
Leveraging high-performance data transfer to
offload data management tasks to SmartNICs

Scott Levy, Whit Schonbein
Sandia National Laboratories

Albuquerque, New Mexico, USA
{sllevy, wwschon}@sandia.gov

Craig Ulmer
Sandia National Laboratories
Livermore, California, USA

cdulmer@sandia.gov

Abstract—Network interface controllers (NICs) with general-
purpose compute capabilities (‘SmartNICs’) present an opportu-
nity for reducing host application overheads by offloading non-
critical tasks to the NIC. In addition to moving computation,
offloading requires that associated data is also transferred to
the NIC. To meet this need, we introduce a high-performance,
general-purpose data movement service that facilitates the of-
floading of tasks to SmartNICs: The SmartNIC Data Movement
Service (SDMS). SDMS provides near-line-rate transfer band-
widths between the host and NIC. Moreover, SDMS’s In-transit
Data Placement (IDP) feature can reduce (or even eliminate)
the cost of serializing data on the NIC by performing the
necessary data formatting during the transfer. To illustrate these
capabilities, we provide an in-depth case study using SDMS to
offload data management operations related to Apache Arrow, a
popular data format standard. For single-column tables, SDMS
can achieve more than 87% of baseline throughput for data
buffers that are 128 KiB or larger (and more than 95% of
baseline throughput for buffers that are 1 MiB or larger)
while also nearly eliminating the host and SmartNIC overhead
associated with Arrow operations.

Index Terms—Network interfaces, SmartNICs, data analytics

I. INTRODUCTION

Network interface controllers (NICs) with general-purpose
compute capabilities – variously referred to as SmartNICs,
Data Processing Units (DPUs) or Infrastructure Processing
Units (IPUs) – present an opportunity for reducing host
application overheads by offloading tasks to the NIC. While
SmartNICs typically have less powerful compute resources
and less plentiful memory resources than the associated host,
offloaded computation can be overlapped with the execution
of the host application yielding an overall benefit. Researchers

Sandia National Laboratories is a multimission laboratory managed and
operated by National Technology & Engineering Solutions of Sandia, LLC,
a wholly owned subsidiary of Honeywell International Inc., for the U.S.
Department of Energy’s National Nuclear Security Administration under
contract DE-NA0003525. This article has been authored by an employee
of National Technology & Engineering Solutions of Sandia, LLC under
Contract No. DE-NA0003525 with the U.S. Department of Energy (DOE).
The employee owns all right, title and interest in and to the article and is
solely responsible for its contents. The United States Government retains and
the publisher, by accepting the article for publication, acknowledges that the
United States Government retains a non-exclusive, paid-up, irrevocable, world-
wide license to publish or reproduce the published form of this article or allow
others to do so, for United States Government purposes. The DOE will provide
public access to these results of federally sponsored research in accordance
with the DOE Public Access Plan https://www.energy.gov/downloads/doe-
public-access-plan.

have thus proposed utilizing SmartNICs for offloading tasks
including distributed databases [1], [2], security [3], system
services [4], and collective communication [5].

Effective offloading requires that host data be migrated
to the SmartNIC. For example, Bayatpour et al. [5] used
SmartNIC memory to stage host data to be exchanged in MPI
collective operations, and Ulmer et al. [2] moved data from
host memory to the SmartNIC to facilitate their insertion in
a distributed database. There is an existing need for a low-
overhead, high-bandwidth method for transferring memory
contents from host to SmartNIC [2]. To address this need, we
introduce a high-performance, general-purpose data movement
service that facilitates the offloading of tasks to SmartNICs:
The SmartNIC Data Movement Service (SDMS). SDMS pro-
vides near-line-rate transfer bandwidths between host memory
and SmartNIC memory. Moreover, SDMS’s In-transit Data
Placement (IDP) feature can reduce (or even eliminate) the
cost of data placement operations (e.g., serialization) on the
SmartNIC by performing the necessary data formatting during
the transfer. In this paper, we use benchmarks to assess the
cost borne by the host to initiate data transfers with SDMS,
characterize approaches for maximizing transfer bandwidth,
and demonstrate that SDMS’s transfer bandwidths compare
favorably to results from a standard bandwidth benchmark.

We also provide an in-depth case study to characterize
the performance of using SDMS to facilitate the offload of
data management operations related to Apache Arrow [6], a
framework widely used in data analytics. We benchmark the
multi-step process of converting raw output data to a serialized
Apache Arrow object to identify candidates for offloading,
and evaluate the degree to which IDP can help maximize
SmartNIC throughput. For single-column tables, SDMS using
IDP can achieve more than 87% of baseline throughput for
data buffers that are 128 KiB or larger (and more than 95%
of baseline throughput for buffers that are 1 MiB or larger)
while significantly reducing the host overhead and increasing
the SmartNIC’s throughput for Arrow data transformation
operations. The primary contributions of this paper are:

• SmartNIC Data Movement Service, a flexible, high-
performance, general-purpose service for transferring
data from host to SmartNIC that facilitates offloading
work to the SmartNIC to reduce host overheads (§II);

• Comprehensive performance analysis of SDMS, demon-

SAND2024-10222C

HOST

Application

SDMS Client

1

SMARTNIC

SDMS Server0

2 3 4

Fig. 1: High-level operation of SDMS

strating that it achieves transfer bandwidths that compare
favorably to results from a standard bandwidth bench-
mark (§IV);

• Detailed analysis of the multi-step process of converting
data to serialized Apache Arrow [6] objects to identify
work to offload to the SmartNIC (§§V-D,V-E); and

• A case study evaluating the performance benefit of of-
floading Apache Arrow operations to a SmartNIC with
SDMS, including the benefits of using the IDP feature of
SDMS to manipulate the data in-transit (§§V-F,V-G).

II. SDMS

The SmartNIC Data Movement Service (SDMS) provides
host applications with high-performance data transfer to facil-
itate offloading tasks to the SmartNIC while minimizing host
involvement.

A. Design Goals

We identified two design objectives for SDMS:
• Minimize Host Involvement: A principle goal of offload-

ing is to free up resources on the host processor(s). To
meet this goal, SDMS is designed to use RDMA get
operations issued by the SmartNIC to minimize host
involvement in the data transfer. Transfers are acknowl-
edged lazily to eliminate the need for the host to be
interrupted to process acknowledgements.

