits would motivate researchers to examine how communication software could
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better exploit a tight coupling between a host and its local SmartNIC. Finally, what are the
consequences of the BlueField-2 SmartNIC’s host and Arm processors sharing the same network
connection? While SmartNICs provide a cost effective way to supplement a platform with
additional processors, it is important not to impede the general communication performance of
the host processors.

3.3.1. Experiment Setup

A great deal of information can be determined about InfiniBand RDMA performance through the
use of the ib_send_bw tool. ib_send_bw is designed to move large amounts of data between a
pair of network endpoints and includes options for users to vary parameters such as the message
size and transmission method. For our first two questions we configured ib_send_bw to perform
a bandwidth test for a wide range of message sizes using different pairs of hosts and Arms. These
tests measure how quickly (1) a host can RDMA data to processors at the local SmartNIC, a
remote host, and a remote SmartNIC and (2) how quickly an Arm’s processors can RDMA data to
processors at the local host, remote host, and remote SmartNIC. For our third question we
constructed an experiment where host-to-host communication is performed at the same time
SmartNIC-to-SmartNIC communication takes place. The hosts in this experiment perform an
ib_send_bw sweep while the Arms on the SmartNICs run continuous bandwidth transfers with a
fixed message size. Adjusting the message size used in the Arm transfers allows us to scale the
amount of contention there is for the outgoing network link.

3.3.2. Fundamental RDMA Performance

The results of the first experiment are presented in Figure 3-7. As expected RDMA performance
starts at approximately 5MB/s for small messages and then ramps up to GB/s speeds when
messages are larger than 512B. In all six experiments the maximum bandwidth was reached when
messages were only 4-8KB in size. In contrast to our experiments with Ethernet, the SmartNIC
Arm processors had no difficulty saturating the outgoing network link. These performance curves
highlight how efficient RDMA is at transferring data from one application’s memory space to
another.

These measurements also illuminate the performance differences between local and remote
transfers. Once messages were large enough to saturate the network link, the host was able to
transmit data to the Arm processors on the local SmartNIC 6.99% faster than when it
communicated with remote host processors. Similarly, the Arm processors achieved 6.98% more
bandwidth when they communicated with the local host. These measurements indicate that there
is a slight performance advantage for intra-host communication.
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Figure 3-7. RDMA Bandwidth between Different Pairs of Hosts and SmartNICs

3.3.3. Consequences of Sharing a Network Link

The second RDMA experiment focuses on characterizing how the BlueField-2 SmartNIC behaves
when the host and Arm processors both need to transmit data on the network link at the same
time. We configured the Arm processors in a pair of compute nodes to use ib_send_bw to
continuously transmit data with a fixed message size and then ran an ib_send_bw sweep test on
the corresponding host processors. We repeated the experiment with four different message sizes
on the Arm processor to adjust the amount of contention the host and Arm processors would have
for the network link. As the results indicate in Figure 3-8, the communication performance of the
host processors decreases when the Arm processors increase their network traffic. When the Arm
processors generate enough traffic to saturate the entire link (4-8KB), the host is only able to
deliver 5.86GB/s of bandwidth, which is approximately half of the maximum data rate observed
in the previous host-to-host transfer measurements.
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Figure 3-8. Impact of SmartNIC Communication on Host Communication
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This experiment indicates that the BlueField-2 SmartNIC fairly distributes available network
bandwidth to communication endpoints on demand. From one perspective this is useful because it
enables applications to benefit from the network fabric whether they run on the host or the
SmartNIC. However, HPC users should be aware that services offloaded to a SmartNIC can
interfere with the communication performance of applications that run on the host. Future work
should explore whether users can schedule their host and service operations to ensure that
services do not delay latency sensitive operations on the host.

3.4. Hardware Accelerators

The BlueField-2 architecture features multiple hardware accelerators that may be relevant to
different data services. The following is a summary of our experiences with the different units:

• DEFLATE Compression: The BlueField-2 SmartNIC includes a hardware compression
unit that enables users to compress and decompress data at high speeds using the
DEFLATE algorithm. This hardware unit can be accessed from both the host and the Arms
and is most effective when a large amount of data is split into pieces that are then streamed
through it. Given the importance of performant compression in data services, we examine
the tradeoffs of working with this hardware in detail in Chapter 5.

• Regular Expression: Network security researchers often need an efficient mechanism for
applying a regular expression on a moderate amount of data. The BlueField-2 provides a
regular expression (RegEx) hardware unit that applies a precompiled rule in the rof2 format
to a data stream. Software for interfacing with this hardware is available in both DPDK and
DOCA. While we see great value in this hardware, we were unable to access it. We believe
that it is not available in separated host mode.

• SHA-2: The BlueField-2 includes a hardware acceleration unit for the secure hash
algorithm (SHA) defined in the FIPS 180-4 specification [52]. This hardware is capable of
generating cryptographically-sound hashes for data using the SHA-1, SHA-256, and
SHA-512 algorithms. While we did not explore the use of this hardware, researchers may
find it useful for quickly hashing a memory region to determine if contents have changed.

• Erasure Coding Offload: Mellanox began integrating Reed-Solomon erasure coding
offload hardware into NICs starting with the ConnectX-4 architecture. Storage services
often leverage erasure coding techniques to generate parity blocks that help a system repair
data when there is corruption. Given that the ability to offload this task to SmartNIC
hardware would be valuable, we explored different options for leveraging the BlueField-2
erasure coding hardware. Unfortunately, the previous ibverbs interface for accessing
erasure coding hardware has been deprecated in recent versions of the software and we
were unable to test the hardware. NVIDIA has indicated that erasure coding support will be
available in upcoming releases of the BlueField-3 card.

54



3.5. Summary

In this chapter we have explored the fundamental characteristics of the BlueField-2 SmartNICs.
Key findings of the work include the following. First, the Arm processors are able to perform a
wide variety of tasks, but users should recognize that they are embedded processors that are
roughly an order of magnitude slower than host processors at computational tasks. Second, it is
challenging for the BlueField-2 SmartNIC’s Arm processors to fully saturate a single 100Gb/s
Ethernet stream because of the overhead involved in managing TCP/UDP data in the OS stack. In
contrast the Arm processors can easily saturate a 100Gb/s InfiniBand connection due to the
efficiency of the RDMA hardware. Third, the ConnectX-6 on the BlueField-2 mixes traffic from
the host and Arm processors on demand and exhibits fairness when both endpoints generate data
at the same rate. Additional quality of service (QoS) mechanisms may be necessary to ensure
SmartNIC traffic does not impact host operations that are latency or bandwidth sensitive. Finally,
the BlueField-2 offers multiple hardware accelerators. While some of these devices may be
difficult to leverage in HPC applications, others such as compression are especially useful for data
management services.
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4. AN ENVIRONMENT FOR HOSTING DATA SERVICES IN SMARTNICS

The fact that SmartNICs add processing, memory, and storage resources to the network fabric has
motivated multiple research communities to investigate how the hardware can be applied to solve
problems in different application spaces. Researchers have discussed using SmartNICs to
improve infrastructure security in clouds [13], manage hardware resources in disaggregated
architectures [27], execute tasks in computational frameworks [29], and apply computations to
in-transit data in HPC applications [31]. A key challenge in all of these efforts is creating an
environment that makes it easy for users to take advantage of SmartNIC hardware for a specific
use case. This environment is the result of many design factors, including system access policies,
standards for representing data, the mechanisms by which user-defined computations are
executed, and the communication interfaces that enable data to be exchanged between host
applications and SmartNICs.

In this chapter we examine the operating environments that other SmartNIC researcher have
created for their use cases and define fundamental requirements that we believe are necessary for
creating an environment where data management and storage services can be offloaded to
SmartNICs. We then focus on adapting two existing software libraries to provide an environment
that meets our requirements. For computations we leverage Apache Arrow because it features a
robust data model and a flexible compute engine. For communication we employ Sandia’s Faodel
library because it includes simple but powerful primitives for transferring data and invoking
remote computations in a heterogeneous HPC platform.

4.1. Existing SmartNIC Application Environments

Researchers have proposed using SmartNICs to solve a variety of challenges that arise in different
problem spaces. Each of these efforts involves creating a suitable software environment for
supporting a particular workload. The following examples highlight how SmartNIC application
environments vary depending on the use case:

• Infrastructure Security: Over the last decade cloud vendors such as Amazon and
Microsoft have integrated SmartNICs into their platforms to help prevent compromised
hosts from being able to disturb other infrastructure in the platform. The SmartNICs in
these systems typically function as in-line network filters (e.g., via Embedded Function
Mode) and are not exposed to end users. As such, the SmartNIC application environment in
these systems is largely focused on executing packet-processing rules on streaming data
efficiently, distributing rule updates securely, and capturing runtime metrics in a way that
can be queried by remote management systems.
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• Disaggregated Resource Management: Multiple vendors have discussed using a
SmartNIC as an embedded server for managing collections of GPU or NVMe devices. For
example a BlueField-2 SmartNIC can be configured to serve as the PCIe root complex for a
headless PCIe expansion chassis. Similar to the infrastructure security example, users are
unaware of the SmartNIC’s presence in the system and simply acquire access to resources
over the network through management software. While the SmartNICs in these systems
could implement user-defined functions to reduce query results, application environments
for these systems have largely focused on tunneling data back to the user through protocols
such as NVMe-oF.

• In-Transit Computations: Researchers in the HPC community have proposed adding
compute hardware to NICs to allow computations to be applied to data as it moves through
the network [53, 31]. These approaches benefit from an environment where the SmartNIC
performs on-path processing (e.g., the BlueField-2’s Embedded Function Mode) and focus
on extending communication library standards to enable developers to designate how
computations are applied to data.

• Task Offload: Many researchers over the last decade have focused on task-processing
frameworks that enable a runtime system to determine when and where particular tasks
should execute in a distributed system [54]. In iPipe [29] researchers created an actor-based
framework that includes support for tasks to be offloaded to a BlueField SmartNIC. These
systems require an environment that allows the host to exchange work requests and data
objects with the SmartNIC, as well as a mechanism for relaying state information to assist
in scheduling. While users do not need to be aware of SmartNICs, they must define their
operations in terms that fit the framework’s programming model.

While each of these items is an appropriate solution for its respective problem space, none
provide an ideal environment for executing the data services that are the focus of this project. The
first two environments target infrastructure management and hide the SmartNIC from the end
user. Environments from the in-transit computations work are relevant but focus on shifting
targeted operations into the network path as opposed to hosting distributed, autonomous services
in the network fabric. Task-offloading efforts offer the most attractive environment for our
research, as they enable a way for service developers to generate work that can be scheduled on
host or network processors. However, a criticism of this approach is that it depends on the
existence of a task-processing framework that is actively supported and suitable for SmartNICs.
We are not aware of a task-processing framework that currently satisfies these two conditions.
Rather than build a new framework, we focus on creating an environment for hosting services that
is composed of existing computation and communication libraries.

4.2. Environment Requirements for DMSSes

While previous SmartNIC research has focused on accelerating simulation code performance, the
Offloading Data Management Services to SmartNICs project targets a broader perspective that
seeks to improve the manner in which complex, parallel workflows execute on a platform.
Working at the macro level simplifies some aspects of our work, as there is less urgency to find
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and offload tasks that are on the critical path of a single, complex application. However, the
challenge of targeting workflows is that by definition, data must be transitioned from the mind
space of one application to the mind space of another. These transitions may involve data
transformations and explicit handoffs that come at irregular intervals. As such, we advocate a
service-based approach to integrating SmartNICs into HPC environments, where applications use
services with well-defined APIs to orchestrate the data flow between applications. Based on our
previous experiences, we identify five basic requirements (R1−R5) we expect from an
environment where services execute in embedded devices distributed throughout the
architecture:

R1 Common Data Representation: A common data representation is necessary in order to
enable producers, consumers, and SmartNICs to be able to read and process in-transit data.
This representation must be able to support a variety of complex data structures and be
serializable into a contiguous memory allocation for network transmission.

R2 Data Parallel Computations: The environment must provide an easy-to-use computing
framework that allows users to define computational functions that are applied at remote
endpoints. This framework must be able to automatically map data-parallel computations to
available resources to maximize performance without burdening developers.

R3 System-wide Accessibility: The environment must provide communication primitives that
make it easy for any endpoint in the system (host or SmartNIC) to be able to directly
communicate with any other endpoint. Approaches that use the host system as a proxy for
its SmartNIC place unnecessary strain on the host and complicate communication
operations for developers.

R4 Resource Pools: Complex data services often use a collection of endpoints to implement
work in a parallel manner. The environment must provide a simple means of grouping host
and SmartNIC endpoints into named resource pools to simplify development.

R5 Dispatching Computations: Services may execute in a variety of ways. While some
services trigger work at fixed time intervals, others may operate by reacting to incoming
data or remote computation requests. Therefore a data service environment must provide
multiple mechanisms for users to dispatch computations at remote endpoints.

4.3. Resolving Computational Requirements

Our first two requirements for creating an environment for offloading data management and
storage services focus on our computational needs. Researchers in the HPC and data science
communities have independently constructed advanced, data processing libraries that greatly
complement the functionality of composable data service libraries. These libraries define robust
data structures for organizing information and are designed to exploit the parallel-processing
capabilities of modern CPUs and GPUs. Popular data processing libraries in this space include
VTK-m [55], Kokkos [56], and Apache Arrow [57]. We selected Apache Arrow for this project
because it implements a rich set of primitives for representing, processing, and transmitting
tabular data.
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4.3.1. Apache Arrow

Apache Arrow is an open-source1 project centered around an in-memory format specification and
serialization protocol for column-based table data. It is SIMD [58] and vectorization friendly and
relocatable, enabling zero-copy access in shared memory. The Arrow project includes a number
of libraries for efficiently processing this data that are implemented in multiple languages
(including C++) running on multiple platforms. In C++ an Arrow table is a two-dimensional data
structure with chunked arrays for columns and a schema. Tables can be processed without
copying using reference-counted record batches that hold contiguous portions of the data. Record
batches enable work to be spread across multiple processors. Moreover, because of the
contiguous property within a record batch, data processing can further take advantage of
data-level parallelism using SIMD instructions that are generally available on modern x86 and
Arm processors. Apache Arrow has been adopted by many research and commercial projects
such as Apache Spark [59], Dask [60], and Polars.

Specific aspects of Arrow that meet our requirements follow.

R1 Common Data Representation: Arrow’s tabular data model is suitable for describing
many kinds of scientific datasets and provides a useful standard for data exchange. In
addition to efficient, in-memory data structures for storing and processing tabular data,
Arrow includes serialization software for converting data to a standard, on-wire format.
This software simplifies development and improves interoperability with other libraries.

R2 Data-Parallel Computations: One of the benefits of Arrow’s robust, tabular data model is
that users can specify high-level queries that can be processed efficiently with
parallel-processing techniques. Specifically, Arrow includes a streaming data processing
engine named Acero [61] that processes complex user queries on tables. Acero extracts a
computational graph from a query and then maps the data flow to local processing cores.

4.3.2. Arrow’s Compute Performance

As a means of validating that Apache Arrow’s runtime does map work to parallel resources, we
constructed three computational kernels and measured their execution performance in different
hardware configurations. Each kernel performed a specific task on a large block of particle data.
A row of this data contains the identity, position, and velocity of a particle in a three-dimensional
space, with values randomly generated to reside in a unit cube. The first kernel (“maximum”) is
an aggregate function that computes the squared magnitude of each particle’s velocity and returns
the maximum value observed in all the data. The second kernel (“normalize”) is a projection
function that computes the magnitude and normalized form of each particle’s velocity. The third
kernel (“bounding box”) is a filter operation that removes all particles that are outside of a
bounding box. In terms of data flows, these kernels respectively reduce the input to a single value,
supplement the input by a constant amount, and reduce the input based on a filtering parameter.

1https://github.com/apache/arrow
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We conducted performance measurements on the Glinda platform that measured the amount of
time required for Arrow to process 220 particles using a range of threads. As illustrated in
Figures 4-1 and 4-2, Arrow improves in performance as the number of threads increases, with the
largest gains taking place at 2 threads. As expected the host offers better performance than the
SmartNIC for the same number of cores. However, host improvements diminish at approximately
8 threads. For the best performing configuration of each architecture, we observed that the host
was 4.55x and 7.91x faster than the SmartNIC for the maximum and normalize kernels.
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Figure 4-1. Arrow Performance for the Maximum Value and Normalize Kernels

For the bounding box kernel experiments, we adjusted input parameters to vary the amount of
data returned from 100% to 1%. As illustrated in Figure 4-2, increasing threads helps
performance because the algorithm still needs to scan all particles and make a simple filtering
decision. However, reducing the size of the bounding box improves performance in all but the
100% case because there is less data to manage. The 100% case is faster than the other scenarios
because the input table can be returned as the output table via smart pointer updates. The host was
9.92x faster than the SmartNIC in the 100% case, and 5.57x to 6.05x faster in other cases.
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Figure 4-2. Arrow Performance when Filtering by Bounding Box

4.3.3. Comparing Arrow and Kokkos

Given that Apache Arrow can map computations to parallel hardware resources, it is beneficial to
compare it to other performance portability libraries to evaluate its value to end developers. We
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focus on Kokkos for this work because Kokkos is widely used within Sandia and provides an
easy-to-use programming paradigm for expressing data parallel computations in C++. Users store
multidimensional data in a Kokkos “view” and specify kernels in lambda expressions that are
dispatched through parallel for, reduce, and scan functions. While Kokkos lacks Arrow’s I/O,
schema, and serialization features, it is straightforward to migrate data between Kokkos and
standard scientific computing file formats such as HDF5 or ExodusII.