• Maximize SmartNIC Throughput: Because the processors
on a SmartNIC are frequently less powerful and have
less memory (both cache and bulk memory) than the
associated host processor, offloaded work may execute
more slowly on the SmartNIC than it would on the host.
As a result, there is a risk that the offloaded work could
become a bottleneck. As detailed below, SDMS addresses
this issue by providing high-performance data transfer,
and utilizing in-transit data placement to reduce Smart-
NIC load.

B. Operation of SDMS

SDMS builds on the services provided by hod-
carrier [7]. The hodcarrier library provides a simple,

open-source wrapper around the InfiniBand Verbs API that
hides the low-level details of interface (e.g., managing queue
pairs, polling completion queues) to simplify the development
of higher-level services, including SDMS. SDMS interfaces
with the application and manages the process of transferring
the data associated with the offloaded computation. Figure 1
depicts the basic sequence of operations for transferring data
from host memory to the SmartNIC. A detailed description of
the transfer process is provided below:

0 During the initialization of SDMS, the application can
optionally provide the Server with the size(s) of the
data buffers that will be processed to enable the Server
to improve performance by pre-allocating and caching
destination buffers before the application runs.

1 When the application has data that is ready to transfer, it
calls the SDMS Client API and provides: (i) the memory
addresses of the buffers to transfer; (ii) the sizes of each
of the buffers to transfer; and (iii) the remote keys for the
RDMA transfer of the buffers.1

2 The SDMS Client sends the request to the SDMS Server
on the SmartNIC (solid, downward arrow). The SDMS
Server running on the SmartNIC acknowledges the re-
quest to the Server (dashed, upward arrow).

3 The SDMS Server acquires a destination buffer for
the transfer and initiates an RDMA Read operation
(IBV_WR_RDMA_READ opcode).

4 After the buffer has been transferred, the SDMS Server
notifies the SDMS Client that the transfer is complete and
the source buffer can be reused. Completion notification
is done lazily to eliminate the need for the Server to check
for message arrival; the notification is piggybacked on the
next message from the Server to the Client.

The SDMS library was designed to offload data transfer to the
greatest extent possible from the host to the SmartNIC. The
only required host participation is preparation of the buffers
for RDMA transfer (e.g., ensuring that memory has been
registered) and to request the transfer from the SDMS Server.
All other processing is done on the SmartNIC.

C. In-transit Data Placement (IDP)

SDMS implements an optimization that performs simple
data placement operations in the process of transferring data
from host memory to SmartNIC memory. For example, if we
have three individual memory buffers in host memory that we
ultimately wish to consolidate into a single contiguous mem-
ory buffer, we can allocate a contiguous buffer in SmartNIC
memory and configure the RDMA Get operations such that
the three buffers are coalesced into the single memory buffer
in SmartNIC memory as part of the transfer. In the absence
of this feature, either the host or the SmartNIC would need to
explicitly serialize the data (i.e., copy the buffers into a single
memory buffer either before (host) or after (SmartNIC) the

1RDMA operates on the level of memory regions so we use that termi-
nology here. However, it is straightforward to acquire contiguous memory
regions from common, high-level data structures (e.g., C++ STL containers).

transfer). By incorporating simple data movement operations
into the transfer to SmartNIC memory, we can reduce (or
even eliminate) the need for explicit memory copies. As we
demonstrate later in this paper (see Section V-G) SDMS’s IDP
feature can be used to help serialize data structures and to
manipulate the contents of existing data structures.

III. EXPERIMENTAL SETUP

The data in this paper was collected on Glinda, a High
Performance Data Analytics (HPDA) cluster. Each compute
node has a single 32-core, 2.8GHz AMD EPYC 7543P
processor and 512 GiB of DDR4 memory. Each compute
node also includes an NVIDIA Ampere A100 GPU, and an
NVIDIA BlueField-2 VPI Data Processing Unit (DPU). The
interconnect is 100 Gb/s InfiniBand.

IV. BENCHMARKING SDMS

In this section, we evaluate our implementation of SDMS in
the context of the design objectives described in Section II-B.

A. Minimizing Host Offload Overhead

An important benefit of offloading data management tasks
to the SmartNIC is to free the host processor so that it
can do other work (e.g., continuing to run the application
that is generating the data) in parallel with data processing.
SDMS is designed to minimize host involvement; once the
host has called the SDMS to send its transfer request to the
SDMS Server on the SmartNIC, it is free to resume its other
work. As a result, we expect that the cost of data transfer
on the host should be relatively constant and independent of
message size. The data in Figure 2 confirms this expectation.
This figure shows the time that the host is involved in the
transfer data to the SmartNIC with SDMS. The data shown
in green and blue represent the minimum and maximum
measurements, respectively. The orange data represent the
average time measurements. While there is some variation
across buffer sizes, the averages are all between 250 and 350
µs. Moreover, there is not an observable correlation between
the time required to request a transfer and the buffer size:
the Pearson correlation coefficient, R, for the average time is
0.379 (indicating a weak, positive correlation). With respect
to the absolute time required to initiate a transfer from the
host, the current implementation is built on Linux sockets
over the management interface. As a result, while there is
room to optimize this transfer, its current performance (100s of
microseconds to initiate a transfer) means that the magnitude
of the benefit of this optimization would be modest.

Summary: SDMS facilitates data transfer from host mem-
ory to SmartNIC with very modest, size-independent host
processing requirements, fulfilling our first design objective.

B. Maximizing SmartNIC Throughput

To characterize the impact of the cost of data transport
on SmartNIC throughput for SDMS, we use an existing
InfiniBand bandwidth benchmark, qperf [8], to establish an
upper bound on the network transfer bandwidth. Using qperf

512B 4KiB 32KiB 256KiB 2MiB 16MiB 128MiB 1GiB

Buffer size

0 s

100 µs

200 µs

300 µs

400 µs

T
ra
n
sf
er

in
it
ia
ti
o
n
ti
m
e

Minimum Average Maximum

Fig. 2: Host time to initiate an SDMS transfer

enables us to evaluate the extent to which SDMS is able to
use the full network bandwidth to transfer data from host
memory to SmartNIC memory. Figure 3 compares the em-
pirical bandwidth of SDMS with two different configurations
of qperf. The SDMS data in this figure represent the average
over 10 trials. The qperf data represent the average that it
reports. The qperf results are collected by launching a server
process on the host and then connecting to that server from the
SmartNIC and executing the rc_rdma_read_bw test (i.e.,
ultimately executing RDMA Get operations to transfer data
from host memory to the SmartNIC).