We ported the three kernels from the previous section to Kokkos implementations (see
Appendix A) and represented our tabular particle data in a Kokkos view. Performance
measurements for the Arrow and Kokkos implementations on the BlueField-2 SmartNIC’s
processors are presented in Figure 4-3. The maximum kernel contains a single parallel_reduce
loop. While the Kokkos implementation is slightly faster, neither library received much benefit
beyond four threads due to the simplicity of the operation. The Kokkos implementation of
normalize requires an explicit allocation for output data and uses a parallel_for loop to convert
every input to an entry in the output. Arrow performed 1.98x faster than Kokkos with eight
threads.

1 2 3 4 5 6 7 8
Threads

0

10

20

30

40

50

60

70

80

Ti
m

e 
(m

s)

Maximum
Arrow
Kokkos

1 2 3 4 5 6 7 8
Threads

0

10

20

30

40

50

60

70

80

Ti
m

e 
(m

s)

Normalize
Arrow
Kokkos

1 2 3 4 5 6 7 8
Threads

0

10

20

30

40

50

60

70

80

Ti
m

e 
(m

s)

Bounding Box (25%)
Arrow
Kokkos

Figure 4-3. Arrow and Kokkos Performance on SmartNICs

Finally, the bounding box implementation for Kokkos requires three steps: a parallel_scan to
build an index of the particles to keep, a memory allocation for the output particles, and a
parallel_for to copy retained particles to the output view. The Kokkos implementation
typically yields better performance than Arrow when using a small number of threads. However,
Arrow typically provides the best overall performance when all threads are employed. Arrow’s
advantage is proportional to the amount of data returned by the query. Arrow is 1.94x to 1.16x
faster when 100% to 25% of the data is returned. However, Kokkos is 1.07x faster when only 1%
is returned.

Examining the Arrow and Kokkos implementations reveals other important distinctions between
the libraries. First, in situations where an algorithm is specified at compile time, it is significantly
easier to implement it in Kokkos. The Kokkos implementations of the three kernels involved
constructing simple lambda expressions and selecting the proper parallel function to dispatch the
work. In contrast the Arrow implementations involved constructing a graph of operators from
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Arrow’s C++ classes and applying the graph to an input table. Our second observation is that
Arrow is a superior choice if the system is designed to process queries that are defined at compile
time. Arrow enables users to write their query plans in a JSON format that can be consumed by
Arrow’s compute engine. Additional information about implementing complex queries for Arrow
is discussed in Chapter 7. Finally, in terms of data structures, Kokkos views are easy to access but
potentially dangerous, while Arrow tables are cumbersome but robust. Arrow’s ability to house
complex data tables and efficiently pass the data structures to other libraries without copies is
particularly appealing in this project.

4.4. Resolving Communication Requirements

The remaining set of environment requirements focus on communication challenges. A number
of research groups have constructed composable data service libraries for HPC platforms to
improve how data flows between workflow tools. These libraries include DataSpaces [3],
Mochi [1], and Faodel [12]. Composable data service libraries provide flexible communication
software that makes it easier to route data from one application’s memory space to another’s
without using the file system. An important aspect of this work is that users are presented with
higher-level primitives than are normally found in communication libraries. In addition to
low-level RPC and RDMA facilities, composable data service libraries include key/value stores,
REST API engines, and I/O drivers for interacting with external data repositories. These features
simplify development and enable users to reason about their data at higher levels of abstraction.
We selected Faodel for this project because it aligned with our communication requirements and
has a native C++ implementation that is easier to integrate with Arrow than other C-based
composable data service libraries.

4.4.1. Faodel

Faodel provides an example of a composable data service library that supports multiple HPC
platform architectures. Faodel is open-source2 C++ software that includes drivers for
InfiniBand [62], RoCE [63], and Cray Aries [64] network fabrics. Faodel is composed of several
components: an RDMA portability library (NNTI) for low-level communication; a state-machine
engine (OpBox) for managing asynchronous tasks; a memory-management library (Lunasa) for
tracking memory allocations for network-accessible objects; a directory service (DirMan) for
maintaining workflow configuration information; a key/blob service (Kelpie) for safely
transferring objects between servers; and a lightweight web server (Whookie) to allow users to
query a remote service. In prior work we have used Faodel for I/O staging and
checkpointing [10], coupling visualization applications to simulation codes, and insulating users
from platform-specific storage issues [65].

2https://github.com/sandialabs/faodel
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The following describe how Faodel meets our project’s environment requirements.

R3 System-wide Accessibility: Faodel assigns a unique identifier to each endpoint in the
system that any other endpoint can use to communicate with the endpoint. This identifier is
an IP address and port number for the endpoint’s Whookie HTTP server. The HTTP server
can be used to relay simple commands or establish RDMA communication channels with
the endpoint. Faodel’s Kelpie library provides an easy-to-use mechanism for safely
transferring key-labeled objects between endpoints using asynchronous RDMA operations.
Users can put, get, list, and delete objects on local or remote endpoints.

R4 Resource Pools: Kelpie uses a simple pool abstraction for grouping multiple endpoints
together for related work. A pool is defined by a name, a list of endpoint members, and a
distribution policy that determines how key labels are mapped to pool members (e.g.,
distributed hash table, map by producer rank, or map by an explicit identifier in a key). Pool
information is maintained in the DirMan server for a workflow and can be updated and
queried by the workflow’s owner. Endpoints can participate in multiple pools with the
caveat that developers must take care to avoid collisions between keys. An advantage of
these resource pools is that users can supply different configurations at runtime to modify
the behavior of their data flows.

R5 Dispatching Computations: While Kelpie is agnostic about data formats and
computations, it provides two methods for users to invoke their own computations at
endpoints. First, an endpoint may run its own main loop that periodically inspects state and
reacts to changes. Second, users may invoke computations on objects at remote endpoints
through user-defined functions. A remote computation may result in the remote endpoint
retrieving zero, one, or more local objects for the function, but will always return a single
object to the requester through RDMA mechanisms.

4.4.2. Faodel Stress Tests

As a means of comparing how well the BlueField-2 SmartNIC’s Arm processors perform
bookkeeping tasks for network operations, we conducted multiple experiments with Faodel’s
built-in stress-test tool. Similar to stress-ng, this tool implements a series of simple
microbenchmarks that represent common bookkeeping tasks that are needed by network layers.
Each test implements a single task that is repeated as many times as possible over a fixed period
of time to determine the rate at which a number of threads can perform the task. Faodel’s
LocalKV test uses a workload that employs multiple threads to put, get, and delete objects from a
local, in-memory, 2D hash map. Key names are intentionally picked to either seek or avoid
collisions. This test exercises common data processing tasks, such as hashing, reference counting,
lock handling, and managing memory allocations.

We executed the LocalKV test on a diverse set of platforms to observe how the BlueField-2’s
processors performed compared to other architectures. The processors included: a 32-core AMD
EPYC 7543P (Zen3) processor, a 68-core Knights Landing (KNL) processor, and BlueField-1
and BlueField-2 SmartNICs with 16 and 8 Arm cores respectively. As depicted in Figure 4-4,
aggregate performance (decreases/increases) as thread counts increase in the collision
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Figure 4-4. Aggregate Performance for Different Architectures in Faodel’s Key/Blob Stress-Test Tool

(seeking/avoiding) experiments. Current server processors are roughly four times faster when
using the same number of threads, and an order of magnitude faster when using all cores.
Interestingly, the BlueField-2 outperforms the data-parallel KNL processors, which were
employed in the previous generation of HPC platforms and had known performance
limitations [66].

4.5. Integration Challenges

We faced two integration challenges when combining Arrow and Faodel together to create our
environment for hosting data management services on SmartNICs. First, small portions of Arrow
and Faodel target processor-specific features that can be problematic in heterogeneous
architectures. For example, Faodel uses tcmalloc for memory allocations, which includes a
small amount of assembly code for critical functions. Fortunately, both libraries had previously
been ported to run on both x86 and Arm architectures. A larger question for us was determining
whether there would be compatibility problems when working in a heterogeneous environment
with different processor architectures. We conducted extensive testing to validate that data
handoffs between the two architectures functioned correctly.

Our second integration challenge involved finding a means of transporting Arrow data using
Faodel’s native objects. Our solution has been to construct a wrapper class that enables one or
more serialized Apache Arrow tables to be stored in a contiguous Faodel data object that is
suitable for RDMA network transfers. This class includes function that call Arrow’s IPC
serialization functions to convert between the two representations. A powerful feature of Arrow is
that there is minimal overhead to convert a serialized table into an in-memory form when working
with uncompressed data, as Arrow simply creates pointers into the original IPC data during
deserialization. As discussed in Section 7.2.1 this trait results in a constant deserialization time
for data and is particularly useful in situations where a consumer needs a way to quickly read a
dataset.
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4.6. Summary

A key challenge in integrating SmartNICs into a platform is creating an environment where users
can easily map their work to available hardware. For this project we focus on a service-based
approach to connecting different applications in a workflow and define compute and
communication requirements that we expect from our environment. We focus on Apache Arrow
for resolving our computational needs because it leverages a robust, tabular data model that can
be applied to multiple applications and is being actively developed by a large number of people in
the open-source community. For our communication needs, we have selected Faodel because it is
based on primitives that make it easy to create distributed data flows on HPC platforms. We note
that other communication libraries such as Mochi would also be applicable in this space.
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5. LEVERAGING COMPRESSION HARDWARE

Data compression is important in data-intensive applications because it reduces the amount of
data that needs to be transmitted through the network, cached in memory, and stored on disk.
Most big data I/O libraries (e.g., Avro [67], Parquet, ORC [68], and Arrow IPC) feature built-in
compression support for a variety of codecs. As such, any application that processes this data
must be capable of decompressing and compressing the data in a manner that is compliant with
the library’s data format.

The BlueField-2’s compression accelerator can efficiently compress and decompress data using
the DEFLATE algorithm [69]. DEFLATE is widely used and is a key part of standards such as
PNG [70], HTTP [71], TLS [72], and SSH [73]. The BlueField-2’s hardware implementation of
DEFLATE is compatible with the zlib library, which means that when needed, data compressed
by the hardware can be decompressed by software and vice versa. This interoperability is critical
in data management services because it enables data products to be consumed by tasks anywhere
in the system. The BlueField-2’s compression hardware is currently accessed through the Data
Plane Development Kit (DPDK) [74, 75], which is a library for constructing high-performance
data-plane applications on top of a variety of network hardware devices. The compression
hardware is designed to process a stream of individual data packets in an efficient manner and
includes DMA hardware to facilitate the movement of data between the accelerator and
memory.

From our experiences, it is difficult to stream application data through the DPDK compression
API in a way that achieves peak performance. In this chapter we discuss a software library named
Bitar that we constructed to maximize throughput of the compression hardware when working
with Apache Arrow data. Performance experiments involving three reference particle datasets
confirm that the hardware offers significant speedups over software.

5.1. Accessing the Compression Hardware

The BlueField-2 SmartNIC features multiple hardware accelerators that are attached to the Arm
complex of the SoC. These units are referred to as Generic Global Accelerators (GGAs) and
employ a memory-to-memory interface that streams a block of data from a source address
through an accelerator unit and back out to a destination address.

The BlueField-2’s compression hardware can be accessed through the Data Plane Development
Kit (DPDK) library. Unfortunately, this library is highly tuned for network operations and is
organized around a packet-processing model that can be cumbersome for other types of
applications. We faced several challenges in adapting DPDK’s compression functions to process
our Arrow data. First, individual data packets have a maximum size of 64KB. To compress larger
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amounts of data, developers must split input and output buffers into packet-sized segments and
then generate a packet that contains a list of compression commands for processing each segment.
Second, converting between contiguous and segmented data representations can result in extra
memory allocations and copies that disrupt the throughput of the data flow through the
compression hardware. Optimizing the pipeline requires a detailed understanding of both DPDK
and the hardware, and is tedious for users that simply want to (de)compress large blocks of data.
Third, embedded hardware environments have limited resources. Therefore, recycling resources
after each compression operation (while still managing errors) is extremely important. Finally, a
single Arm CPU core may not be sufficient for maximizing the performance of the compression
accelerator. As such, it is valuable to construct a pipeline that pre-allocates memory and divides
work among cores as needed.

5.1.1. Implementation: Bitar

To simplify accessing the compression hardware for data compression, we implemented the
Bitar [76] library on top of DPDK and Arrow. Bitar provides a convenient (de)compression API
and features zero-copy processing, synchronous and asynchronous operation, and
multicore/multidevice support. It is specifically designed to operate without root privileges, which
is uncommon in DPDK-based applications. Bitar also allows users to access the BlueField-2’s
compression hardware from either the host’s or BlueField-2’s processors.

5.2. Reference Particle Datasets

As a means of exploring the performance characteristics of the compression hardware with
scientific data, we obtained three large particle datasets from different sources:

• TrackML Particle Tracking Challenge (“Particles”) [77]: CERN supplied a particle
simulation dataset for a machine learning competition hosted through Kaggle in 2018. This
dataset contains 10 numerical fields per particle.

• OpenSky Network (“OpenSky Planes”) [78]: The OpenSky Network collects worldwide
ADSB information about the global positions of airplanes from thousands of volunteers
with radio receivers. An individual entry in this dataset is defined by 17 fields that are a mix
of numeric and text data.

• NOAA Maritime (“Ships”) [79]: NOAA provides historical AIS position data for ships
near the US coastline. Daily data was converted to a particle format that contained 17 fields
composed of a mix of numerical and string values.

Raw data was converted to an Apache Arrow format using PyArrow and stored in a Parquet file
format. Given that the BlueField-2 SmartNIC operates with 16GB of DRAM we set a 1GB limit
for the size of uncompressed data to use in our experiments. We decompressed each dataset,
selected the number of rows that would be closest to 1GB in size, and then recompressed the data
to serve as input to the experiments.
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5.3. Experiments

As a means of evaluating the value of the BlueField-2’s compression hardware we constructed
experiments to answer three fundamental questions: How much of an impediment is
software-based compression when working with serialized Apache Arrow data? How fast can
software- and hardware-based methods compress/decompress data in a threaded environment?
How does the compression ratio of the Bitar implementation compare to software-based
methods? All experiments in this section were carried out on a CloudLab [80] host that has two
AMD EPYC 7542 CPUs (a total of 64 cores), 512GB of DDR4 memory, and a BlueField-2
SmartNIC connected with PCIe 4.0 x16 lanes. Each experiment was run on all three reference
datasets with a maximum outstanding data window size of 160MB due to memory constraints
imposed by DPDK and the pipelined nature of the compression hardware.

Since Bitar has not yet been fully integrated into Arrow, our experiments compress Arrow tables
differently depending on whether software- or hardware-based compression is measured. The
software-based approach relies on Arrow’s existing compression mechanisms, which serialize and
compress each column independently before writing the final output buffer (i.e., “inner
compression”). In contrast, the hardware-based approach serializes the entire table and then
streams the data through the compression hardware (i.e., “outer compression”). While the former
is preferred, the latter is sufficient for network transfers. Furthermore, comparing the performance
of these approaches can help determine the benefits of integrating hardware compression into
Arrow.

5.3.1. Software Compression Overhead for a Single Thread

Our first research question focuses on whether software-based compression overhead is
significant enough to justify hardware acceleration. To answer this question, we constructed an
experiment that measures the amount of time required for a single thread to serialize and
deserialize Arrow data in software using different codecs. We intentionally excluded the memory
allocation time in this experiment given that it can be preallocated using historical knowledge of
output buffer sizes.
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The timing results presented in Figure 5-1 for the “Particles” dataset indicate that (de)serialization
in Arrow without compression is efficient, thanks to the zero-copy buffer design of Arrow’s IPC
format. However, involving either LZ4 Frame or Zstd compression introduces significant CPU
overhead and increases time consumption by one to two orders of magnitude. For example,
serialization without compression on the host takes 10 milliseconds, while adding LZ4 Frame
compression to the serialization increases the time to 223 milliseconds. We observed similar
results using the other two reference datasets. Given that compression is a significant impediment
to performance, we conclude that acceleration is worthwhile in performance-sensitive
applications.

5.3.2. Throughput in a Threaded Environment

Our second question focuses on how well the software- and hardware-based compression
methods perform in a threaded environment. One advantage of Arrow is that it automatically
parallelizes the packing and unpacking of tables by dispatching each column’s work to its own
thread. In Bitar’s case, multiple threads can be used to maximize the amount of work supplied to
the compression hardware. Since (de)compression is part of the (de)serialization process in
Arrow, we conducted experiments to observe how the (de)serialization throughput improves when
scaling (de)compression to use an optimal number of worker threads.

Figure 5-2. (De)serialization Throughput with Different Codecs and Degrees of Parallelism

Figure 5-2 shows the throughput measurements for the “OpenSky Planes” reference dataset.
Without limiting the number of threads in the experiment, both LZ4 Frame and Zstd used 35
threads during compression and decompression. In contrast, the hardware compression
throughput with Bitar was maximized when using only two threads, as we did not see higher
throughput with more threads. Note that, due to the slower memory subsystem of the SmartNIC,
the serialization throughput with Bitar on the host is higher than that on the SmartNIC. In general,
for this dataset Bitar outperformed software-based compressions in all cases.
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Figure 5-3. Maximum Throughput Performance on the Host for All Three Datasets

The maximum throughput on the host with different codecs for each of the three datasets is
summarized separately in Figure 5-3. To better illustrate the advantages of using the hardware
accelerator for (de)compression, we list the (de)serialization speedup with Bitar in Table 5-1
and 5-2. For compression with a single thread on the host, serialization with Bitar can achieve
between 4.6-8.6x higher throughput than serialization with software-based compressions
depending on the codec and dataset used. For compression with multiple threads, the use of Bitar
can speed up the serialization throughput on the host by 1-2x.

Table 5-1. Serialization Speedup with Bitar on the Host

Particles OpenSky Planes NOAA Ships
LZ4 Frame (single thread) 4.61 4.71 4.71
Zstd (single thread) 7.55 7.89 8.58
LZ4 Frame (multiple threads) 1.39 1.44 0.95
Zstd (multiple threads) 2.06 2.00 1.43

For decompression with a single thread on the host, using Bitar can speed up throughput by
3.3-10.8x. For multithreaded decompression, Bitar outperformed Zstd in all cases, but was
observed to fall behind LZ4 Frame in the case with a wide dataset that loaded in many columns
(i.e. 19). This is because the wider the dataset is, the more cores it can leverage during the
(de)compression phase. However, since deserialization with Bitar can already achieve greater
than 100 Gbps throughput (the maximum network speed), the marginal increase in throughput for
the software-based approach is minimal considering the heavy load placed on the CPU cores.

Table 5-2. Deserialization Speedup with Bitar on the Host

Particles OpenSky Planes NOAA Ships
LZ4 Frame (single thread) 4.46 3.30 4.59
Zstd (single thread) 10.84 9.51 10.20
LZ4 Frame (multiple threads) 1.78 1.13 0.65
Zstd (multiple threads) 2.72 2.52 1.45
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Conservatively speaking, based on these results, the throughput of the compression accelerator
rivals that of a software implementation that consumes all the cores of a modern CPU socket. For
example, although Bitar’s performance is lower than that of LZ4 Frame with 42 threads in the
case of testing with the “Ships” dataset, it is greater than the same codec’s performance with 35
threads when testing with the “OpenSky Planes” dataset.

5.3.3. Impact on Compression Ratio

Our third question focuses on quantifying how the compression ratio changes when switching
between different configurations of the software- and hardware-based compression methods. The
compression ratio is computed by dividing the compressed IPC buffer size for a particular
configuration by the uncompressed IPC buffer size. We expect the ratio to change in the Bitar
hardware implementation because (1) a different compression algorithm is used and (2) the
implementation applies compression on the entire table instead of individual columns.

The compression ratios for different configurations are presented in Figure 5-4. Results listed for
Bitar are presented for one and two threads to illustrate that splitting the work into multiple
threads does not have a significant impact on output size. The hardware-based compression using
the DEFLATE algorithm provides a compression ratio that is between that of the LZ4 frame and
Zstd codecs in all three datasets. These measurements confirm that offloading computations to the
BlueField-2’s compression accelerator does not result in a significant sacrifice in the compression
ratio.
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Figure 5-4. Compression Ratios for Different Compression Approaches. Black borders indicate hardware-
accelerated results.

5.4. Discussion

These performance results reveal that general-purpose CPUs are not particularly efficient in
(de)compression tasks as the single-thread performance is far lower than that accelerated by
compression hardware. Moreover, (de)compression using general-purpose cores cannot
effectively scale the performance with the degree of parallelism. In the database arena, recent
applications have begun to advocate the use of specialized storage devices that can perform
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transparent (de)compression to optimize throughput and latency [81, 82]. We believe that similar
efforts should be made to improve the performance of in-transit data processing. That is, instead
of occupying an entire modern CPU socket to gain optimal (de)compression performance,
applications can benefit more from running complex logic on these general-purpose cores and
offloading compression tasks to hardware accelerators deployed along the data path. For
distributed data analytics, having the ability to (de)compress data at near network speeds and with
only a fraction of the system’s available compute cores is essential for streaming data across
nodes.

5.5. Summary

While reducing the size of in-flight data may be valuable to many services, developers often avoid
compression due to software overheads and added operational complexity. Apache Arrow
resolves the latter by including compression as part of the serialization process and performing
per-column compression to spread work across multiple threads. In this chapter we have
described how the Bitar library enables us to leverage the BlueField-2’s DEFLATE accelerator to
compress Apache Arrow data. Using only two threads Bitar can (de)compress Arrow data faster
than a software-based version running with 35 threads. In studies with real-world particle data,
Bitar achieved similar compression ratios to the current codecs included in Arrow.
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6. REORGANIZING DISTRIBUTED DATASETS

HPC simulations operate on massive datasets that are distributed across hundreds to thousands of
compute nodes. For efficiency, it is imperative that a workflow retains this parallelism as much as
possible when migrating data between workflow stages and executing required data
transformations. The limited compute and memory resources of SmartNICs only amplify this
urgency. As such, offloading data management services to SmartNICs requires us to consider
parallel services that not only move data between host applications and SmartNICs, but also
between SmartNICs that work together on a common task.

Simulation Nodes Storage

Figure 6-1. An Array of SmartNICs Reorganizes Simulation Results in Multiple Stages

In this chapter we explore an example of how an array of distributed SmartNICs can work
together to reorganize simulation results into a form that is easier for analysis applications to
consume. As illustrated in Figure 6-1, an array of SmartNICs implements a multistage data flow
that gradually sorts a particle dataset until all related items are hosted at the same SmartNIC.
Sifting behavior can be controlled by passing configuration information to the service at start
time. We discuss design details for this particle sifting service and present performance
measurements from experiments conducted on 100 nodes of the Glinda cluster.

6.1. Reorganizing Particle Data

Scientists employ Particle-in-Cell (PIC) methods [83] in simulation codes to model a wide variety
of phenomena [84, 85]. PIC codes track the discrete state of billions of particles as they move
about and interact with a model of a physical environment. The sheer size of the particle data
precludes users from writing continuous snapshots to disk or maintaining more than a single time
step of data in the simulation’s memory. The ability to rapidly sample and export sizable portions
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of this data would provide users with an opportunity to apply external analytics in a workflow to
inspect how the state of individual particles evolves over time. One of the obstacles in exploiting
this data, however, is reorganizing it from the simulation’s perspective (i.e., temporal snapshots,
where data is sorted by time step and simulation rank) to a form that analysis applications can
leverage (i.e., particle tracks, where data is sorted by particle ID and time step). It is therefore
useful for a workflow to include data management services that can transform the data from one
representation to another.

(a) Temporal Snapshot of Positions (b) Particle Tracks

Figure 6-2. Analytics may Require Particle Data to be Adapted from Temporal Snapshot to Particle Tracks

The challenges associated with refining large particle datasets can be illustrated with an example
that uses the OpenSky Planes dataset discussed in Chapter 5. Consider a system that tracks a large
number of particles (e.g., airplanes) as they move about a geographic region, as depicted in
Figure 6-2(a-b). Each particle maintains a small amount of state information (e.g., airplane ID,
type, position, velocity, and tailwind speed) that is updated every time step. While examining
temporal snapshots of position data (a) may yield insight into particle densities for key areas and
the typical spacing between particles, looking at the trajectories of a subset of particles over time
(b) reveals more about the rules governing their behavior. Performing this conversion in real
systems is challenging for two reasons. First, systems that track large numbers of particles are
often memory constrained and require users to distribute data across many compute nodes.
Services that reorganize this data must be designed in a distributed manner that does not result in
individual nodes being overloaded with data. Second, particles migrate between compute nodes
in these systems as time progresses due to their movements in space or by load balancing in the
system. As such, assembling a single track may involve contributions from multiple compute
nodes over time.

In response to these challenges, we define multiple requirements for building a particle sifting
service. First, the service must be implemented in a distributed manner that spreads the data and
work across available resources to ensure efficient execution and memory utilization. Second,
processing elements (PEs) must be able to accumulate data and operate asynchronously to allow
the system to react to dynamic runtime characteristics. Finally, the service must minimize the
amount of time required for a simulation to inject a new wave of data.
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6.2. Distributed Particle Sifting Service Implementation

We constructed software on top of Faodel and Arrow to implement a multistage sifting algorithm
that uses a collection of SmartNICs (or hosts) as PEs in a linear pipeline. As illustrated in
Figure 6-3, simulation ranks sample particle data for the current time step and inject a copy of it
to the PE hosted at the local SmartNIC. Once a user-defined accumulation threshold is crossed,
the PE performs a compaction operation. During compaction, the PE (1) splits all of its
accumulated data into smaller objects based on bits in each record’s particle ID field and (2)
transmits each output object to its corresponding PE in the next stage of processing. Particles
become more sorted as they move through each of the stages.

While PEs can be mapped to any physical SmartNIC or host in the system, it is expected that
multiple, neighboring PEs will exist at a single location to reduce communication costs. The
actual steering of data between PEs is managed through a combination of a key-labeling scheme
and the use of Faodel pools to determine where data is routed. The key-labeling scheme
concatenates the next stage’s ID and the currently-matched particle ID bits to pick a unique
destination for the data. Additional source information is encoded in a separate portion of the key
to avoid collisions with the data from other PEs.

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

P2(0)

P1(1)

P1(0)

4

5

6

7

0

1

2

3

P0(0)

PE Pool Membership

1 3

Simulation Sifting PEs

Stages: 2

Logical Dataflow

P0(1)

P0(2)

P0(3)

P0(4)

P0(5)

P0(6)

P0(7)

1 3Stages: 2

Figure 6-3. Data Flow and Placement for Sifting Particle Data

Multistage sifting systems with low PE fanout and high numbers of compute nodes can easily
result in a few nodes in the system becoming overwhelmed with all the simulation’s data. To
mitigate this problem, we use Faodel’s pool abstraction to limit the number of nodes to which a
PE can distribute data. At start time, software generates a collection of pools in the cluster that
correspond to where different PEs reside. For example, the network depicted in Figure 6-3 shows
three stages and PEs that can split each object into four possible outputs. The 6th PE in stage 1

77



uses pool “P1(1)” to route to four possible destinations, while the 6th PE in stage 2 uses “P2(0)”
to route to eight possible destinations.

6.2.1. Injecting Particles to the Local SmartNIC

The first step in the particle sifting service is for each host in the simulation to sample its current
data and create a serialized Arrow object on the local SmartNIC. While there are multiple means
by which this task can be accomplished, our initial approach simply relies on the host to convert
the data to an Arrow format, serialize the data to a Faodel object in host memory, and then use
Faodel to transmit the object to the SmartNIC. We constructed a benchmark to quantify injection
overheads and varied the input data sizes from 1M–64M particles (37MB–2.4GB). Performance
measurements are presented in Figure 6-4. While the conversion and serialization portion of this
process could achieve rates of up to 5.24GB/s, Faodel’s single-object transfer performance of
1.77GB/s resulted in the overall injection rate being 1.32GB/s.
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Figure 6-4. Data Preparation and Injection Overhead

There are two significant shortcomings of this approach that hinder performance. First, the data
flow operates in a store-and-forward manner that does not allow for any kind of pipelining or
overlap. A better approach for a system involving network transfers would be to split the input
data into smaller pieces to allow multiple transfers to take place at the same time. Second, there
are two allocations along the critical path: one on the host to serialize the data and another on the
SmartNIC to receive the data. Consolidating the allocations and performing them in advance can
help streamline the data flow. We examine optimizations for injecting data into SmartNICs in
greater detail in Chapter 8.

6.2.2. Partitioning Particle Data

The second step in reorganizing the particle data is for a PE to perform a compaction operation
that partitions a collection of particles into smaller, related pieces that can then be transmitted to
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the next stage’s PEs. The partitioning algorithm examines a table and uses a small number of bits
in the particle ID field to determine which output table should hold each particle. We
implemented the partitioning as a multistep algorithm that executes a select query to generate
each output table via Apache Arrow. While far from ideal, this approach is acceptable in the
particle sifting service because of the low-fanout requirements of the distributed algorithm.
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Figure 6-5. Overhead for Partitioning without Compression

Performance experiments were conducted on a Glinda compute node that features a 32-core
AMD EPYC 7543P processor and a BlueField-2 VPI card. In the first experiment, we measured
the overall amount of time required for the host or SmartNIC to unpack, partition, and repack the
particle datasets from Chapter 5 using different compression algorithms implemented in software.
The partitioning algorithm split an input table into 2 to 16 output tables based on 1 to 4 bits of the
particle ID. As depicted in Figure 6-5, the host operates roughly four times faster than the
BlueField-2 when processing uncompressed data. Increasing the number of partitions increased
the processing time in most cases. A closer inspection of the “Particles” dataset revealed an ID
address space issue that resulted in a distribution imbalance. These issues can be mitigated by
hashing the ID or selecting ranges that are more meaningful to the application.
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The second experiment examines the impact of Apache Arrow’s built-in software compression
mechanisms on performance. These tests vary whether the input and output objects are serialized
with no compression, LZ4 Frame compression [86], or Zstd compression [87]. Figure 6-6
provides the timing breakdowns for unpacking, partitioning, and repacking 1GB of particle data
when performing a 4-way split. As expected, uncompressed data is significantly faster to read
than compressed data because Arrow can simply create pointers into the original serialized data
and avoid copies. Repacking the data, however, is similar in all cases. This overhead highlights
the fact that serialization by itself is an expensive operation.

Figure 6-6. Timing Breakdown for a 4-way Split on the BlueField-2 with Software-Based Compression
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Examining the output sizes of the individual, serialized partitions generated in the second
experiment provides greater insight into how partitioning affects compression results. Figure 6-7
provides a breakdown of how large each output partition is when using Zstd compression and the
lowest 1 to 4 bits of the particle ID to split the three input datasets. In the OpenSky Planes dataset,
the lower bits of the ID are diverse and yield equally-sized output partitions. There is a slight
decrease in the aggregate size of the output data as the number of partitions increases because the
individual partitions have more data redundancy that the compression algorithm can exploit.
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Figure 6-7. Aggregate Dataset Sizes when Varying the Number of Partitions and Compressing with Zstd

In contrast, the NOAA Ships and the Particles datasets have less diversity in the lower bits of the
particle ID field. As such, the partitioning algorithm splits the data into uneven portions. This
property is undesirable because it may create load balancing issues with downstream consumers
of this data. While the aggregate size of the NOAA Ships dataset improves as the number of
partitions increases, the Particles dataset does not as its IDs can only be split into three partitions.
These examples indicate that it is worthwhile for architects to understand the characteristics of
their data and select partition address bits that will result in balanced outputs.
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6.2.3. Distribution Challenges

The initial version of the particle sifting algorithm used Faodel’s built-in distributed hash table
(DHT) pool to distribute one PE’s output tables to the next stage’s PEs. While this approach
worked, we observed significant imbalances within different pools. Figure 6-8 illustrates how
load imbalances can impact the overall performance of the system. In this four-stage example,
several SmartNICs in the third and fourth stages are assigned significantly more data to process
than other SmartNICs in the system. A closer inspection revealed that our key-labeling scheme
for controlling routing in the merge tree generated keys with very similar names. Unfortunately
the DHT’s default hashing algorithm did not have enough entropy to ensure the keys would
properly be distributed across the pool’s members.

Figure 6-8. Key Hashing can Create Distribution Imbalances when Using a DHT

We solved this problem by creating a new pool type in Faodel that uses an explicit tag encoded at
the end of a key to control which node in the pool is responsible for hosting a particular key.
Users assign an integer value to keys to group related keys together. A new tag-folding table
(TFT) pool extracts the value from the tag and does a modulo operator to select the node in the
pool that owns the data. This strategy gives users a great deal of control over how data is placed
but still uses keys that are compatible with other pool types in Faodel. The results in the
remainder of this chapter are all based on the TFT pool.

6.3. Overall Performance Evaluation through an Impulse Response

The particle sifting service is designed to operate in an asynchronous manner that bubbles data
through the PEs as dictated by compaction policies. As a means of comparing the tradeoffs of
different architectural configurations, we constructed an impulse response benchmark that injects
a uniform amount of data to each of stage 1’s PEs and then measures the amount of time required
for each stage to perform a synchronous compaction of data. As such, this benchmark measures
the overall amount of time for one wave of data to flow through the entire system and be binned in
such a way that each particle ID will land on a particular SmartNIC no matter where it originated.
For these experiments we varied the distribution architecture and measured the amount of time to
fully distribute the data across 100 SmartNICs.
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6.3.1. Distribution Architecture

The end goal of the particle sifting service is to ensure that particles are distributed in such a way
that particles with the same ID for a given number of bits are binned together and that there are as
many output bins as there are SmartNICs in the system. The partitioning algorithm processes k
bits of the address space at each stage (i.e., 2k splits per stage). As listed in Table 6-1, the value of
k determines the minimum number of stages required to sift the data into at least 100 output bins.
Increasing the number of output bins makes data in a bin more specific, but comes at the cost of
increasing the bookkeeping the system must perform to track all the different bins.

Table 6-1. Determining the Minimum Number of Stages to Distribute to 100 Nodes

k Splits/Stage Minimum Stages Output Bins
2 22 = 4 4 22 ·22 ·22 ·22 = 256
3 23 = 8 3 23 ·23 ·23 = 512
4 24 = 16 2 24 ·24 = 256
5 25 = 32 2 25 ·25 = 1,024
6 26 = 64 2 26 ·26 = 4,096
7 27 = 128 1 27 = 128

Figure 6-9(a-c) depicts the different pathways for moving data between the 100 SmartNICs in
three different distribution schemes. These schemes split data (a) four ways (k=2) in four stages,
(b) 16 ways (k=4) in two stages, and (c) 128 ways (k=7) in one stage.