Bandwidth benchmarks, including qperf, initiate large
numbers of transfer operations at once to saturate the network
and maximize measured bandwidth. The number of requests
posted by qperf is controlled in the source code by the
value of NCQE. By default, the value of NCQE is 1024 and
is not modifiable at runtime. While initiating a large number
of transfers in this fashion establishes a valuable upper bound,
users commonly want to transfer one buffer (or a small number
of buffers) at a time and are thus generally not able to reach
this upper bound (especially for small message buffers). As
a result, to get a more realistic upper bound on transfer
bandwidth, we modified qperf to allow the value of NCQE
to be set at runtime.

The blue line in Figure 3 shows the bandwidth measured
by qperf as a function of the size of the message buffer
for the default value of NCQE (1024). This version of qperf
is able to achieve full network bandwidth (≈ 100 Gbps) for
message buffers that are between 8 KiB and 4 MiB in size.
For messages larger than 4 MiB, the achievable bandwidth
drops by approximately 15%. We expect that, in most cases,
our applications will request the transfer of small numbers of
buffers at a time (e.g., once per timestep). As a result, the
measurements with NCQE set to 1 represent a fairer baseline
to compare the performance of SDMS against. Therefore,
the orange line shows the bandwidth measured by qperf
with the value of NCQE set to 1. These data show that, for
small message buffers, the measured bandwidth is significantly
lower for sending single message buffers (NCQE=1) than the
default approach (NCQE=1024). The green line represents
bandwidth measured using SDMS. To ensure a fair comparison
with qperf, we implemented this benchmark to ensure that

512B 4KiB 32KiB 256KiB 2MiB 16MiB 128MiB 1GiB

Buffer size

0 b/s

20 Gb/s

40 Gb/s

60 Gb/s

80 Gb/s

100 Gb/s

B
a
n
d
w
id
th

qperf (NCQE = 1024)

qperf (NCQE = 1)

SDMS

Fig. 3: Comparison of bandwidth measured with SDMS and
bandwidth measured with the qperf benchmark.

buffers are registered and reused such that memory registration
costs are not included in our measurements. The data in this
figure show that, for messages that are 64 KiB or larger, the
bandwidth measured with SDMS is never less than 85% of the
bandwidth measured with qperf (NCQE = 1), and in some
cases is higher (e.g., for 16 MiB buffers).

The default buffer management strategy for SDMS uses two
principal optimizations to ensure high performance. The first
is to allocate memory with memalign to align buffers on
the host (source) and SmartNIC (destination) buffers to page
boundaries. The second is to pre-allocate and cache registered
buffers in SmartNIC memory to maximize reuse and reduce
the overhead of memory registration. Figure 4 characterizes
the impact that each of these optimizations have on the transfer
bandwidth achieved by SDMS. These two figures evaluate
eight combinations of the three configuration options. The
top figure (Figure 4a) shows the transfer bandwidth when
the SmartNIC buffers are allocated on page boundaries with
memalign while buffer caching is enabled/disabled on the
SmartNIC, and the use of malloc or memalign is varied
on the client (i.e., the host). The bottom figure (Figure 4b)
shows the transfer bandwidth when the destination buffers are
allocated with malloc and are not guaranteed to be page-
aligned. These data show that the critical optimization is to
use SmartNIC buffers that are page-aligned. The peak transfer
bandwidth achieved for trials with page-aligned destination
buffers is more than 24% higher than the peak achieved
with non-page-aligned destination buffers. These data show
that buffer caching may yield an additional improvement,
especially for large buffers. For 1 MiB SmartNIC buffers,
caching increased the transfer bandwidth by nearly 6% for
page-aligned buffers (Figure 4a) and nearly 11% for non-page-
aligned buffers (Figure 4b).

512B 4KiB 32KiB 256KiB 2MiB 16MiB 128MiB 1GiB

Buffer size

0 b/s

20 Gb/s

40 Gb/s

60 Gb/s

80 Gb/s

100 Gb/s

B
a
n
d
w
id
th

CACHING=enabled / CLIENT=memalign

CACHING=enabled / CLIENT=malloc

CACHING=disabled / CLIENT=memalign

CACHING=disabled / CLIENT=malloc

(a) Server (SmartNIC) buffer allocation with memalign

512B 4KiB 32KiB 256KiB 2MiB 16MiB 128MiB 1GiB

Buffer size

0 b/s

10 Gb/s

20 Gb/s

30 Gb/s

40 Gb/s

50 Gb/s

60 Gb/s

70 Gb/s

80 Gb/s

B
a
n
d
w
id
th

CACHING=enabled / CLIENT=memalign

CACHING=enabled / CLIENT=malloc

CACHING=disabled / CLIENT=memalign

CACHING=disabled / CLIENT=malloc

(b) Server (SmartNIC) buffer allocation with malloc

Fig. 4: Bandwidth measurements to characterize the impact of
different buffer management strategies

Summary: The raw transfer bandwidth from host memory
to SmartNIC memory provided by SDMS (near-line-rate)
is sufficient to prevent data transfer itself from being a
bottleneck, consistent with our second design objective for
SDMS. Page-aligned destination buffers are required to
achieve this level of performance.

V. CASE STUDY: OFFLOADING APACHE ARROW
TRANSFORMATION AND SERIALIZATION

In this section, we describe and analyze an example of how
SDMS can be applied to offload data management operations,
with an emphasis on avoiding overwhelming the relatively
modest compute resources available on the SmartNIC. Specif-
ically, we describe a workflow that uses Apache Arrow [6]
to connect the output of scientific applications to subsequent
phases of analysis and visualization.