(a) 4 Stages, 4-Splits/Stage (b) 2 Stages, 16-Splits/Stage (c) 1 Stage, 128-Splits/Stage

Figure 6-9. Particle Distribution Strategies
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6.3.2. Overheads for Different Split Sizes

Figure 6-10 presents the split and publish timings required to process 100M particles on 100
SmartNICs. While performing 128 splits allows the work to be completed in a single pass, doing
so is slightly slower than doing 4-way splits over 4 stages of work. Our experiments indicate that
16 splits per object yielded the best solution for the SmartNICs. In most cases, split time was
more expensive than the publish time. Overall, the current implementation provides a relatively
uniform distribution of work and data across the nodes.
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Reducing first-stage overhead is important as it makes the sifting network more responsive to
injected data. We repeated the previous experiment on 100 EPYC 7543P Zen3 server nodes to
measure the first-stage performance for a range of splits. As depicted in Figure 6-11, the 32-core
host processors were roughly four times faster than the 8-core Arm processors.
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6.3.3. Scaling Particle Dataset Size

In the final set of measurements, we conducted impulse response tests for 10M, 100M, and
1,000M particles. The overall sifting times for 100 SmartNICs and 100 host systems are
presented in Figure 6-12. Performance scaled linearly in both cases. The host systems were again
roughly four times faster than the SmartNICs.
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6.3.4. Discussion

Implementing the partitioning operation with Apache Arrow highlighted its development
advantages. Arrow’s well-reasoned data primitives and existing support for serialization,
compression, and processing greatly simplified the implementation effort. Our implementation
worked with multiple datasets without modification, even though each dataset had different data
components and ID bitwidths. Although the current version of Arrow does not have all the
primitives of a higher-level library such as Pandas [88], it contains adequate primitives to
implement a variety of operations.

In terms of raw performance, the hosts are noticeably faster than the SmartNICs at sifting the
particle dataset in a distributed manner. However, there are multiple scenarios where lower
performance is acceptable, such as when time step snapshots take place infrequently or host
memory is highly constrained. In these examples it is valuable for the host to be able to rapidly
pass data to the SmartNIC, reclaim memory, and return to the simulation.

6.4. Summary

The particle sifting services provides an example of how a collection of distributed SmartNICs
can offload a data processing task from the hosts and add value to a workflow. SmartNIC memory
is used to stage result data and make asynchronous progress towards reorganizing data to a format
that is better aligned for analytic consumption. Faodel is valuable for this work because it
provides a basic set of primitives for moving data between groups of SmartNICs. The ability to
change the behavior of the system by supplying a configuration with different pool definitions
enabled us to fine-tune the implementation without having to rebuild the software. This work also
demonstrates that Apache Arrow is particularly useful for executing operations on in-transit data.
Arrow defines in-memory and on-wire representations of data and compute primitives for
transforming the data that automatically map to data-parallel hardware. While the current
SmartNICs are approximately four times slower than the hosts at reorganizing the particle data,
they are appropriate in situations where the host infrequently generates output snapshots and the
goal is to minimize the amount of overhead for I/O observed by the simulation.
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7. QUERYING IN-TRANSIT DATA

As demonstrated in the previous chapter, scientific computing workflows pass a large amount of
intermediate data between different tools and services that run in parallel on an HPC platform.
While this in-transit data may contain valuable information, workflows typically only save a small
fraction of the data to disk due to capacity and performance limitations of the parallel file system.
As more workloads are adapted to run in distributed network and storage devices, there is an
opportunity for researchers to embed analytics in the data path and harvest new insights from
in-transit data. What is needed is a mechanism that allows users to remotely inspect the dynamic
content that individual devices manage.

We advocate adding a robust and flexible query interface to embedded devices to enable users to
interact with their in-transit data. We see multiple use cases for query interfaces, including
capturing live statistics about data content in a workflow, troubleshooting platform load balancing
issues, verifying the correctness of workflow components, and debugging. In this chapter we
focus on the design of a query interface for SmartNICs that leverages Apache Arrow’s Acero
library to execute query plans on in-transit data. As illustrated in Figure 7-1 this interface
implements a decision engine at the SmartNIC to estimate whether it would be more profitable to
execute a query locally (i.e., push-down) or simply return the raw data back to the client for
evaluation (i.e., push-back). Characterizations of different parts of the end-to-end query path
allow the decision engine to make predictions about query execution that would not be feasible by
the client alone.

Host SmartNIC

query
exec

Decide: pushback

Result

Host SmartNIC

query
exec

Decide: offload

Result

Figure 7-1. Query Execution can be Pushed Down or Pushed Back

7.1. Query Interface for In-Transit Data

The intent of our query interface is to provide a simple mechanism by which users can
interactively probe a platform’s distributed resources and extract essential pieces of information
about the data they maintain. We define three specific requirements for this interface. First, users
must be able to express a wide array of complex queries that are dynamically defined at runtime.
Static approaches such as remote procedure calls (RPCs) that only allow users to define a fixed set
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of queries at compile time are insufficient. Second, the query interface must have interoperability
with existing tools and standards. The database and data science communities have
well-established standards and extensive tools for interacting with data stores. It is therefore
inappropriate to impose new paradigms or languages on users. Finally, the query interface must
be designed in a way that allows the system to optimize execution based on runtime constraints.
Given that complex queries may overwhelm an embedded device, it is imperative that the system
be able to offload or defer work as needed.

Our approach to building a query interface for SmartNICs is to construct a traditional query
pipeline that leverages existing standards and libraries as much as possible. This pipeline
encompasses three steps. First, users supply a SQL query that is translated to a logical query plan
by a query front-end. Second, software translates the logical query plan to a physical execution
plan by a query planner and optimizer. Finally, the execution plan is delivered to the proper
SmartNIC (or in the future, a collection of SmartNICs) and executed by a query engine. The main
contribution that the Offloading Data Management Services to SmartNICs project makes in this
area is an initial exploration in dynamically determining where execution should occur– on a
remote SmartNIC or on the local host. The decision is made using the physical execution plan
produced in the second step, and is discussed in more detail in Section 7.2.

7.1.1. Software Components

In our work, we leverage a number of open source libraries to implement remote queries:

DuckDB: DuckDB [89] is a popular, open-source analytical database that is capable of
translating a SQL query into a logical query plan.

Substrait: Substrait [90] is a cross-language specification for data computing operations and a
standardized format for query plans. This facilitates the transformation of logical query
plans into binary substrait plans in formats like protobuf or JSON, which are suited for
network transfer.

Apache Arrow: Apache Arrow provides a data standard for the environment that allows
developers from multiple realms to represent, process, and query their data. It utilizes a
tabular data model, which is suitable for many of our applications due to its thriving
open-source community, and includes built-in compute operators with SIMD optimizations
that can map to parallel processors. Most importantly, the Acero component of Apache
Arrow provides semantics for constructing and executing composable logical query
declarations in C++.

Faodel: Faodel’s Kelpie library provides a key/blob API that enables the exchange of
RDMA-transportable objects across a diverse set of communication endpoints.
Furthermore, it has the ability to trigger computations on objects located at remote
endpoints using user-defined functions. This feature facilitates the transmission of query
workloads to SmartNICs and the return of either complete or intermediate results
depending on the execution decisions made by the SmartNICs.
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7.1.2. End-to-End Data Flow

The end-to-end data flow for a push-down query is illustrated in Figure 7-2. First, a user’s SQL
query is converted to a binary Substrait plan. Second, Faodel’s remote compute operation is used
to dispatch the query to the communication endpoint that is responsible for housing the desired
data. This request contains a key for referencing the desired objects at the endpoint, an identifier
for a user-defined function (UDF) that processes Arrow data, and the binary Substrait plan. Third,
upon receiving this request, Faodel retrieves the relevant objects from the endpoint’s local
in-memory store and passes them to the specified UDF. The UDF we have constructed for this
project deserializes data from the objects into a single, in-memory Arrow table and then uses
Arrow’s Acero library to execute the Substrait plan on the table. The UDF serializes the tabular
results into an object that Faodel returns to the client’s remote compute operation. Finally, the
object is deserialized into an in-memory Arrow table that can be consumed by the user.
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Figure 7-2. The End-to-End Data Flow for a Push-Down Query using DuckDB, Arrow, and Faodel

7.2. Dynamic Query Decision Engine

In this section, we share our design of a decision engine that uses predictive scheduling to
determine if a query should be offloaded (push-down) or delegated back to the client (push-back).
The motivation for this work comes from the fact that queries vary in complexity and can return
different amounts of data. In queries that return a small amount of data it may be beneficial to
execute the query on the SmartNIC to minimize data transfers when the SmartNIC is not
saturated with other requests. Conversely, in situations where a query is complex or returns a
substantial amount of data it may be advantageous to defer execution to the client. A decision
engine is therefore required to assess current conditions and predict the best course of action.

A fundamental design choice in this work involves determining where the decision engine should
be placed in the end-to-end flow. Implementing the decision engine early on in the request at the
client side simplifies development at the expense of having limited information available to assist
in the decision. In contrast implementing the decision engine at the SmartNIC increases the
server’s complexity but enables the decision engine to take advantage of local information about
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the data and the SmartNIC’s current load. We advocate placing the decision engine in the
SmartNIC to allow data content and runtime information to be factored into the decision.

Our decision engine generates statistics about queries, data, and platform execution times to make
predictions about whether push-down or push-back execution will be faster for individual queries.
The decision engine uses the Apache DataSketches library [91] to rapidly generate
characterizations of in-transit data. One of the advantages of DataSketches is that it includes a
streaming mode that enables statistics to be updated as new data arrives. Furthermore, this library
provides parameters that enable the fine tuning of the estimation’s accuracy. This feature allows us
to evaluate the trade-offs between estimation performance and system resource consumption.

An inspection of the push-down and push-back data paths depicted in Figure 7-3 reveals that there
are three dominant overheads that must be factored into the decision process: serialization,
network transfers, and query execution. In the following subsections we describe each operation
in greater detail and present the methods by which we characterize and predict overheads in the
decision engine.
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Execution Time
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Figure 7-3. Conceptual Time Breakdown for Push-Down and Push-Back cases

7.2.1. Serialization Time

Each SmartNIC in the system manages a collection of in-transit data objects in on-card memory.
A data object holds one or more Apache Arrow tables that have been serialized to the Arrow
inter-process communication (IPC) format. As such the data must be deserialized into an Arrow
table before a query can execute, whether the work is done on the SmartNIC or at the client.
Fortunately, Arrow’s IPC format is designed to allow zero-copy reconstruction of an Arrow table
from an (uncompressed) IPC buffer simply by establishing reference pointers into the buffer. In
the case where a query is offloaded to a SmartNIC, it is also necessary to serialize the results into
an IPC buffer in order to allow it to be transmitted to the client.

Characterizing: As a means of characterizing serialization overheads, we constructed a synthetic
corpus of particle data tables and then measured the amount of time required to serialize and
deserialize the tables on both a host system and the BlueField-2 SmartNIC. Tables employed 9
fields and ranged in length from 1 to 225 rows. As depicted in Figure 7-4 (left), deserialization
performance is independent of table size, remaining nearly constant for both hosts and
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SmartNICs. In contrast, Figure 7-4 (right) indicates that serialization time depends on table
size.

Figure 7-4. Arrow Table Deserialization and Serialization Times

Predicting: The decision engine employs different strategies for predicting deserialization and
serialization overheads due to the performance characteristics of the two operations.
Deserialization time is estimated by using the constants that were observed from empirical
measurements. For predicting serialization overheads based on table row counts, we used our
synthetic corpus to train a random forest regression model. As indicated in Figure 7-5 this model
achieves a prediction accuracy with an error rate of less than 7%.

Figure 7-5. Error Rates for Serialization Time Predictor

7.2.2. Network Transfer Time

The second significant overhead in the system is the amount of time required to transfer table data
back to the client. Transfer times can be challenging to estimate because they involve multiple
tasks that may not be obvious to users. For example, returning data from a UDF in Faodel
involves three operations: the server sends a message with pointers to the result data; the client
allocates memory for the new object; and then the client performs an RDMA pull.
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Characterizing: To create an estimate of network overhead, we measured the round-trip time for
a client to request varying sizes of data from the SmartNIC using Faodel. As shown in Figure 7-6,
overhead is constant until tables are larger than 64KB.

Figure 7-6. Network Transfer Times for Retrieving Objects from a SmartNIC with Faodel

Predicting: Predicting the network transfer time requires us to estimate (1) how large (in bytes) a
table with a given number of rows will be when serialized and (2) how long it will take Faodel to
transmit a serialized table. In both cases empirical measurements were used to train a random
forest regression model. As illustrated in Figure 7-7 the model could infer the serialized size from
a particle table’s row count with an error rate of less than 6%. Similarly, Figure 7-8 indicates that
network transfer times could be estimated from the serialized data size with error rates within a
single-digit percentage.

Figure 7-7. Error Rates for Serialization Size Predictor
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Figure 7-8. Error Rates for Network Transfer Time Predictor

7.2.3. Query Execution Time

In database systems, cardinality estimation [92] is used to measure the cost of processing a query.
This approach estimates, or predicts, the count of every operation in a query and the result size of
each operation based on statistics describing the data (e.g., histogram and distinct counting),
without actually executing the query. For our use case, in-transit data on the SmartNIC, it is
necessary to progressively update and revise each histogram as new data is received, merged, or
migrated. Once the cost of a query workload is captured, we can combine the resource
availability (e.g., available thread count) of the target system (e.g., SmartNIC or host) to predict
the execution time of the workload. We also note that cardinality estimation on a SmartNIC
requires efficiency due to limited resources compared to typical instances of mature database
systems (e.g. PostgreSQL [93] or SparkSQL [94]).

Characterizing: For each query workload, we inspect the physical execution plan and generate
an operation vector to encapsulate the cost of the query workload, as illustrated in Figure 7-9. For
each batch of in-transit data, we use two data sketch algorithms from the Apache DataSketches
library [91] to derive the distinct counting and histogram statistics–Theta Sketch [95] and KLL
Sketch [96], respectively.

Our cardinality estimator currently supports queries that involve filtering, projection, aggregation,
or any combination of these operations. The estimator is also capable of estimating reducible
conditions to maximize the value of statistics generated for individual columns. For instance, the
condition ABS(vx) < 30 can be equivalently transformed to vx > -30 AND vx < 30, and can
utilize the histogram statistics for the vx column to estimate the cardinality satisfying this
condition. Moreover, the estimator can estimate queries that depend on multiple data sources.
This capability is particularly significant as it allows for the estimation of workloads querying
multiple data table partitions simultaneously on a single SmartNIC.
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Figure 7-9. Predicting Query Execution Time by Constructing an Operation Vector for a Query

Predicting: To convert an operation counts vector (see Figure 7-9) into execution time, we
trained a random forest model. Our training data consisted of query templates, representing C++
logical query plans, where placeholders were filled with randomly generated constants (i.e.
numerical predicates) to produce concrete logical plans. Each record in our training dataset
included operation counts, the number of rows in the queried table, the thread counts, and the
actual time for workload execution.

(a) Row Output Estimation (b) Prediction Time vs. Query Execution Time

Figure 7-10. Cardinality Estimation Performance for Eight Sample Queries

Figure 7-10(a-b) illustrates the performance of the cardinality estimator using randomly generated
test queries on data tables of varying sizes. The first evaluation (a) indicates that the majority of
predictions have an error rate that is within 1% of the true cardinality. However, some queries
such as Q8 have a higher error rate due to the aggregation of multiple statistics’ biases. For the Q8
query, the prediction uses histogram statistics for three filtering conditions and distinct counting
statistics for one aggregation condition. Furthermore, this query requires applying the distinct
counting statistics to a subset of the table resulting from the filtering, which can introduce
significant errors if the data itself is biased. Figure 7-10(b) measures the efficiency of conducting
the cardinality estimation on the BlueField-2 SmartNIC. These measurements indicate that a
prediction can be made in a fraction of the time that the query would take to execute. This
efficiency is essential for implementing the decision engine on the SmartNIC.
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A test suite of 16 different queries was constructed to measure the difference between predicted
and actual query execution times. The percentage difference for each query is presented in
Figure 7-11, with the number of threads used in each query listed at the base of each bin. It is
worth noting that our estimator supports operation counting for sub-conditions, which enables
fine-grained execution time predictions for complex, composable query workloads.

Figure 7-11. Discrepancy between Actual and Estimated Execution Times for Test Queries

7.3. Performance Measurements

Let us proceed with two case studies to exemplify the application of our decision engine in
estimating the beneficial execution location for a query workload. We began by using our
prediction models to estimate the time consumption associated with each factor shown in
Figure 7-3. This process considered both offloading and pushing back the workload to a host
equipped with two Intel Xeon 16-core E5-2698 CPUs running at 2.30GHz and 512 GB of
memory. We then measured the actual time consumption of the query workload by executing it on
both the SmartNIC and the host system. By comparing these data sets, we could evaluate the
effectiveness and accuracy of our decision engine, which makes scheduling decisions only based
on aggregating all the estimated time consumption factors. Note that in both case studies, source
data was contained in a single data object, thereby removing the need to merge multiple objects in
the push-back case.