A. Connecting Workflow Applications with Apache Arrow

Workflows on HPC systems frequently need to migrate data
between one parallel simulation or analysis job’s memory
space to another’s as efficiently as possible [9]. One of the
challenges of facilitating these transfers is agreeing upon a
common data representation that all parties support. While
HPC users have historically relied on visualization libraries

Application

1

raw
data

Data
Transformation

2

standardized
data

Serialization

3

serialized
data

network

4

serialized
data

De-serialization

5

standardized
data

Data
Analysis
Tasks

6

Fig. 5: An overview of the steps involved to transform simulation output data stored in application-native data structures to
Arrow objects that are provided as input to data analysis and visualization tasks.

to export simulation results to analysis tools [10], there is
significant interest in integrating the data science community’s
analysis tools into HPC workflows, including tools that use
machine learning and AI techniques to extract insight. Fortu-
nately, many of these tools have already been standardized to
provide data interoperability via Apache Arrow.

Apache Arrow is an open-source library for efficiently rep-
resenting, processing, transmitting, and storing tabular data [6].
At its core, Arrow implements a space-efficient, in-memory
columnar store in C++ and features a robust API for manipu-
lating tabular data that has been adapted to several languages,
including C++, Python, Go, R, and Rust. Users represent their
data in one or more two-dimensional tables, each with its own
user-defined schema. Individual columns are implemented as
chunked arrays to enable users to split and combine table
components efficiently, as well as to support both batch and
streaming computations. Arrow includes a compute framework
to apply database-like queries to a table that is both thread- and
SIMD-aware. Most importantly for our work, Arrow defines
an on-wire data format for inter-process communication (IPC)
that makes it easier for applications to serialize and share data
efficiently. As such, Arrow has the potential to serve as a
conduit for HPC applications to exchange data with dozens
of Arrow-enabled environments [11], including Pandas [12],
Apache Spark [13], Dask [14], Ray [15], and GeoMesa [16].

Previous work has demonstrated that Arrow is well-suited
for representing particle simulation data and that tables serial-
ized into Arrow’s IPC format can be revived and inspected
by a SmartNIC with minimal overhead [1]. In addition to
providing a mechanism for users to query the live content
of a simulation’s in-transit data [17], Arrow can be used to
refine data at the SmartNIC. In a particle-sifting example, a
distributed group of SmartNICs reorganized simulation results
to simplify work for downstream consumers [2]. In this exam-
ple, each simulation rank on the host converts particle data to
an Arrow format and streams updates to the SmartNIC. Once
a SmartNIC acquired sufficient data, an Arrow filter operation
grouped particles by ID to enable data to be distributed to the
corresponding SmartNICs.

B. Case Study Overview

Figure 5 depicts an example workflow that connects simu-
lation output to analysis tasks. Production workflows typically
have additional steps (e.g., mesh generation, multi-physics
coupling) but for the purpose of our case study, we have
focused on the data analysis and visualization portion of the

C++ vectors/
C arrays

Arrow

Arrays

1

Field

names

Arrow

Schema

2

3 Table/

RecordBatch
Arrow IPC

4

Fig. 6: Converting C++ vectors or C arrays to Arrow IPC.

workflow. Data in workflows like this run the simulation and
analysis tasks on separate job allocations. Data is commonly
exchanged between these two stages through a parallel file
system, however, in-memory storage (e.g., Faodel [18], DataS-
paces [19]) could also be used.

In this workflow, data transformation to the Arrow data
format is a multi-step process. 1 The simulation generates
data in an application-defined format; for instance, in the
example described in Section V-A, the application output
comprises C++ STL vectors containing particle locations,
velocities, etc. 2 Raw data is transformed into an Arrow
Table or RecordBatch object. 3 The Table or RecordBatch
is serialized into Arrow IPC format. 4 The serialized data
is transferred over the network to the analysis tasks and
5 de-serialized to recover the Arrow object and potentially

integrated with data from other processes. Note that Arrow
enables de-serialization to be done in-place with very low
overheads. Following the de-serialization step, the requested
analysis can be performed.

Figure 5 shows that the burden of transforming application
output to Arrow objects and serializing it is borne by the ap-
plication job running the principal computation. This presents
an opportunity to reclaim host resources by offloading these
operations to the SmartNIC. Moreover, SDMS can reduce the
amount of work that must be done on the SmartNIC by directly
placing host data into appropriate data structures in SmartNIC
memory, see Section II-C. In the remainder of this section, we
characterize the potential benefit of using SDMS to offload
Arrow transformation and serialization.2

C. Arrow Data Serialization

Arrow provides two mechanisms for transforming data into
serialized Arrow RecordBatches: (i) one based on the Arrow
C++ API; and (ii) an alternative using the lightweight Arrow

2We could also consider offloading the de-serialization operation in the
analysis job, but given that the overhead of this operation for Arrow IPC
buffers is very low, the benefit in this instance is also low.

Step C++ C

1
For each vector:
NumericBuilder.AppendValues
NumericBuilder.Finish

Create a parent ArrowArray struct.
For each array:
Create child ArrowArray structure

2

For each column name:
arrow::Field constructor
Once:
arrow::schema constructor

Create a parent ArrowSchema struct.
For each array:
Create child ArrowSchema structure

3 arrow::RecordBatch::Make arrow::ImportRecordBatch

4

arrow::ipc::MakeStreamWriter
writeRecordBatch
GetExtentBytesWritten
arrow::AllocateResizableBuffer
writeRecordBatch

arrow::ipc::MakeStreamWriter
writeRecordBatch
GetExtentBytesWritten
arrow::AllocateResizableBuffer
writeRecordBatch

TABLE I: Arrow API calls for each step in Figure 6.

C application-binary interface (ABI). The latter has the benefit
of allowing an application to avoid linking the Arrow libraries
by instead including a header defining C structures that can
subsequently be processed directly by the Arrow C++ libraries.
However, both mechanisms follow the same general sequence
of steps, shown in Figure 6: 1 convert application-native data
structures (e.g., C++ STL vectors or C arrays) into Arrow
objects (C++ Arrow Arrays), 2 convert a list of field names
(i.e., text strings describing each column) to an Arrow Schema
object, 3 combine the Arrow Array and Schema objects
to create a Arrow RecordBatch object, and 4 serialize the
RecordBatch into a buffer stored in the Arrow IPC format. At
this point, the serialized data can be moved off-node.

The C++ and C approaches differ in their respective se-
quence of calls, as shown in Table I. For the C++ API, vectors
provided by the application are transformed into IPC format
through a sequence of calls to C++ methods. In contrast, with
the C ABI, tree-like collections of C structures (defined in an
Arrow header) are created by the application to encapsulate
the data and the text labels for those arrays. Steps 1 and
2 represent the creation of those collections, which are then

imported into a RecordBatch using the C++ Arrow API in step
3 . The code for the final step is identical for both approaches;
writeRecordBatch appears twice because a dummy write
is necessary to determine the required IPC buffer size.

D. Identifying Targets for Offloading

To assess the amount of host CPU time that could be
recovered by using SDMS to offload Arrow conversion steps
to the SmartNIC, we developed a benchmark to evaluate the
C++ and C serialization approaches. Given a total data size
(in bytes) and a number of columns, the benchmark creates a
collection of C++ vectors (for C++) or arrays (for C) of equal
length (one per RecordBatch column) and whose data sizes
sum to the total requested amount. Randomly generated 64-
byte strings are used for the column names in our experiments.
The benchmark then executes the sequence of operations
summarized in Table I, timing the duration of each step.

All experiments are executed on the host nodes of the
system described in Section III, using Arrow v11.0.0. Total
data sizes range from 128B to 1GiB by powers of 2. The
number of columns range from 1 to 512, and results are
averaged over ten runs on ten different nodes.

0.10

10.00

M
ea
n
ti
m
e
(m

s)

1 Column

ipc (step 4)

record batch (step 3)

schema (step 2)

arrays (step 1)

0.10

10.00

M
ea
n
ti
m
e
(m

s)

4 Columns

1
2
8
B

2
5
6
B

5
1
2
B

1
K
iB

2
K
iB

4
K
iB

8
K
iB

1
6
K
iB

3
2
K
iB

6
4
K
iB

1
2
8
K
iB

2
5
6
K
iB

5
1
2
K
iB

1
M
iB

2
M
iB

4
M
iB

8
M
iB

1
6
M
iB

3
2
M
iB

6
4
M
iB

1
2
8
M
iB

2
5
6
M
iB

5
1
2
M
iB

1
G
iB

Data size

1.00

100.00

M
ea
n
ti
m
e
(m

s)

16 Columns

Fig. 7: Per-step contribution to the total time for Arrow IPC
conversion using the C++ API on the host.

1) C++ API Results: Figure 7 shows the contribution
of each step to the total serialization time using the C++
API, for tables with 1, 4 and 16 columns; results for tables
with other numbers of columns are similar insofar as the
proportions of each step are comparable. As can be seen from
the figure, serialization time is dominated by converting data
to Arrow Arrays (step 1 in fig. 6) and serializing the Arrow
RecordBatch object to an IPC buffer (step 4). Taken together,
these two steps account for approximately 86% to 99.9%
of the conversion time for data buffers between 128B and
1GiB in size3, regardless of number of columns. Therefore,
the benchmark results indicate that offloading before steps 4
or 1 (which will include offloading 4) will provide the
most benefit. However, offloading only step 4 is superfluous
because transferring its input data to the SmartNIC would itself
require serialization on the host.

Summary: For the C++ API, the best candidate for offload-
ing work is before execution of step 1 (Array creation).

2) C ABI Results: Figure 8 shows the contribution of
each step to the total serialization time using the C ABI.
Because under this method exporting arrays and schema is

3Note that the y-axes are log2 and the results for the individual steps
are stacked. Therefore, the results for steps 1 and 4 are comparable in
magnitude despite the visual appearance in Figure 7.

0.01

10.00

M
ea
n
ti
m
e
(m

s)
1 Column

ipc (step 4)

import record batch (step 3)

export schema (step 2)

export array (step 1)

0.01

1.00

100.00

M
ea
n
ti
m
e
(m

s)

4 Columns

1
2
8
B

2
5
6
B

5
1
2
B

1
K
iB

2
K
iB

4
K
iB

8
K
iB

1
6
K
iB

3
2
K
iB

6
4
K
iB

1
2
8
K
iB

2
5
6
K
iB

5
1
2
K
iB

1
M
iB

2
M
iB

4
M
iB

8
M
iB

1
6
M
iB

3
2
M
iB

6
4
M
iB

1
2
8
M
iB

2
5
6
M
iB

5
1
2
M
iB

1
G
iB

Data size

0.01

1.00

100.00

M
ea
n
ti
m
e
(m

s)

16 Columns

Fig. 8: Per-step contribution to the total time for Arrow IPC
conversion using the C ABI on the host.

nothing more than setting up several C structures, the cost
for these steps (1 and 2) never exceeds 2% of the total
conversion time, regardless of the number of columns or data
size. For small total data sizes, the time required to import a
RecordBatch (step 3) is a significant fraction of the total
(e.g., approximately 30% for the single column case), but
rapidly drops for data sizes larger than 512KiB until it is less
than 2% for 2MiB and larger. As a result, for all numbers of
columns, conversion time is dominated by the need to copy
data during IPC (step 4), ranging from approximately 55%
to 99.9% of the total conversion time as the data size increases
from 128B to 1GiB. However, as observed for the C++ API
case, the value of offloading 4 by itself is limited because the
act of preparing the data for movement after 3 would itself
require serialization by the host. Similarly, offloading after 2
would require serializing the objects that form the input of 3 .
Consequently, offloading all four steps (i.e., prior to step 1)
promises the best results.

Summary: For the C interface, the best candidate point for
offloading work is prior to step 1 .