In the first study, we analyze a query applied to a particle dataset comprised of 6,177,731 rows:

SELECT * FROM particles

WHERE x >= 0.7 and y < 0.3 and z <= 0.1
(CQ1)

The actual execution of this query results in 55,517 rows, or just 0.9% of the original data. The
cardinality estimator predicts 55,036.7 rows, showing a difference of 0.865% from the actual row
count. For this particular query, the operations vector is generated as follows:

Table 7-1. The Operations Vector Produced for Case Study Query CQ1

and_kleene filter greater_equal less less_equal select table_rows
12355500 6177730 6177730 6177730 6177730 55036.7 6177731
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The second study uses a query slightly different from the first one to examine the crossover point
where offloading and pushing back result in similar execution costs:

SELECT * FROM particles

WHERE x >= 0.5 and y < 0.55 and z <= 0.67
(CQ2)

Executing this query on the same dataset yields 1,136,847 rows, which represents 18.4% of the
original row count. The cardinality estimator predicts a return of 1,152,860 rows, indicating a
minor discrepancy of 1.41

The estimated and actual time consumption, aggregated from the time factors for each of the two
scenarios, are depicted in Figure 7-12. The query execution time for the SmartNIC is both
measured and estimated using six threads, whereas, for the host, it is measured and estimated
utilizing 32 host threads. This bias is intentionally introduced to account for the host’s superior
availability of computing resources. Despite this adjustment, the comparison reveals that for the
first query, choosing offloaded execution significantly reduces execution latency by 74.64% due
to low-percentage selectivity. This outcome can be attributed to the high network transfer cost
that dominates the total execution latency in the scenario of pushed-back execution. As for the
second query workload, execution latency is comparable whether conducted on the SmartNIC or
the host. Specifically, while the estimation slightly leans towards pushing back, keeping execution
on the SmartNIC reduces latency by 1.38% due to higher-percentage selectivity.

(a) Query CQ1 (b) Query CQ2

Figure 7-12. Analysis of Time Consumption for Offloaded vs. Pushed-Back Execution with Case Study Queries.

7.4. Summary and Future Work

Optimizing data query workload execution via dynamic offloading across systems of different
architectures is challenging. However, data management techniques open avenues for developing
a workload placement decision engine for SmartNICs, tailored to the HPC data processing
landscape. Importantly, our decision engine’s predictive approach may extend to embedded
systems with similar hardware capabilities (e.g., computational storage devices) to exploit data
service offloading benefits. It is worth noting that several factors, including network bandwidth
variation, system resource fluctuation, and performance interference among different data
services, could impact dynamic offloading performance. Addressing these factors remains vital in
our future work to enhance the efficiency of dynamic queries on SmartNICs.
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8. OPTIMIZING HOST-TO-SMARTNIC DATA TRANSFERS

As discussed in section 6.2.1, one of the challenges of leveraging SmartNICs in real application
flows is simply transferring data as efficiently as possible from the host to its local SmartNIC.
While RDMA benchmarks in section 3.3.2 indicate that there are performance advantages for
local communication, it is easy for these advantages to be lost when application flows must factor
in bookkeeping tasks such as memory allocation and registration, serialization, and
synchronization. What is needed is a simple communication library that provides a more direct
path for the host to exchange data with the SmartNIC in a customizable way. In this chapter we
describe the design, implementation, and performance evaluation of the SmartNIC Data
Movement Service (SDMS), which is a service that is designed to create a tight coupling between
a host and its SmartNIC. SDMS implements an asynchronous conduit for passing data to and
invoking operations on a SmartNIC.

8.1. Overview of the SmartNIC Data Movement Service (SDMS)

To facilitate the offloading of data management tasks to the SmartNIC, we have built the
SmartNIC Data Movement Service (SDMS). Applications running on the host use the Client API
of SDMS to send requests to an SDMS Server process running on the SmartNIC. The request
includes the information necessary to execute an RDMA READ operation from the SmartNIC
(i.e., memory address, number of bytes to transfer, and remote key). The SDMS server
acknowledges the request and transfers the data asynchronously.

SDMS is built on the low-level primitives provided by hodcarrier 1, a simple library built on the
InfiniBand Verbs interface that enables high-speed transfer of data from host to SmartNIC
memory. SDMS adds functionality (e.g., support for buffer caching, serialization) to provide a
purpose-built service for transferring application data to the SmartNIC as part of offloading data
management services. The basic theory of operation is that applications will use the SDMS Client
to transfer raw output data to the SDMS Server running on the SmartNIC to facilitate offloaded
data management and analysis.

1https://github.com/sandialabs/hod-carrier
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Figure 8-1. Data Flow for the SDMS library

Figure 8-1 depicts the basic sequence of operations for transferring data from the host (client) to
the SmartNIC (server). A detailed description of the steps involved in performing a data transfer
is provided below:

1 When the application has data that is ready to transfer, it calls the request_transfer
function of the SDMS Client API. The request includes: (i) the memory addresses of the
buffers to transfer; (ii) the size of the buffers to transfer. and (iii) the remote keys for the
RDMA transfer of the buffer.

2 The SDMS Client sends the request to the SDMS Server running on the DPU (represented
by the solid arrow pointing from left to right). The SDMS Server running on the DPU will
acknowledge the request to the Server (represented by the dashed arrow pointing from right
to left).

3 Based on the contents of the request, the SDMS Server acquires a destination buffer for the
transfer and prepares an InfiniBand Verbs work request for executing an RDMA Read
operation (IBV_WR_RDMA_READ opcode).

4 After the buffer has been transferred and processed, the SDMS Server notifies the SDMS
Client that the transfer is complete and the source buffer can be reused. Completion
notification is done lazily; the notification is piggybacked on the next message sent to the
SDMS Client (e.g., a transfer request acknowledgement).

The SDMS library was designed to offload data transfer to the greatest extent possible from the
host to the SmartNIC. The only host participation that is required is to prepare the buffers for
RDMA transfer (e.g., ensuring that the memory has been registered) and to send a message to the
SDMS Server to request the transfer. All other processing occurs on the SmartNIC.

8.2. Performance Characterization of the SDMS

To understand the performance of our implementation of SDMS, we characterized the data
transfer bandwidth and host latency of hodcarrier using a simple benchmark. These results
demonstrate that SDMS provides high-performance data transfer from host to SmartNIC.

98



8.2.1. Comparisons with qperf

Using qperf [97] enables us to evaluate the extent to which SDMS is able to use the full network
bandwidth. Figure 8-2 compares the bandwidth of SDMS measured with two different
configurations of qperf. The SDMS data points represent the average over 10 trials. The qperf
data points represent the average reported by the qperf tool. Bandwidth benchmarks, including
qperf, initiate large numbers of transfer operations at once in an attempt to saturate the network
and ensure high bandwidth even for modestly sized messages. The number of requests posted at
once in qperf is controlled by the value of NCQE. By default, the value of NCQE is 1024 and is not
modifiable at runtime. Initiating a large number of transfers establishes a valuable upper bound,
however, users commonly want to transfer a small number of buffers at a time and are thus not
able to achieve this upper bound (especially for small message buffers). As a result, to get a more
realistic upper bound on network bandwidth, we modified qperf to allow the value of NCQE to be
set by the user at runtime.

512B 4KiB 32KiB 256KiB 2MiB 16MiB 128MiB 1GiB
Buffer size

0 b/s

20 Gb/s

40 Gb/s

60 Gb/s

80 Gb/s

100 Gb/s

Ba
nd
wi
dt
h

qperf (NCQE = 1024)
qperf (NCQE = 1)
SDMS

Figure 8-2. Comparison of Bandwidth Measurements for hodcarrier and the qperf Benchmark

The orange line in Figure 8-2 shows the bandwidth measured by the default qperf as a function
of the size of the message buffer for the default value of NCQE (1024). This version of qperf is
able to achieve full network bandwidth (100 Gbps) for message buffers that are between 8 KiB
and 4 MiB in size. For messages larger than 4 MiB, the achievable bandwidth drops by
approximately 19%. The blue line shows the bandwidth measured by qperf with the value of
NCQE set to 1, to approximate the case where a user is sending one buffer at a time. These data
show that the measured bandwidth is significantly lower for single message buffers, especially for
small message buffers. We expect that, in most cases, applications will request the transfer of a
small numbers of buffers at a time (e.g., once per timestep). As a result, the measurements with
NCQE equal to 1 represent a fairer baseline to compare the performance of SDMS against. The
turquoise line represents bandwidth measured using a simple SDMS benchmark. To ensure a fair
comparison with qperf, we implemented this benchmark to ensure that buffers are registered and
reused to minimize that impact of memory allocation and registration costs. The data in this
figure show that, for messages that are 128 KiB or larger, the bandwidth measured with SDMS is
greater than 85% of the bandwidth measured with qperf (NCQE = 1).
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8.2.2. Impact of Memory Alignment on Bandwidth

The SDMS server uses two principal optimizations to ensure high performance. The first is to
allocate memory buffers with memalign to align buffers to page boundaries. The second is to
pre-post and cache registered server buffers. Additionally, another potential optimization is to
ensure that the memory buffers passed to the SDMS client are page-aligned (i.e., allocated with
memalign). Figure 8-3 characterizes the impact that each of these optimizations have on the data
transfer performance (i.e., bandwidth). These two subfigures evaluate eight different
combinations of these three different optimizations.
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(a) memalign Server Experiments
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Figure 8-3. Impact of Memory Alignment on Bandwidth

The left figure (Figure 8-3a) shows the results when server buffers are allocated on page
boundaries with memalign. The right figure (Figure 8-3b) shows the results when server buffers
are allocated with malloc and are not guaranteed to be page-aligned. Within each figure there are
results of four combinations of the client buffer allocation strategy (memalign or malloc) and
buffer caching strategy (enabled or disabled). These data show that the critical optimization is to
use server buffers that are page-aligned. The peak bandwidth achieved for trials with
page-aligned server buffers is more than 25% higher than the peak achieved with
non-page-aligned server buffers. For page-aligned buffers, these data also show that buffer
caching may yield an additional improvement. For 1 MiB server buffers, buffer caching can
increase the achieved bandwidth by nearly 6%. For non-page-aligned server buffers, using
page-aligned client buffers may improve bandwidth by 5% or more.
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8.2.3. Impact of Page Alignment on Host Overhead

The SDMS client was expressly designed to minimize the host overhead incurred by data
transfers. Figure 8-4 shows the time (minimum, maximum, and average) required on the host to
initiate the transfer. The left subfigure (Figure 8-4a) shows the data for the case where client
buffers are page-aligned and the right subfigure (Figure 8-4b) shows data for the case where client
buffers are not guaranteed to be page-aligned. Overall, these data show that the average time
required to initiate a data transfer is approximately 300 µs. These data show that the host
overhead is (unsurprisingly) independent of the size of the buffer being transferred. The value of
the Pearson correlation coefficient is 0.107 (very weak positive correlation) for experiments that
use page-aligned client buffers and -0.332 (weak negative correlation) for experiments that use
client buffers that are not guaranteed to be page-aligned.
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(a) memalign Client Experiments
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Figure 8-4. Host Overhead Based on Whether Client Buffers are Page-Aligned or Not
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8.3. Serializing Application Data

The output data generated by many applications will need to be serialized in order to be moved
off-node. Within the context of this report, we are interested in understanding how offloading
parts of the serialization process to the SmartNIC may affect performance. Figure 8-5 contains
graphical depictions of four different approaches to serialization for a simple example data layout
that contains three arrays located in host memory:

(a) No Serialization: No serialization is performed to provide a baseline for the serialization
approaches examined in this subsection.

(b) Host Serialization: The application output data is serialized by the host and a serialized
buffer is transferred to the SmartNIC.

(c) SmartNIC Serialization: The raw application data is transferred directly to the SmartNIC
and the SmartNIC performs the serialization operations.

(d) Inflight Serialization: The server buffers are managed to allow the application data to be
serialized as part of the transfer from the host.

HOST

DPU

(a) No Serialization

HOST

DPU

(b) Host Serialization

HOST

DPU

(c) SmartNIC Serialization

HOST

DPU

(d) Inflight Serialization

Figure 8-5. Four Approaches to Serializing and Transferring Three Arrays to a SmartNIC

8.3.1. Performance Comparisons

To understand the costs associated with these serialization approaches, Figure 8-6 shows the
results of our serialization benchmark for four different approaches to serialization. Based on the
results of our experiments in Section 8.2, we use page-aligned server and client buffers and cache
memory buffers to enable reuse to the greatest extent possible. This figure presents our
measurements of the effective bandwidth (i.e., the mean number of bytes that are transferred to a
serialized buffer per unit time of server execution) achieved and the host overhead (i.e., the
amount of host processor time required for the transfer) for three simple data layouts: serializing
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Figure 8-6. Comparing the effective bandwidth and host overhead of four different approaches to serializing
application data consisting 1,2, and 4 output memory buffers
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1, 2, and 4 equally-sized memory buffers. Figure 8-6a and Figure 8-6b show the results for
“serializing” a single memory buffer. A single, standalone memory buffer is already serialized for
our purposes so these data function as a baseline for our other experiments. As a result, all four
serialization approaches yield nearly the same effective bandwidth and host overhead.2.

The data for 2 and 4 memory buffers (see Figures 8-6c to 8-6f) show that for the no serialization
experiments, transferring multiple smaller buffers instead of one large buffer reduces the effective
transfer bandwidth but has little impact on the host overhead. Additionally, these figures show
that the highest effective bandwidth is achieved for client serialization, nearly matching our
baseline measurements. However, client serialization imposes significant overhead on the host
that increases as a function of the total memory buffer size. Similarly, server serialization
transfers the serialization costs to the SmartNIC. As a result, the effective bandwidth for moving
data from the host is significantly reduced since the SmartNIC has to spend time serializing the
buffers after they have been transferred. The data from our inflight serialization shows that this
approach is able to closely match the effective bandwidth measured for the no serialization
experiments without noticeably affecting the host overhead. This is a promising result that shows
that we can significantly reduce serialization overheads if we are able to manage the data so that
they are serialized as part of the transfer to the SmartNIC.

8.4. Summary

While RDMA benchmarks inform us that the hardware can transfer a contiguous block of data
efficiently from the host to SmartNIC, it is difficult to realize peak performance levels in real
world applications because user data structures involve multiple components that are not
contiguous as a whole. SmartNICs offer an opportunity for us to offload the burden of serializing
these components into a network transportable buffer. As a means of improving application
coupling to and data exchange with a SmartNIC, we have constructed SDMS. This service excels
at orchestrating a small number of data transfers into the SmartNIC in an asynchronous manner
and can be used to perform inflight serialization.

2These results are also consistent with our earlier experiments, see Figure 8-3a
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9. STORAGE SERVICES

While many workflows can be constructed in a way that enables data to be streamed from one
job’s memory space to another’s, users will always need more capacity than memory can offer
and persistence for post-workflow analysis. As such it is valuable to consider ways in which
SmartNICs can help system architects improve the manner in which storage systems are
integrated into HPC platforms. In this chapter we discuss the importance of job-local storage and
examine how compute node SmartNICs can be used to host parallel filesystems in a way that
minimizes disturbances to host applications. Given that on-card SmartNIC flash storage is too
small and slow to be of use in this space, we investigate NVMe-over-Fabrics (NVMe-oF)
methods to allow a SmartNIC to leverage the host’s NVMe devices. Experiments confirm that
heavy I/O loads on the SmartNIC do not impede computational tasks on the host.

9.1. Motivation for I/O Isolation

HPC platforms traditionally share a large parallel filesystem cluster amongst all compute nodes in
the system to enable users to store their workflows’ input, output, checkpoint, and intermediate
data. Unfortunately, the shared nature of these filesystems means that I/O activity from one job in
the platform may negatively affect the I/O performance of other jobs. These disturbances increase
performance variability in the compute nodes and may have significant consequences in latency
sensitive, parallel jobs. Some platforms have moved to include node-local storage, i.e.
direct-attached SATA or NVMe storage on each compute node. This allows direct access to
private storage on each node, but does not allow for shared access to files across a job. As a means
of providing better I/O isolation than shared parallel file systems while preserving the ability to
share data between nodes in a job, system architects have proposed and deployed job-local
storage [98] that uses node-local NVMe and SSD devices in the compute nodes to create private
parallel file systems close to computation.

9.1.1. Advanced Storage in Recent Platforms

Recent HPC systems have used node- and job-local storage for the benefits listed above. The
Summit [99] system, operational in 2018 at Oak Ridge National Laboratory, was designed with a
two-tiered storage system [100] – a traditional PFS as well as node-local burst buffers. The burst
buffer system is designed to support checkpoint-restore and provides multiple interfaces for
applications to interact with the system. The Burst-Buffer API (BB-API) supports N-to-N
checkpointing patterns with asynchronous draining of data to the PFS, while the Burst Buffer
Shared Checkpoint File System (BSCFS) is a log-structured filesystem built on FUSE that
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supports N-to-1 checkpointing. Applications can also use Scalable Checkpoint Restart
(SCR) [101] to drain data from the SSDs to the PFS. All three of these solutions require
modifications to application code, making each relatively difficult to use. Furthermore, BSCFS is
not POSIX-compliant, raising other hurdles to application adoption. Data movement to the PFS is
done via NVMe-oF. While this reduces compute-node CPU burden, node memory and network
access can still be affected, and are controlled via QoS and throttling.