E. Relative Overheads of SmartNIC Offloading

Because of the relative weakness of computational resources
on a BlueField SmartNIC in comparison to the host (cf. [20],
[21]) we also evaluated the cost of running the Arrow conver-

1
2
8
B

2
5
6
B

5
1
2
B

1
K
iB

2
K
iB

4
K
iB

8
K
iB

1
6
K
iB

3
2
K
iB

6
4
K
iB

1
2
8
K
iB

2
5
6
K
iB

5
1
2
K
iB

1
M
iB

2
M
iB

4
M
iB

8
M
iB

1
6
M
iB

3
2
M
iB

6
4
M
iB

1
2
8
M
iB

2
5
6
M
iB

5
1
2
M
iB

1
G
iB

Data size

0.01

0.10

1.00

10.00

100.00

1000.00

T
o
ta
l
co
n
v
er
si
o
n
ti
m
e
(m

s) 1 cols DPU C++

1 cols Host C++

16 cols DPU C++

16 cols Host C++

Fig. 9: Comparison of total conversion time using C++ method
on BlueField-2 DPU and host. Error bars show standard
deviation.

1
2
8
B

2
5
6
B

5
1
2
B

1
K
iB

2
K
iB

4
K
iB

8
K
iB

1
6
K
iB

3
2
K
iB

6
4
K
iB

1
2
8
K
iB

2
5
6
K
iB

5
1
2
K
iB

1
M
iB

2
M
iB

4
M
iB

8
M
iB

1
6
M
iB

3
2
M
iB

6
4
M
iB

1
2
8
M
iB

2
5
6
M
iB

5
1
2
M
iB

1
G
iB

Data size

0.01

0.10

1.00

10.00

100.00

1000.00

T
o
ta
l
co
n
v
er
si
o
n
ti
m
e
(m

s) 1 cols DPU C

1 cols Host C

16 cols DPU C

16 cols Host C

Fig. 10: Comparison of total conversion time using C method
on BlueField-2 DPU and host. Error bars show standard
deviation.

sion and serialization task on the SmartNIC relative to the host.
This is important because by Little’s law, slower SmartNIC
processing speeds can limit throughput, thereby increasing
the amount of SmartNIC resources (e.g., memory) required
to service the host application and increasing the potential for
the SmartNIC to become a bottleneck.

Executing the benchmark on the SmartNICs revealed that
the relative contributions to the total serialization time are
consistent with those observed for the host (Figures 7 and 8):
For C++, total times are dominated by Array and IPC serial-
ization, and for C, total times are dominated by RecordBatch
import and IPC. However, the Arrow conversion process
is significantly slower on the SmartNIC than on the host.
Figures 9 and 10 compare the average total Arrow conversion
times for the host and the SmartNIC using the C++ and
C methods, for 1 and 16 columns with data sizes ranging
from 128B to 1GiB, in powers of 2. Using the C++ API,
for a single column, the SmartNIC is 1.4× (256B) to 7.9×
(128MiB) slower than the host, with a median and mean across
all data sizes of 4.8× and 4.8× slower, respectively. For 16
columns, SmartNIC times range from 1.6× (256B) to 10.2×
(8MiB) slower, with a median and mean of 4.6× and 4.3×.

Using the C interface, for a single column, running on

the SmartNIC is between 3.3× (32MiB) and 11.7× (64KiB)
than running on the host, with an overall mean and median
of 5.6× and 4.9×, respectively. The data from the 16 column
experiments show the SmartNIC trailing the host by factors
ranging from 3.8× (256B) to 11.4× (8MiB), with a mean and
median slowdown of 6.4× and 5.5×, respectively.

Summary: Blindly offloading the entire Arrow conversion
to the SmartNICs causes the SmartNICs to become a
throughput bottleneck because it performs this conversion
significantly slower than the hosts. Moreover, some cases
may exhibit especially severe slowdowns, see e.g., the single
column, 128B C ABI offload results in Figure 10

F. Using IDP to Increase SmartNIC Throughput of Offloaded
Serialization Operations

IDP allows SDMS to place buffer contents from the host
directly into data structures in SmartNIC memory4 (e.g.,
Arrow IPC buffers, Arrow C ABI data structures). SDMS
thus has the potential reduce the work done by the SmartNIC
by avoiding having to do that work altogether, mitigating the
relative overheads observed above.

The sequence of conversion steps (1 - 4) described in Fig-
ure 6 suggests possible IDP strategies for both the C++ and
C approaches. For C++, the direct-to-arrays strategy places
the contents of C++ STL vectors in host memory directly into
Arrow Arrays in SmartNIC memory, subsuming step 1 into
data movement. In a direct-to-record-batch scenario, SDMS
initialization includes sufficient information to construct the
Arrow Schema (step 2) and allocate space for the Record-
Batch columns, so that SDMS can transfer host data directly
into the RecordBatch, subsuming steps 1 and 3 . Finally,
in the direct-to-ipc scenario, the same SDMS configuration
information is used to prepare a destination buffer in SmartNIC
memory such that data can be transferred directly to a pre-
existing buffer in the Arrow IPC format. The C interface
does not include a direct-to-arrays option, but rather offers
a direct-to-structs approach, where SDMS uses IDP to place
application data directly into C Array and Schema structures.

Results from our Arrow benchmark enable us to estimate
the amount of SmartNIC processing time that can be saved
by using these IDP strategies. For example, Figure 9 shows
that for one column tables, the minimum SmartNIC processing
time saved ranges from 100 µs (256B) to nearly a second
(989.9 ms for 1GiB) using the C++ direct-to-arrays strategy;
the range is similar for 16 columns. By bypassing the con-
version process entirely, the direct-to-ipc strategy offers the
largest reduction in SmartNIC processing time, ranging from
179 µs (256B) to 2 seconds (1GiB) for 16 columns. Similarly,
Figure 10 shows that for the C ABI, direct-to-structs offers
very small recoveries to SmartNIC processing time, e.g., from

4The SDMS client will allocate the destination data structure before the
data transfer. Ideally, either the application will provide information during
initialization about the data so that data structures can be allocated during
initialization or a suitable data structure could be reused.

3 µs (2KiB) to 22 µs (128MiB) for 16 columns, while direct-
to-ipc obtains the largest reductions (e.g., 105 µs (512) to
993.5 ms (1GiB) for 16 columns).

Summary: By using IDP to perform serialization in-transit,
SDMS can significantly reduce the amount of time the
SmartNIC must spend processing host data, reducing the
potential of the SmartNIC to become a bottleneck.

G. Performance of Offloading Arrow Operations with SDMS
There are several possible approaches to transforming sim-

ulation output to Arrow objects and serializing it for transfer
to our data analysis tasks. For our Arrow-based case study,
we consider the following five approaches to understand the
potential benefit of offloading these tasks to the SmartNIC. The
experimental setup for these data is described in Section III.