Two other systems were developed for Summit that allowed more transparent access of the burst
buffer storage layer: Spectral and SymphonyFS [99]. Spectral supports N-N checkpointing to the
burst buffer with no application code changes. Applications write directly to XFS on the local
SSD. When the application closes the file, Spectral detects the close() system call and moves
the data to the PFS without application involvement. SymphonyFS is another FUSE-based
solution for N-1 checkpointing. It aggregates local SSDs into a single namespace and
decomposes metadata and data operations. Metadata operations are passed through to the PFS.
Data operations are cached locally on XFS and then drained to the PFS later. While SymphonyFS
appears to provide a single namespace and is transparent to application developers, it assumes
nodes work on non-overlapping regions of a file, and thus has a much different consistency model
than POSIX, which limits its scope to certain checkpointing workloads.

The Fugaku supercomputer in Kobe, Japan at the Riken Center for Computational Science also
uses two-tiered storage, and manages the fast NVMe layer with the Lightweight Layered I/O
Accelerator (FFIO) [102] system. For every group of 16 compute nodes, Fugaku has a node
equipped with NVMe storage that is designated as a storage and compute node. This node
handles all higher-tier storage requests for other nodes in its group. FFIO is used for three
purposes – a cache for the second-tier PFS, an area for temporary files shared between compute
nodes running in a single job, and an area for temporary files exclusive to compute nodes. The
temporary areas are not intended for files that will be sent to the second-tier PFS.

9.1.2. The Potential for Noise Interference by Filesystem Daemons

Existing research on job-local storage does not study the performance impact of running
filesystem daemons on compute nodes. Tightly-coupled parallel workloads can suffer from
performance degradation and variability when system noise interferes with the parallel
workload [103]. A classic case of noise interference can happen when several ranks of an MPI
process enter a synchronization barrier. If one rank is delayed due to a context switch, all other
ranks must wait to exit the barrier. Experiments presented in this chapter show that the effect of a
node-local filesystem daemon on parallel application performance is significant, variable, and
disproportionate. In other words, application performance is affected by a larger margin than the
CPU usage of the filesystem daemon, and the application’s runtime has a greater level of
uncertainty.

Current job-local solutions trades filesystem consistency or compute for acceptable performance.
No system achieves transparent application access to the burst-buffer layer, POSIX-compliance,
and low compute overhead. SmartNIC devices are well-positioned to help achieve all three goals.
They are becoming increasingly common in HPC systems and data centers, they have their own
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CPU cores and memory, and they are capable of running general-purpose Linux distributions. We
investigate the utility of using SmartNICs to offload node-local filesystems, and how offload
could impact compute performance.

9.2. Job-Local Filesystems

Job-local filesystems in HPC systems aggregate storage resources local to compute nodes in the
HPC cluster under a single namespace. There are a number of advantages to colocating storage
and compute including I/O performance and task isolation, or reducing the noisy neighbor
problem. Many job-local filesystems are also ephemeral. That is, they only exist for the duration
of an associated job, workflow, or application run.

Existing job-local filesystems are commonly used as burst buffers. Burst buffers are designed to
absorb higher rates of I/O than traditional parallel filesystems. After data is written to the burst
buffer, system software can asynchronously copy it out to the parallel filesystem.

To improve performance, many recent job-local filesystems relax POSIX semantics, assuming,
mostly correctly [104], that HPC applications tend to manage their I/O carefully, and the
application can be trusted, for example, to not write concurrently to the same file offset.
Illustrative examples from the recent literature include UnifyFS [105], which uses commit
consistency semantics, where writes are not globally visible until they have been committed, and
GekkoFS [106], which provides eventually-consistent metadata handling by avoiding global locks
during metadata operations.

Providing weaker consistency guarantees may improve filesystem performance, but could also
limit these filesystems for use by existing well-behaved HPC applications. We chose to focus our
efforts on BeeOND, an ephemeral job-local filesystem based on BeeGFS [107], which supports
full POSIX semantics.

9.2.1. BeeOND

BeeOND is an ephemeral filesystem based on BeeGFS, a parallel filesystem designed for use in
high performance computing systems. There are three main components in the BeeGFS
filesystem – a storage service, a metadata service, and a client service. BeeGFS decouples data
and metadata similarly to other distributed filesystems like Ceph [108] and Lustre [109]. The
storage service stores striped BeeGFS data on standard Linux filesystems such as ext4 or XFS.
Typically the storage nodes are in a RAID-6 configuration for fault tolerance. The metadata
service controls the striping pattern and data placement. The client service mounts the BeeGFS
filesystem on client nodes. Applications may interact with the filesystem as they do with any
mounted filesystem. BeeGFS supports full POSIX semantics, so no modification is necessary for
applications to use BeeGFS. When accessing data, clients first contact the metadata service, then
the storage service directly to access the data. BeeGFS services may be run individually on
separate nodes, or services may be colocated on single nodes.
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In our setup, BeeOND startup was integrated with Slurm so that new Slurm allocations had their
own private BeeOND instance, which ran for the duration of the allocation. The startup process
automatically assigns the first node to host the metadata service, then distributes storage services
across all nodes. It is also possible for the metadata service to be distributed over several nodes, in
which case each node handles a segment of the filesystem namespace.

9.3. Attaching Storage to SmartNICs

Current generation SmartNICs typically offer a small amount (less than 100GB) of permanently
affixed flash storage. Given that the speed and capacity of this storage is inappropriate for HPC
applications, it is necessary to consider other means by which we can attach storage to the
SmartNIC. For this work we leverage the NVMe-over-Fabrics standard to access NVMe on the
SmartNIC’s host.

9.3.1. NVMe-over-Fabrics

The shift from SATA SSDs to NVMe SSDs has caused an evolution in the Linux kernel I/O stack.
Prior to Linux 3.13, with the introduction of blk-mq [110], a single-threaded I/O stack had
acceptable performance due to the request latency of spinning disk hard drives, which were
predominant. The parallelism of NVMe SSDs requires a different architecture for optimal usage
of the disk. Data is written to NVMe devices using paired submission-completion queues. There
may be up to 64K queues, and each queue may have up to 64K entries. Queues are typically
mapped to cores on the host CPU. Queue entries are scheduled using either round robin or a
weighted round robin strategy.

NVMe thus maps naturally to the send, receive, and communication queue pairs in RDMA.
NVMe-over-Fabrics (NVMe-oF) is a protocol for accessing NVMe devices efficiently over a
network, commonly RDMA via either InfiniBand or RoCE. When connecting an NVMe-oF
initiator to a target, the user may specify the number of queues in the connection. Each queue is
assigned its own core by the operating system, on both the initiator and the target. We were able
to verify this behavior during our experiments.

An I/O request takes the following path in a filesystem mounted on an NVMe-oF block device.
We consider a write request on the ext4 filesystem. First, the virtual filesystem (VFS) sends the
request to ext4. The ext4 filesystem then creates a block I/O request (bio). The bio is sent to the
nvme driver, which is presenting a block device to the initiator system. The block device can either
be backed by a physical NVMe device, or an NVMe-oF connection to the target. In this case, we
assume an NVMe-oF connection via RDMA, so the bio is routed to the RDMA subsystem.

Once on the target, the nvmet (NVMe-target) driver processes the request by sending the
encapsulated bio to kernel block layer. Once finished, the target sends an acknowledgment to the
initiator, which receives it as a software interrupt.
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9.3.2. NVMe-oF NIC Offload

Recent Mellanox ConnectX HCAs (5 and higher) support NVMe-oF target offload [111]. We
found that the standard Linux nvmet driver for RHEL8 did not include offload support, so we
used the MLNX_OFED nvmet driver released by Mellanox. When target offload is enabled, the
network interface is able to handle the NVMe request received over RDMA directly, without
going through the kernel block layer. This reduces CPU usage on the target to nearly zero.

CPU Root Complex DRAM

NIC

PCIe Switch NVMe queues,
Data buffer

NVMe doorbell
NVMe

(1,6)

(2)

(3,4,5)

Figure 9-1. NVMe-over-Fabrics NIC Offload with Memory Accesses

In more detail, these are the steps for an offloaded NVMe write operation (Figure 9-1):

1. The offload engine generates a submission queue entry and does a DMA write to the
submission queue for NVMe in main memory.

2. The offload engine does a P2P write, ringing the “doorbell” of NVMe device.

3. The NVMe device responds to the doorbell and fetches the submission queue entry from
memory via DMA.

4. The NVMe device writes data from the memory buffer and stores it on disk.

5. The NVMe device writes to the completion queue to notify that the operation has
completed.

6. The offload engine polls the completion queue to detect when the write operation is done.

Although NVMe-oF offload reduces CPU usage on the target, it still uses memory bandwidth, a
source of possible contention [112]. Some NVMe drives have a controller memory buffer
(CMB) [113], a region of DRAM accessible via a PCIe base address register, which may be used
to store the submission and completion queues. In that case, reading and writing to the queues is
done via P2P DMA, and operations can be offloaded without accessing system memory. Our
NVMe disks did not have CMBs, so we did not explore this functionality.
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9.4. Interference Experiments on the Host

The goal of our first set of performance experiments is to observe how much I/O services disturb
compute tasks when the two execute on the same host. Specifically, we evaluate the performance
impact of BeeOND on compute node performance. Given 3N nodes participating in BeeOND, we
run a compute-heavy workload on 2N nodes requiring communication between all ranks, and an
I/O-heavy workload on N nodes. Since all nodes are running BeeOND, I/O is distributed across
all 3N nodes. Figure 9-2 shows our experimental design and the placement of BeeOND services
for N = 2 (there are two nodes running the I/O workload and four nodes running the compute
workload). HPL, IOR, and the BeeOND storage and metadata services run in user space, while
the BeeOND client is a kernel filesystem module.

IOR BeeOND
Storage

BeeOND
Client

HPL BeeOND
Storage

BeeOND
Client

Storage

BeeOND
Client

Metadata
HPL

IOR BeeOND
Storage

BeeOND
Client

HPL BeeOND
Storage

BeeOND
Client

HPL BeeOND
Storage

BeeOND
Client

Figure 9-2. HPC allocation with BeeOND, HPL, and IOR. Blue storage lines omitted for clarity.

9.4.1. Compute Workload

We use the High Performance Linpack (HPL) benchmark [114] to provide a compute workload
that is reflective of HPC applications. HPL performs matrix factorization in a tightly coupled MPI
job. It is compute intensive. Our hypothesis before running the experiment was that HPL would
experience slowdowns due to its tightly coupled nature. When a group of MPI ranks enters a
barrier, they may only leave the barrier once the last rank has entered. This makes barrier
performance degrade as performance variation increases.

After studying HPL more closely, we found that it uses a more complicated communication
scheme than a simple barrier. HPL has six different broadcast algorithms which are configurable
at runtime. On every iteration of the LU factorization, ranks must broadcast across their row and
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column. In the default “increasing-ring” topology, the broadcasting rank shifts to the next rank in
the ring on each iteration [115]. Although this is not exactly the communication scheme we
expected, it exhibits similar performance degradation to the barrier model due to inter-rank
communication dependencies, as we show in the evaluation.

9.4.2. I/O Workload

We use IOR to generate I/O-intensive workloads for our experiments. IOR is a configurable
benchmark suitable for evaluating parallel filesystems. IOR has a POSIX backend and uses MPI
for rank synchronization which makes it particularly suitable for HPC systems.

srun -N ${iornum} -n $((cores*iornum)) -w ${ior_nodes} \
ior -t 128 -T 20 -D 60 -i $((1024*1024)) \

-e -C -w \
-a POSIX -s 1024 -F -Y \
-o=/mnt/beeond/testfile

Figure 9-3. IOR Runtime

Our complete IOR runtime is given in Figure 9-3. We discuss the most important flag choices
here. We perform 128 byte writes (-t 128) with an fsync after each write (-Y). Each process has
it’s own file (-F) to avoid contention on the file level. We repeat the test (-i) continuous for 20
minutes, or until the completion of HPL. This ensures that we are performing I/O for the duration
of the experiment.

The small sequential writes and frequent fsync calls are designed to generate significant I/O
activity and exercise BeeOND as much as possible. We experimented with 512B, 2K, and 8K
writes and found similar results with all four sizes. Future work could investigate other I/O
patterns, such as large sequential writes, more fully.

9.4.3. Impact of BeeOND on HPL Runtime

Co-running the HPL compute workload with BeeOND daemons servicing IOR write activity has
a substantial impact on compute performance. Using the setup described in Figure 9-2, Figure 9-4
shows the duration of our HPL experiment, averaged over 10 runs with errors bars showing the
minimum and maximum, for several different configurations. The column furthest to the right,
hpl, has no corunning filesystem daemon. The second column from the right, hpl-fs-daemon,
shows the runtime with BeeOND daemons running, but no I/O workload. The other four columns
show run times with IOR configured for the sizes of writes labeled on the x-axis.

Notably, HPL runs with very low variance when it is the sole tenant on each node. When
BeeOND is servicing an I/O workload, HPL runtime increases and becomes more variable. We
measured the CPU usage of BeeOND separately, and found that per node, it uses a total of
between 3-4 cores of CPU time, out of 56 cores on each node. If the slowdown in HPL runtime
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Figure 9-4. HPL Runs With and Without Corunning IOR + BeeOND

was proportional to the CPU usage of BeeOND, we would expect HPL runtime to be about 7%
longer. Instead, we find that the median runtime of HPL with BeeOND and IOR is 38% slower,
and it is 44% slower on the worst run. Performance improves as write sizes increase because the
number of I/O operations decreases. However, even with 8K writes, HPL runtime is significantly
affected.

9.4.4. Impact of BeeOND on HPL Communication

Our hypothesis was that MPI ranks performing panel broadcast in HPL were being delayed by
BeeOND, which led to increased execution time. We verified this by instrumenting the HPL code
to time when ranks sent broadcast messages. Our results are shown in Figure 9-5. The left plot
shows rank broadcasts for HPL running alone, while the right plot shows rank broadcasts for HPL
corunning with BeeOND.

The Figure 9-5 plots present the difference in time between consecutive messages sent during the
broadcast phase of one HPL run, for each of the first 16 ranks. Since all durations are found by
subtracting timestamps from the same rank, we avoid worrying about clock drift between ranks.

The results show that HPL broadcasts have a distinctive communication pattern which falls into
two modes – a shorter time between messages sent, and a longer time. When BeeOND is running
on the node with an I/O-intensive workload, the pattern is still visible, but there is a large increase
in communication time variation. Since computation cannot continue until ranks have
broadcasted their panels, an increase in variation leads to a longer runtime.
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(a) HPL Running Alone (b) HPL co-running with BeeOND Services and I/O

Figure 9-5. HPL Time Between Messages Sent (First 16 Ranks)

9.5. BeeOND SmartNIC Offload

Thus far, we have shown that co-running BeeOND on nodes in an allocation has a measurable
performance impact on compute tasks. We now investigate the feasibility of offloading BeeOND
to SmartNICs attached to each node.

The key mechanism we chose to make offload possible is to access host storage using
NVMe-over-Fabrics (NVMe-oF). The SmartNIC can transparently access an NVMe device on the
host using NVMe-oF offload which is available on modern ConnectX HCAs. Using HCA offload
reduces host CPU usage to near zero while the SmartNIC is accessing storage. Alternatively,
NVMe-oF can be used with non-NVMe SSDs or RAM disks, but HCA offload is not available.
We investigated the following questions using two test setups, described in Tables 9-1 and 9-2.

1. Can the SmartNIC access host storage using NVMe-oF?

2. What is the overhead of accessing an NVMe device over fabrics, compared to accessing it
locally?

3. Do lower-powered cores on the SmartNIC lead to a performance penalty compared to a full
host when accessing storage via NVMe-oF?

CloudLab sm110p - Two nodes
16-core Intel Xeon Silver 4314
128GB ECC Memory
1TB SSD
4x1TB Samsung 980PRO NVMe SSD
100Gbps network
Dual-port Mellanox ConnectX-6 Dx,
Dual-port Mellanox ConnectX-6 Lx

Table 9-1. CloudLab Test Setup

Singra node with BF-2
32-core AMD EPYC 7513
512GB ECC Memory
2x1TB Samsung 980PRO NVMe SSD
NVIDIA BlueField-2 SmartNIC via PCIe x8

Table 9-2. Singra Test Setup
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We used the CloudLab setup primarily because it offered more administrative flexibility, although
it also let us compare the performance of a SmartNIC relative to another full node. We use
terminology similar to iSCSI for NVMe-oF – the “target” hosts the NVMe disk being accessed,
while the “initiator” is the system accessing the disk remotely. The relationship is the same
whether working with two full nodes, or a SmartNIC and a full node.

The SmartNIC on Singra is configured in separated host mode. Thus, the SmartNIC has it’s own
IP address, and can communicate with the target via RDMA. In this way, the setup for both
systems is nearly identical.

9.5.1. NVMe-oF Performance for a Host

First, we determine the performance of NVMe-oF compared to accessing an NVMe device
locally. We use FIO for disk microbenchmarks – latency, IOPS, and throughput. We also use
LevelDB as an application-level benchmark to measure expected real-world performance of the
system.
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Figure 9-6. NVMe-oF FIO Performance Measurements on CloudLab between Two Hosts

Figure 9-6 shows the performance of NVMe-oF using the two-node CloudLab setup (Table 9-1).
Results for NVMe-oF with and without target offload are compared to local NVMe performance.
NVMe-oF is competitive with accessing an NVMe device locally for throughput and IOPS
workloads. In fact, NVMe-oF outperforms local disk access in read IOPS. This was attributed to
interrupt coalescing in a previous study of NVMe-oF [116], although the authors did not evaluate
the interrupts generated by either the NVMe device or the network interface. We found
(Figure 9-7) that fewer interrupts were generated on the NVMe-oF target per operation compared
to an equivalent workload with local NVMe access.
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Figure 9-7. All System Interrupts Generated per Write Operation (Two Second Intervals)
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Figure 9-8. Operation latency CDF – Local NVMe and NVMe-oF

NVMe-oF has higher latency than local device access due to network overheads. Interestingly,
offloading NVMe-oF reduces latency compared to traditional NVMe-oF. This is because
NVMe-oF offload bypasses the kernel block stack on the target. We give a latency CDF in
Figure 9-8. One other benefit we would expect to see in NVMe-oF offload is improved tail
latency when the target is under load. We do see improved tail latency for NVMe-oF offload in
Figure 9-8, but this measurement was conducted on an unloaded system. NVMe-oF tail latency
under load has been studied in a comparison with iSCSI [116], but not with NIC offload.

We also confirm that CPU usage is reduced while using offload. Figure 9-9 shows that system
interrupts on the target, as measured by vmstat, are at idle levels for all evaluated workloads
when offload is enabled.
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CPU Interrupts by Workload
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Figure 9-9. NVMe-oF Offload Target Interrupts

9.5.2. NVMe-oF Performance for a SmartNIC

Next, we evaluate NVMe-oF performance when accessing host storage from a BlueField-2
SmartNIC. These experiments used the Singra setup (Table 9-2). The host-host measurements
were done on CloudLab (Table 9-1) and were used to control for the slower cores of the
BlueField-2. The SmartNIC has a harder time generating a large amount of I/O operations. In the
write IOPS benchmark, it needs four FIO jobs to generate the same amount of operations as a
single FIO job on a CloudLab node. It is, however, capable of sustaining the same amount of
write IOPS.
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Figure 9-10. NVMe-oF BlueField-2 CPU Usage for Cores Processing Software Interrupts.

We find that the SmartNIC is unable to keep up with a CloudLab host in read IOPS. Our first
thought was that using a single NVMe-oF queue saturated a core on the SmartNIC, and limited
the number of read IOPS the system was capable of. Experiments with increased numbers of

116



queues showed that this assumption was correct and that core usage went down when the system
was configured to use two queues (Figure 9-10). This increased the number of read IOPS the
system could support, but increasing the number of queues beyond two had limited effect, and the
system still had decreased performance compared to a CloudLab host. Future work may help
determine another bottleneck.

Throughput measurements show that the SmartNIC can access the device with at least the same
throughput, and better throughput in the case of read throughput, compared to accessing the
device with another node. Latency measurements, comparing offloaded requests from a
SmartNIC as well as a separate host, show that the SmartNIC has a latency advantage compared
to other hosts (Figure 9-11), and operation latency is generally within 10 microseconds of local
NVMe performance.

 0

 20

 40

 60

 80

 100

 0  10  20  30  40  50  60

P
e
rc
e
n
ta
g
e

Time (usec)

Local-NVMe Host-Host BF-Host

Write (4K)

 0

 20

 40

 60

 80

 100

 0  10  20  30  40  50  60

Time (usec)

Read (4K)

Figure 9-11. Operation Latency CDF – NVMe-oF Offload Host-to-Host and SmartNIC-to-Host

9.6. Summary

We have shown that compute workloads can suffer performance penalties if there is an
I/O-intensive workload running on a node-local filesystem. These performance penalties are
disproportionate to the amount of CPU time used by the filesystem, which makes offload to
low-power cores on SmartNICs an attractive solution.

The client-daemon architecture of BeeOND is suitable for offload. BeeOND daemons may run on
SmartNICs, which can access host storage transparently using NVMe-oF. BeeOND clients may
run without modification on hosts. In our experiments, accessing host storage from the SmartNIC
with NVMe-oF proved to have excellent performance, matching or exceeding local NVMe
performance in read/write throughput and write operations per second, and incurring a relatively
small latency penalty. More investigation is needed to determine the bottleneck for small random
read operations, but this workload is less important for traditional HPC applications. NVMe-oF
NIC offload, available in modern ConnectX HCAs, reduces interrupt generation and CPU usage
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on the host to idle levels. We expect, therefore, that offloading BeeOND filesystem daemons to
SmartNICs will substantial lower CPU usage on host nodes, and maintain good filesystem
performance. This approach retains POSIX-compliance, making the filesystem usable for
workloads other than traditional checkpoint-restore, filling a gap in the current ecosystem of HPC
filesystems.
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10. COSTS: PROCUREMENT AND POWER

In the previous chapters we have explored the technical aspects of integrating SmartNICs into
modern HPC workflows and discussed ways to make the hardware more accessible to users. In
this chapter we focus on a different aspect of SmartNICs that impedes widescale adoption in
HPC: costs. SmartNICs are inevitably more expensive to purchase and consume more power to
operate than traditional NICs. As such, each institution must determine whether SmartNICs can
offload enough work to decrease the system’s node count and be of value for their specific
workloads. In this chapter we quantify the financial burden that SmartNICs add to purchasing and
operating a system with SmartNICs. For this discussion we focus on procurement details and
power measurements for Sandia’s Glinda cluster.

10.1. Procurement Costs

The first place where SmartNICs add to the cost of operating a computing platform is in the initial
procurement. For HPC platforms we assume that architects will always select a high-bandwidth,
low-latency communication fabric to maximize the rate at which host processors and storage
systems can all exchange data. In this cost analysis it is important to remember that
high-performance network infrastructure is not inexpensive. For example, core network switches
may cost $500,000 or more. Plain HPC NICs for peak speeds are generally $1,000. Finally,
high-speed network cables are much more expensive than most people realize, ranging from $200
for copper cables to over $1,000 for fiber links with high-speed transceivers. While system
architects pay particular attention to driving the per-node network costs down in a procurement,
these numbers help illustrate that spending more for a SmartNIC may be worthwhile if it reduces
the number of nodes and network ports required in the overall platform.

10.1.1. Impact of SmartNICs on Glinda Node Cost

Examining the procurement details of the 2020 Glinda system helps quantify the costs of
purchasing an HPC system with SmartNICs. During the first stage in this procurement, Sandia’s
system architects gathered information about different system components and estimated the
discounted price a system integrator would likely charge in a procurement of approximately 100
nodes. While the bidding process and fluctuating market prices make these estimates difficult,
Sandia’s planners found the winning bid to be very close in cost to their estimates. Table 10-1
lists the estimated costs for each component in a Glinda node when selecting either a plain
InfiniBand NIC (e.g., a 100Gb/s ConnectX-6 InfiniBand card) or a BlueField-2 SmartNIC.
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Table 10-1. Estimated Costs for a Glinda Compute Node

Estimated Cost Percent of Node Cost
Component InfiniBand BlueField-2 InfiniBand BlueField-2
Chassis and Motherboard $2,300 $2,300 12% 12%
32-Core Zen3 Processor $2,400 $2,400 13% 12%
512GB DDR4 DRAM $2,400 $2,400 13% 12%
NVMe $200 $200 1% 1%
25Gb/s Ethernet NIC $300 $300 2% 2%
Ampere A100 $9,400 $9,400 51% 48%
InfiniBand NIC $850 – 5% 0%
BlueField-2 VPI NIC – $2,000 0% 10%
100Gb/s Cable (Copper) $120 $120 1% 1%
Single IB Switch Port $370 $370 2% 2%
Total $18,340 $19,490 100% 100%

1. Prices are based on 2020 discounted estimates
2. IB switch assumes 40x200Gb/s ports, with a $240 port-splitter cable

As this table indicates, GPUs are by far the most expensive component in the node architecture
and dominate its overall cost. The main processor, memory, chassis, and SmartNIC represent the
bulk of the cost for the remaining components in the node. While the BlueField-2 is 2.35x more
expensive than the InfiniBand card, it only increases the node cost by 6%.

A caveat of this pricing is that the Glinda nodes were designed to supply data analytics users with
a “thin-slice” architecture that includes one CPU, one GPU, and one network link. In contrast,
HPC systems are typically designed with a “fat-node” architecture that features multiple CPUs,
GPUs, and network links. Scaling the Glinda estimates to two CPUs and four GPUs reduces the
BlueField-2 percentage of the node cost from 10% to 4%.

10.1.2. Network Costs for Additional Nodes

If the BlueField-2 SmartNICs processors are sufficient for implementing data management
services, it is worthwhile to examine how much it would cost to build a comparable system that
simply supplements the platform with additional compute nodes. For this analysis we ignore the
cost of the new compute nodes and focus exclusively on the network costs. Additional nodes
require additional network switch ports and cabling. The individual port cost listed at the bottom
of Table 10-1 are calculated by dividing the cost of a switch by the number of nodes that can be
connected to it. In this case, a $20,000 200Gb/s InfiniBand switch with 40 ports is equipped with
$240 cable splitters to serve 80 100Gb/s nodes. As such, a new node costs $490 in additional
network hardware ($250 for its switch port, $120 for a half a cable splitter, and $120 for a cable).
However, these estimates ignore the cost of increasing upstream networking to ensure that
sufficient bandwidth exists between switches to create a balanced network.
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10.1.3. Cost Discussion

There is no denying that current generation SmartNICs are expensive. A $2,000 NIC is more than
most desktop systems and would be difficult to justify if standalone computing performance was
the only point of comparison. However, in the context of building HPC platforms that seek to
maximize the amount of computing power available in a fixed amount of space, a 10% increase in
node cost may be acceptable. These gains may be more significant if extending the network fabric
to support other compute nodes would be cost or space prohibitive.

10.2. Estimating Glinda’s Power Use

The second place where SmartNICs add to the cost of hosting a computing platform is in their
power use. SmartNICs supplement the communication ASIC with processor cores and require
extra parts to be added to the NIC such as memory and nonvolatile storage. These components
add to the overall power consumption of the card and require extra cooling from the data center.
While NIC power use has traditionally been low enough that vendors do not typically report it,
high-speed NICs such as the 100Gb/s Ethernet Intel E810 specify idle and max power rates of
14.9W and 16.6W for copper connections. In this section we report on power measurements for
the Glinda platform and calculate how much of a financial burden SmartNICs add to Glinda’s
yearly operational expenses.

10.2.1. Glinda Power Monitoring Capabilities

Each Glinda compute node includes a baseboard management controller (BMC) that has access to
a variety of sensors that are distributed throughout the chassis. An administrator can easily query
the sensors of a node remotely through IPMI at a frequency of approximately one sample per
second. There are several useful sensors available through IPMI:

• SYS_POWER: The SYS_POWER sensor provides the overall amount of power the entire node
is currently consuming in watts. This value unfortunately is coarse grained and has a
resolution of 25W.

• 12V_GPUx: The Glinda node has four DC power connectors that are intended to be
connected to GPUs in the node’s four, larger PCIe bays. Each power connector splits into a
small connector for a riser and a standard 8-pin auxiliary power connector for a GPU. The
vendor has indicated that current sensor measurements cover both connections. Each
current sensor has a resolution of 0.32A (i.e., 3.84W at 12V DC). 12V_GPU0 is connected to
the A100 card. 12V_GPU2 from the front-middle bay has been routed to the BlueField-2.

• Temperatures: There are a variety of temperature sensors throughout the chassis. From a
sample reading of an idle node, we observed cool air at the inlet (21◦C) passing through the
GPU (26◦C), CPU (32◦C), DIMMs (39◦C), NVMe (39◦C), power supply (31◦C), and PCIe
slots (59◦C).
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10.2.2. Glinda Aggregate Stress Test

As a means of illuminating how much power is consumed by different components in the system,
we collected power measurements from the BMC while different stress tests executed in parallel
on the node. For this experiment we launched each test individually and waited approximately 30
seconds before starting the next test. The overall system power usage (i.e., SYS_POWER), GPU
auxiliary power (i.e., 12V ×12V_GPU0), and BlueField-2 auxiliary power (i.e., 12V ×12V_GPU2)
were captured during seven stages of activity, listed below.
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1 Idle: The host initially starts in an idle state with all hardware com-
ponents booted.

2 Host-to-Host Network Traffic: Next, the ib_send_bw tool is
started on the host to continuously push data to a neighboring node.

3 Host-to-SmartNIC Network Traffic: A second instance of
ib_send_bw is then started to push data to the local SmartNIC CPUs.

4 Host stress-ng: A stress test is run on the host to maximize host
CPU activity.

5 SmartNIC stress-ng: An additional stress test is then run on the
SmartNIC to place load on its Arm cores.

6 GPU Load Test: The NVIDIA dcgmi tool is launched to maximize
GPU activity.

7 Shutdown: Finally, all tests are stopped to allow the system to return
to an idle state.

Figure 10-1. Power Measurements for a Glinda Node During Stress Tests

Power measurements during the stress test are presented in Figure 10-1. The Glinda node in this
test consumed 250W while idle and 700W with all resources active. The largest jumps in power
took place when the GPU test 6 (+225W) and host stress test 4 (+150W) activated. The
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SmartNIC stress tests 5 (+50W) and InfiniBand operations 2 3 (+25W) had less impact on
the overall power consumption of the node.

There are multiple sources of uncertainty that cloud an assessment of power use in a Glinda node.
First, the 25W resolution of the SYS_POWER sensor makes it difficult to get an accurate
measurement of power use in the system. As the InfiniBand transfer tests indicate, there are
several important operations in the node that fall below a 25W cutoff. Second, it was unclear to us
whether a 12V_GPUx sensor monitors the PCIe card’s auxiliary power connector, the riser’s power
connector, or both. Finally, we noticed that the BlueField-2’s power use increased at times when
the card was idle (e.g., 4 ). These measurements imply that the 12V_GPU2 measurements may
include more than just the BlueField-2’s power usage.

In order to gain more insight into the Glinda node’s power characteristics, we examined the A100
and BlueField-2 cards individually.

10.2.3. Ampere A100 Power Use

The Ampere A100 card is listed as having a maximum sustained power consumption of 250W.
The IPMI sensor for the GPU’s auxiliary power connector reported that an idle card used 30.72W
and a fully-loaded card used up to 268W. The A100 card has additional, internal power and
temperature sensors that can be queried through the CUDA libraries. The nvidia-smi tool
reported the card used 250W while running the stress test. An inspection of the front riser card
that holds the A100 reveals that it is a minimal circuit board that merges two PCIe data cables
from the motherboard and one power connector into a standard PCIe slot. Given that current
measurements for an unloaded front riser board were 0A and the power measurements of an
active A100 match the A100’s internal estimates, we conclude that the 12V_GPU0 sensor provides
an accurate measurement of the A100 card’s total power use.

10.2.4. BlueField-2 Power Use

The power specifications for a P-Series BlueField-2 indicate that a 16GB card has a maximum
power consumption of 63W. Our initial power measurements with the 12V_GPU2 sensor reported
that the BlueField-2 consumed 30.72W when the node was idle, 42.24W when the SmartNIC
alone was active, and 65.28W when the CPU, SmartNIC, and GPU were fully loaded. However,
the 65.28W was also observed in instances when the host CPU was active and the BlueField-2
was idle. An inspection of the back-middle riser card revealed that it was more complex than the
front riser: in addition to being able to host two PCIe cards, the riser connects to the motherboard
through a dedicated slot. While the back riser uses the same 12V power connector as the front
risers, we suspect that the system can move power from motherboard to riser and riser to
motherboard as needed. As such, the 12V_GPU2 sensor is not a good indicator of BlueField-2
power use when the CPU is active.

To test this hypothesis we moved the BlueField-2 to the front-left bay and attached the 12V_GPU3
connector to it while leaving 12V_GPU2 connected to the back riser card. Power measurements for
different workloads are presented in Table 10-2. As we suspected, the BlueField-2’s idle power
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Table 10-2. Power Use for Individual Slots in Different Scenarios

Slot Idle CPU Active CPU + SmartNIC Active
Empty Front Slot 0W 0W 0W
SmartNIC in Back Slot 30.72W 65.28W 65.28W
SmartNIC in Front Slot 30.72W 30.72W 42.24W
Empty Back Slot 11.52W 26.88W 26.88W

consumption remained at 30.72W whether the host CPU was active or not. Placing load on the
Arms increased power use to 42.24W. In contrast the empty, back-middle riser card jumped from
11.52W to 26.88W when the host CPU changed from idle to active. Given that an empty front
slot did not consume power, we expect that the 42.24W measurement is a realistic estimate of the
Arm’s active power use.

Additional attempts to push the BlueField-2 power consumption closer to its 63W limit were not
successful. We experimented with oversubscribing the cores, executing continuous RDMA
network transfers, and launching additional tasks such as hashing random data, but none of the
additions increased the power use beyond the value observed during stress-ng’s execution. The
hardware accelerators (e.g., compression) were not explored in these tests and may contribute to
the device’s 63W limit.

10.2.5. Power Discussion

Power estimates can be converted to a yearly operational cost by multiplying the power estimate
by the cost of power and the number of hours in a year. In the Sandia California data center the
cost of power in 2023 is 8.62 cents per kilowatt hour (kWh), with forecasts warning that rates
may raise to 10.61 cents per kWh in the next four year. The SmartNIC’s idle power measurement
gives us a basis for computing the worst case scenario: What if a cluster is procured with
SmartNICs but they are never used? The cost of the wasted power in this case would be:

0.03072kW ×0.0862
$

kWh
×8760

h
year

=
$23.20
year

×Nodes

The 126-node Glinda cluster in this case would waste $2,922 per year. It is important to note that
this is an upper bound estimate, as it ignores the fact that a cluster without SmartNICs would still
employ an InfiniBand NIC that consumes a small amount of power.