• Host Serialization. Application data is transformed to an
Arrow object and serialized to an Arrow IPC buffer on the
host. This is the baseline approach that represents the case
where no computation is offloaded. Because the Arrow
objects are serialized on the host, the off-node transfer is
limited to a single, contiguous data buffer.

• SmartNIC Serialization. Application data is transferred
natively from host memory to SmartNIC memory
(e.g., from a std::vector in host memory to a
std::vector in SmartNIC memory). After the trans-
fer, the SmartNIC performs the transformation to an
Arrow object and the serialization to an Arrow IPC buffer.

• In-transit Data Placement (IPC). Application data is
transferred directly from application-native data struc-
tures to known locations in existing Arrow IPC buffers in
SmartNIC memory (based on the direct-to-ipc approach
for the C++ API described in Section V-F). The result is
that serialization is completed as part of the transfer to
the SmartNIC and the data never has to be transformed
to an Arrow object.

• In-transit Data Placement (page-aligned IPC). As
demonstrated in Section IV, transfer bandwidth is higher
for RDMA Get operations when the destination buffer
is page-aligned. To characterize the benefit of page-
alignment, we padded each column to ensure that the
data is page-aligned within the Arrow IPC buffer. Note
that at the time of writing Arrow does not include support
for page-alignment, and a permanent solution will require
modification of the Arrow source.

• In-transit Data Placement (C ABI). As discussed in
Section V-C, it is also possible to use Arrow’s C ABI [22]
to transfer simulation output data by directly modifying
pre-existing C data structures (this approach is based on
the direct-to-structs approach for the C ABI described in
Section V-F). This approach to data transfer eliminates
the need to transform the data to Arrow data structures.
However, the serialization operation needs to be per-
formed after the data arrives in SmartNIC memory.

Figure 11 shows the results of our experiments that measure
host and SmartNIC overheads related to Arrow transformation

4KiB 32KiB 256KiB 2MiB 16MiB 128MiB

Total data size

1 ms

10 ms

H
o
st

ov
er
h
ea
d

Host serialization

SmartNIC serialization

In-transit Data Placement (IPC)

In-transit Data Placement (page-aligned IPC)

In-transit Data Placement (C ABI)

(a) 1 column (Host overhead)

256B 2KiB 16KiB 128KiB 1MiB 8MiB 64MiB 512MiB

Total data size

2 GB/s

5 GB/s

8 GB/s

10 GB/s

12 GB/s

15 GB/s

T
h
ro
u
g
h
p
u
t

Host serialization

SmartNIC serialization

In-transit Data Placement (IPC)

In-transit Data Placement (page-aligned IPC)

In-transit Data Placement (C ABI)

(b) 1 column (SmartNIC throughput)

4KiB 32KiB 256KiB 2MiB 16MiB 128MiB

Total data size

1 ms

10 ms

H
o
st

ov
er
h
ea
d

Host serialization

SmartNIC serialization

In-transit Data Placement (IPC)

In-transit Data Placement (page-aligned IPC)

In-transit Data Placement (C ABI)

(c) 4 columns (Host overhead)

256B 2KiB 16KiB 128KiB 1MiB 8MiB 64MiB 512MiB

Total data size

2 GB/s

5 GB/s

8 GB/s

10 GB/s

12 GB/s

15 GB/s

T
h
ro
u
g
h
p
u
t

Host serialization

SmartNIC serialization

In-transit Data Placement (IPC)

In-transit Data Placement (page-aligned IPC)

In-transit Data Placement (C ABI)

(d) 4 columns (SmartNIC throughput)

4KiB 32KiB 256KiB 2MiB 16MiB 128MiB

Total data size

1 ms

10 ms

H
o
st

ov
er
h
ea
d

Host serialization

SmartNIC serialization

In-transit Data Placement (IPC)

In-transit Data Placement (page-aligned IPC)

In-transit Data Placement (C ABI)

(e) 16 columns (Host overhead)

256B 2KiB 16KiB 128KiB 1MiB 8MiB 64MiB 512MiB

Total data size

2 GB/s

5 GB/s

8 GB/s

10 GB/s

12 GB/s

15 GB/s

T
h
ro
u
g
h
p
u
t

Host serialization

SmartNIC serialization

In-transit Data Placement (IPC)

In-transit Data Placement (page-aligned IPC)

In-transit Data Placement (C ABI)

(f) 16 columns (SmartNIC throughput)

Fig. 11: Median overhead and throughput measurements to characterize the impact of different Arrow serialization strategies

and serialization tasks for each of our five approaches to
offloading. Every experiment is repeated ten times. Each row
of subfigures corresponds to an Arrow table with a different
number of columns. The left column of subfigures shows
the host overhead for each experiment. The x-axes for these
figures show the total size of the data being processed. The
y-axes of these figures are the median time for the host’s
involvement in the offload process. These results correspond
to our design objective to minimize the host’s involvement
in offloading the data to the SmartNIC, see Section II-B.

The data in these three subfigures show that the overhead
of transforming the data entirely on the host (i.e., the Host
serialization case) is significantly higher than any of the offload
approaches (nearly two orders of magnitude larger in some
cases). Moreover, the overhead does not increase with data
size.

Summary: Overhead measurements are consistent with our
benchmark results Sections IV-A and V-C and demonstrate
the overhead of offloading Arrow transformation operations
to the SmartNIC is: (i) independent of the total size of
the data; and (ii) substantially lower than the overhead of
performing the transformation directly on the host.

In Figure 11, the right column of subfigures characterizes
the SmartNIC throughput for for each experiment. The x-axes
of these figures are the total size of the data. The y-axes are the
median SmartNIC throughput, calculated as the quotient of the
number of data bytes transferred and the amount of time that
elapsed from beginning of the transfer from host memory (i.e.,
when the RDMA Get request is issued) to the time that the data
resides in a Arrow IPC buffer in SmartNIC memory. These
data correspond to our second design objective to maximize
SmartNIC throughput, see Section II-B. In Section IV-B, we
showed that data transfer by itself would not be a bottleneck.
In this section, we examine how the amount of work that is
performed on the SmartNIC affects its throughput.