In contrast, the SmartNIC’s active power estimate gives us an estimate of the best case scenario:
What if a cluster is procured with SmartNICs and they are always busy with useful work? The
concern in this scenario is that the power use could significantly increase the operating cost of the
node. Fortunately, a 42.24W increase in power only results in an added cost of $31.90 per node to
the yearly operating cost, or $4,019 for the cluster.
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An important caveat to these estimates is that they are based on the power use of the SmartNIC
alone and do not include the cost of cooling. Current generation SmartNICs use passive air
cooling, which requires proper air handling from the data center. Air cooling is typically
estimated to cost the same price as the electricity cost of the computing hardware. Therefore, a
more accurate operating cost for SmartNICs would be to simply double the previous estimates.

10.3. Summary

When considering whether SmartNICs are a worthwhile addition to a cluster, system architects
must weigh the costs of purchasing and operating the hardware with the benefits they may
provide. There are multiple insights to be learned from the Glinda system. First, the $2,000
BlueField-2 SmartNICs were expensive, costing 2.35x more than a plain InfiniBand NIC. While
NICs at these price points are difficult to justify for thin-slice nodes, they may be more suitable
for fat-nodes that include many CPUs or GPUs. Second, SmartNICs can be a cost-effective
means of increasing the compute power of a platform when space is limited or network fabric
expansion costs are considered. SmartNICs provide a convenient way to insert computing
resources without requiring more space or network ports. Third, we estimate a BlueField-2
SmartNIC in Glinda consumes 30.72W to 42.24W depending on load. Although the maximum
power use was less than we expected, we encourage vendors to focus on reducing idle power use
as much as possible. Finally, we estimate that the SmartNICs in the 126-node Glinda cluster add
roughly $6,000 to $8,000 to the annual operating cost of the system when the added power and
cooling requirements are included. These costs are not out of the ordinary in a data center, but
they do stress the importance of insuring that the hardware is leveraged by users given that cluster
are expected to have a useful lifetime of eight to ten years.
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11. CONCLUSION AND FUTURE WORK

Our hypothesis for this project was that adding SmartNICs to a portion of the compute nodes in a
platform will improve the efficiency of the overall system because they will provide a way to
offload data management and storage services from the host while still preserving locality. The
work summarized in this report confirms this statement to be true, with minor caveats relating to
practical issues. Our characterization of current-generation hardware indicates that while
SmartNIC processors are an order of magnitude slower than host processors, SmartNICs have
sufficient resources for hosting data transformation, staging, and distribution tasks that would
otherwise tax the host’s resources or require additional compute nodes. Experiments with the
BlueField-2’s compression hardware illustrate that targeted hardware accelerators for SmartNICs
can have a significant effect on performance and are immediately usable in data-intensive
workloads. In terms of operational costs, our analysis of the Glinda procurement confirms that
SmartNICs are less of a financial burden than simply adding other host nodes, once power and
infrastructure costs are included.

We have explored five examples of ways that SmartNICs can be leveraged to achieve gains in
different types of data management tasks: compression, distributed data reorganization, in-transit
data queries, serialization optimization, and job-local storage. In the context of a full system, the
importance of each of these examples is as follows. First, serialization optimizations reduce the
amount of time an application spends ejecting data and allows serialization to take place at the
same time as transfer to the SmartNIC. Second, on-card compression accelerators enable us to
rapidly reduce data in the serialization process for situations where space is more important than
read performance. Third, the particle-sifting example demonstrates how a collection of
SmartNICs can work together to autonomously reorganize data in an asynchronous manner.
Fourth, query engines give users an opportunity to peek at the data as it migrates through the
system. Finally, hosting job-local storage with SmartNICs enables data to be accumulated an
large amounts, without disturbing the simulation or being disturbed by other IO-intensive jobs.

The caveat for this work is that there are a number of practical issues that have made these elegant
examples challenging to realize in production hardware. As such, there is much work to be done
before there will be broad adoption of SmartNICs in the HPC community. The largest issue is the
lack of a standard programming environment for SmartNICs that is both flexible and portable
between vendors. While the use of standard Linux distributions for the BlueField-2 SmartNIC’s
OS provides an easy way to port existing libraries and services to the hardware, the use of
closed-source, vendor-specific APIs and overly-restrictive EULAs dampens enthusiasm for
SmartNICs. A significant amount of our work focused creating an environment that could
insulate us from hardware specifics and provide basic primitives for orchestrating transfers and
dispatching computations. While Mochi could easily be substituted for Faodel, we strongly feel
that Arrow is the leading choice for processing structured, in-transit data.
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11.1. Challenges and Opportunities

Looking forward, we see that there are several challenges and opportunities for future
SmartNIC.

Decreasing Idle Power Use: While an idle BlueField-2 SmartNIC only consumes 30W of power,
it is important to remember that an HPC deployment typically contains thousands to tens of
thousands of nodes. As such, there are future opportunities to determine what the optimal
distribution of SmartNICs would be for a platform to maximize use while minimizing power.
Similarly, there are opportunities for vendors to improve power utilization by either lowering idle
power use or developing additional hardware accelerators that implement common tasks in a
more power-efficient manner than software.

Coordinating Network Transmissions: One hardship of developing in-transit services for
current-generation SmartNICs is that the Arm processors lack a means of detecting when the host
is actively using the network links. As such the Arm may inadvertently interfere with the host’s
communication and impede the performance of the simulation. The traditional means of avoiding
this contention is to either implement quality of service metrics in the network fabric or designate
explicit time periods where the host has exclusive access to the network. Future work may
investigate whether InfiniBand’s existing QoS metrics can mitigate this problem.

Heterogeneous Architectures Complexity: While we did not experience any compatibility
issues when exchanging data between the x86_64 hosts and the Arm processors, there was a
significant development burden associated with working in a heterogeneous environment. In
addition to needing to build and maintain our software stack for two architectures, inconsistencies
in the runtime environment hindered progress. Upcoming Arm-based HPC platforms such as
Grace/Hopper are therefore attractive for future work.

Ecosystem of Intelligent Devices: Similar to the networking community, storage vendors are
beginning to place embedded processors in their computational storage devices (CSDs) to allow
users to implement queries and data processing tasks in remote devices. As more of these
compute-aware products enter the market, there is an opportunity to converge on a common set of
libraries to allow users to interact with their data no matter where it exists in a massive,
distributed platform. Apache Arrow is well-suited for this work. A next step for our
push-down/push-back work would be to extend the pipeline into a collection of SmartNICs and
CSDs. We envision a system where a query plan would be split out to multiple SmartNICs, which
in turn fan the work out to multiple CSDs.
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APPENDIX A. Expressing Computations in Arrow and Kokkos

As discussed in Chapter 4, Apache Arrow and Kokkos enable users to express a computation in a
form that a runtime can map to parallel resources. The following code listings provide examples
of how a computational kernel is expressed in each library.

A.1. Maximum

The maximum kernel returns the particle with the largest velocity magnitude.

Listing A.1 Maximum in Arrow
ar row : : a c e r o : : D e c l a r a t i o n op_arrow_max ( c o n s t ar row : : a c e r o : : D e c l a r a t i o n& s o u r c e ) {

namespace cp = ar row : : compute ;

/ / S p e c i f y how t o compute t h e squared magni tude ( ( x ^2 + y ^ 2 ) + z ^ 2 )
auto e_mag =

cp : : c a l l ( " add " , {
cp : : c a l l ( " add " , {

cp : : c a l l ( " m u l t i p l y " , { cp : : f i e l d _ r e f ( "X" ) , cp : : f i e l d _ r e f ( "X" ) } ) ,
cp : : c a l l ( " m u l t i p l y " , { cp : : f i e l d _ r e f ( "Y" ) , cp : : f i e l d _ r e f ( "Y" ) } ) ,

} ) ,
cp : : c a l l ( " m u l t i p l y " , { cp : : f i e l d _ r e f ( "Z" ) , cp : : f i e l d _ r e f ( "Z" ) } ) ,

} ) ;

/ / Cr ea t e a p r o j e c t i o n named f t o compute t h e magni tude
/ / Use an a g g r e g a t e t o p i c k a s i n g l e v a l u e from an i n p u t v e c t o r
re turn ar row : : a c e r o : : D e c l a r a t i o n : : Sequence (

{ sou rce ,
{ " p r o j e c t " , a r row : : a c e r o : : P r o j e c t N o d e O p t i o n s ( { s t d : : move ( e_mag ) } , { " f " } ) } ,
{ " a g g r e g a t e " , a r row : : a c e r o : : Aggrega teNodeOpt ions { { cp : : Aggrega t e { "max" , " f " , "max ( f ) " } }} }

}
) ;

}

Listing A.2 Maximum in Kokkos
double op_kokkos_max ( k b l o c k _ t kb l oc k ) {

double r e s u l t = 0 . 0 ;

/ / n o t e : no need t o a l l o c a t e a v iew s i n c e t h e r e d u c t i o n g e n e r a t e s a s c a l a r

/ / Walk t h r o u g h t a b l e and f i n d rows t o keep
Kokkos : : p a r a l l e l _ r e d u c e ( " r e d u c e : " , kb lo ck . e x t e n t _ i n t ( 0 ) , KOKKOS_LAMBDA ( c o n s t i n t i , double &l v a l ) {

double tmp = 0 . 0 ;
f o r ( i n t c o l =0; co l <3; c o l ++) {

tmp += ( k b l oc k ( i , c o l ) * kb lo ck ( i , c o l ) ) ;
}
i f ( tmp > l v a l ) {

l v a l = tmp ;
}

} , Kokkos : : Max<double >( r e s u l t ) ) ;

re turn r e s u l t ;
}
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A.2. Normalize

The normalize kernel converts a vector into a normalized vector with a magnitude.

Listing A.3 Normalize in Arrow
ar row : : a c e r o : : D e c l a r a t i o n o p _ a r r o w _ n o r m a l i z a t i o n ( c o n s t ar row : : a c e r o : : D e c l a r a t i o n& s o u r c e ) {

/ / Conver t x , y , z i n t o magni tude , x_norm , y_norm , z_norm
namespace cp = ar row : : compute ;

/ / s p e c i f y how t o compute s q r t ( ( x ^2 + y ^ 2 ) + z ^ 2 )
auto e_mag =

cp : : c a l l ( " s q r t " , {
cp : : c a l l ( " add " , {

cp : : c a l l ( " add " , {
cp : : c a l l ( " m u l t i p l y " , { cp : : f i e l d _ r e f ( "X" ) , cp : : f i e l d _ r e f ( "X" ) } ) ,
cp : : c a l l ( " m u l t i p l y " , { cp : : f i e l d _ r e f ( "Y" ) , cp : : f i e l d _ r e f ( "Y" ) } ) ,

} ) ,
cp : : c a l l ( " m u l t i p l y " , { cp : : f i e l d _ r e f ( "Z" ) , cp : : f i e l d _ r e f ( "Z" ) } ) ,

} )
} ) ;

/ / B u i l d a p lan w i t h two p r o j e c t s :
/ / F i r s t p r o j e c t p a s s e s X , Y , Z , and g e n e r a t e s t h e magni tude
/ / Second p r o j e c t does t h e d i v i s i o n s and p a s s e s t h e magni tude
re turn ar row : : a c e r o : : D e c l a r a t i o n : : Sequence (

{ sou rce ,
{ " p r o j e c t " , a r row : : a c e r o : : P r o j e c t N o d e O p t i o n s ( { cp : : f i e l d _ r e f ( "X" ) , cp : : f i e l d _ r e f ( "Y" ) , cp : : f i e l d _ r e f ( "Z" ) , e_mag } ,

{ "X" , "Y" , "Z" , "Mag" } ) } ,

{ " p r o j e c t " , a r row : : a c e r o : : P r o j e c t N o d e O p t i o n s ( { cp : : c a l l ( " d i v i d e " , { cp : : f i e l d _ r e f ( "X" ) , cp : : f i e l d _ r e f ( "Mag" ) } ) ,
cp : : c a l l ( " d i v i d e " , { cp : : f i e l d _ r e f ( "Y" ) , cp : : f i e l d _ r e f ( "Mag" ) } ) ,
cp : : c a l l ( " d i v i d e " , { cp : : f i e l d _ r e f ( "Z" ) , cp : : f i e l d _ r e f ( "Mag" ) } ) ,
cp : : f i e l d _ r e f ( "Mag" ) } ,

{ "XN" , "YN" , "ZN" , "Mag" } )
}

} ) ;
}

Listing A.4 Normalize in Kokkos
kmag_t o p _ k o k k o s _ n o r m a l i z a t i o n ( kx yz _ t kxyz ) {

i n t o r i g i n a l _ n u m = kxyz . e x t e n t _ i n t ( 0 ) ;

kmag_t kou t ( "Norm" , o r i g i n a l _ n u m ) ; / / A l l o c a t e t h e o u t p u t v iew i n advance

Kokkos : : p a r a l l e l _ f o r ( "Mag" , o r i g i n a l _ n u m , [ = ] ( c o n s t i n t 6 4 _ t i ) {
double mag = s q r t ( ( kxyz ( i , 0 ) * kxyz ( i , 0 ) ) + ( kxyz ( i , 1 ) * kxyz ( i , 1 ) ) + ( kxyz ( i , 2 ) * kxyz ( i , 2 ) ) ) ;
kou t ( i , 0 ) = kxyz ( i , 0 ) / mag ;
kou t ( i , 1 ) = kxyz ( i , 1 ) / mag ;
kou t ( i , 2 ) = kxyz ( i , 2 ) / mag ;
kou t ( i , 3 ) = mag ;

} ) ;
re turn kou t ;

}
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A.3. Bounding Box

The bounding box kernel returns a list of particles that are within a specified region.

Listing A.5 Bounding Box in Arrow
ar row : : a c e r o : : D e c l a r a t i o n op_ar row_boundingbox ( c o n s t ar row : : a c e r o : : D e c l a r a t i o n& source , double c b r t _ o f _ r ) {

/ / s e l e c t * from s o u r c e where x < x _ l t and y < y _ l t and z < z _ l t
auto f i l t e r _ e x p r e s s i o n =

ar row : : compute : : and_ ( { ar row : : compute : : l e s s ( a r row : : compute : : f i e l d _ r e f ( "X" ) , a r row : : compute : : l i t e r a l ( c b r t _ o f _ r ) ) ,
a r row : : compute : : l e s s ( a r row : : compute : : f i e l d _ r e f ( "Y" ) , a r row : : compute : : l i t e r a l ( c b r t _ o f _ r ) ) ,
a r row : : compute : : l e s s ( a r row : : compute : : f i e l d _ r e f ( "Z" ) , a r row : : compute : : l i t e r a l ( c b r t _ o f _ r ) ) } ) ;

re turn ar row : : a c e r o : : D e c l a r a t i o n : : Sequence (
{ sou rce ,

{ " f i l t e r " , a r row : : a c e r o : : F i l t e r N o d e O p t i o n s { s t d : : move ( f i l t e r _ e x p r e s s i o n ) } , " f " } } ) ;
}

Listing A.6 Bounding Box in Kokkos
k b l o c k _ t op_kokkos_boundingbox ( k b l o c k _ t kblock , double c b r t _ o f _ r ) {

i n t o r i g i n a l _ n u m = k b lo ck . e x t e n t _ i n t ( 0 ) ;

i f ( o r i g i n a l _ n u m ==0){
k b l o c k _ t kou t ( " T h r e s h P a r t i c l e s : " , 0 ) ;
re turn kou t ;

}

Kokkos : : View< bool *> k h i t s ( " H i t s " , o r i g i n a l _ n u m ) ; / / P lace t o s t o r e h i t / m i s s
Kokkos : : View< i n t *> k o f f s e t ( " O f f s e t " , o r i g i n a l _ n u m ) ; / / P lace t o s t o r e o f f s e t o f where i t w i l l go

/ / Walk t h r o u g h t a b l e t o f i n d rows t o keep . Cr ea t e a h i t mask t o s i m p l i f y o u t p u t
Kokkos : : p a r a l l e l _ s c a n ( "DS1 : " , o r i g i n a l _ n u m , KOKKOS_LAMBDA ( c o n s t i n t i , i n t &l v a l , c o n s t bool f i n a l ) {

bool h i t = ( kb l oc k ( i , 0 ) <= c b r t _ o f _ r ) && ( kb loc k ( i , 1 ) <= c b r t _ o f _ r ) && ( kb lo ck ( i , 2 ) <= c b r t _ o f _ r ) ;

k o f f s e t ( i ) = l v a l ;
i f ( h i t ) {

l v a l ++;
}

} ) ;

/ / F i gu re o u t how many p a r t i c l e s we ’ l l keep and a l l o c a t e an o u t p u t v iew
i n t f o u n d _ c o u n t = k o f f s e t ( o r i g i n a l _ n u m −1) + k h i t s ( o r i g i n a l _ n u m − 1 ) ;
k b l o c k _ t kou t ( " B o u n d i n g P a r t i c l e s : " , f o u n d _ c o u n t ) ;

/ / Go t h r o u g h t h e l i s t aga in . Each worker knows where i t ’ s p a r t o f t h e o u t p u t s t a r t s
Kokkos : : p a r a l l e l _ f o r ( "DSCP2" , found_coun t , KOKKOS_LAMBDA ( c o n s t i n t& i ) {

i f ( k h i t s ( i ) ) {
i n t row = k o f f s e t ( i ) ;
f o r ( i n t k =0; k <7; k ++) {

kou t ( row , k ) = kb lo ck ( i , k ) ;
}

}
} ) ;

re turn kou t ;
}
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