Figure 11b shows the results for a single-column Arrow
table. This case establishes a valuable baseline because there is
a single contiguous memory buffer to transfer in all cases. The
solid blue line shows that host serialization yields the highest
throughput. This case minimizes the work required in the
SmartNIC because all of the transformation and serialization
operations are performed on the host before the transfer is
initiated. The solid orange line shows the results for the case
where we use IDP to transfer the contents of the Arrow
objects on the host to the appropriate locations in an pre-
existing Arrow IPC buffer in SmartNIC memory. As discussed
above, Arrow is page-alignment agnostic. As a result, the
baseline IDP for IPC yields much lower throughput than host
serialization. However, the dashed orange line demonstrates
that if we artificially pad the Arrow IPC buffers so that
transfers land on page boundaries then we can nearly match
the performance of host serialization. Specifically, these data
show that page-aligned IDP for IPC is able to achieve more
than 87% of baseline throughput for data buffers that are 128
KiB or larger (and more than 95% of baseline throughput for
buffers that are 1 MiB or larger). At the other end of the
spectrum, the pink line shows SmartNIC serialization incurs
the greatest overhead because all of Arrow transformation
and serialization operations take place on the SmartNIC (cf.
Section V-E, benchmark results comparing host and Smart-
NIC performance). We can improve the performance of this
approach by using one of our three IDP-based approaches
to transfer data directly from host memory to Arrow data
structures in SmartNIC memory.

Figures 11d and 11f show the throughput for 4- and
16-column tables, respectively. The most striking difference
between these figures and the 1-column results (Figure 11b)
is that the results from the two IDP for IPC experiments
(the solid and dashed orange lines) are effectively shifted
rightward relative to the 1-column results. There are two
principal reasons for this: (i) for a fixed data size, tables

with more columns require smaller transfers and, as shown
in Section IV, the achievable throughput for smaller buffers
is generally smaller than for larger buffers; and (ii) each
column requires a separate transfer operation; as the number of
columns increases, the additional per-transfer overhead further
decreases the overall throughput. However, for sufficiently
large buffers, using IDP for page-aligned IPC buffers is still
able to nearly match the throughput for our host serialization
experiments. Although SDMS’s IDP feature is not able to
match the results of the Host serialization case, it nearly
eliminates the work that the host processor has to do to in
the Host serialization cast to effectuate the transformation and
dramatically improves the SmartNIC throughput relative to
naive computation offload (i.e., SmartNIC serialization).

Summary: Throughput results confirm the intuitions pro-
vided by our benchmark results in Section V-F. By using
IDP to serialize the data during the transfer we reduce the
probability that the offloaded work becomes a bottleneck.

VI. RELATED WORK

Offloading work to SmartNICs. Several existing research
efforts have examined offloading computation to SmartNICs.
Liu et al. [23] characterize the performance of BlueField-2
DPUs using benchmarks to identify the kinds of computation
that would be candidates for offload. Several frameworks for
offloading work to SmartNICs have also been proposed, see
[24], [25]. Sarkauskas et al. [26] examine how large, non-
blocking collectives can be offloaded to BlueField-2 DPUs.
Similarly, Bayatpour et al. [5] present a method for offloading
non-blocking all-to-all collectives. Karamati et al. [20] show
that it is possible to accelerate a molecular dynamics mini-
application by offloading parts of the main computation to
a BlueField-2 DPU. Gootzen et al. [27] use virtualization to
offload of a cloud file-system client to BlueField-2 DPUs.

Offloading Arrow operations to SmartNICs. Several research
efforts have also examined the specific case of offloading work
related to Apache Arrow operations to SmartNICs. Liu et
al. [1] examine how BlueField-2 DPUs can be used to com-
press particle data stored in Apache Arrow objects. In support
of offloading Arrow operations to BlueField-2 DPUs, Ulmer
et al. [2] used Faodel primitives to transfer the associated
data to SmartNIC memory. Because their results showed that
the transfer bandwidth was a small fraction of the network
bandwidth, they specifically identified transfer bandwidth as
an opportunity for improvement. The Fletcher framework
enables the acceleration of Apache Arrow operations using
FPGAs [28]. Ahmad et al. [29] show that Apache Arrow Flight
provides very fast transport of Arrow RecordBatch objects.

SmartNIC Data Transfer. NVIDIA’s DOCA SDK [30] in-
cludes a library for optimizing transfers between host and
SmartNIC buffers. This library simplifies development but is
more focused on raw performance than offloading applica-
tion functions and is limited to NVIDIA BlueField devices.
Similarly, DPDK [31] enables developers to implement packet

processing pipelines in SmartNICs, but is focused on IP packet
flows instead of HPC data streams

In contrast to these existing approaches, we present a high-
speed, general-purpose software service that can be used to
efficiently offload the transformation of application data to
serialized Apache Arrow objects to SmartNICs.

VII. CONCLUSION

In this work we introduced SDMS, a high-performance,
general-purpose data movement service supporting the of-
floading of tasks to ‘smart’ network interfaces. Benchmark-
ing establishes that SDMS provides near-line-rate transfer
bandwidths between the host and SmartNIC, and has low
communication initiation overheads regardless of buffer size
(Section IV). Through an in-depth case study of the use
of SDMS to offload Apache Arrow data manipulation to
the NIC, we demonstrated that offloading these tasks may
significantly reduce host overhead (Section V). Moreover,
we demonstrate that the impact to throughput incurred by
offloading work to the NIC can be mitigated by using SDMS’s
IDP feature (Section V-G): For single-column tables, IDP
achieves more than 87% of baseline throughput for data
buffers that are 128 KiB or larger, and more than 95% of
baseline throughput for buffers that are 1 MiB or larger,
while also nearly eliminating the host and SmartNIC overhead
associated with Arrow operations.

REFERENCES

[1] J. Liu, C. Maltzahn, M. L. Curry, and C. D. Ulmer, “Processing
Particle Data Flows with SmartNICs,” in IEEE High Performance
Extreme Computing Conference, HPEC 2022, Waltham, MA, USA,
September 19-23, 2022. IEEE, 2022, pp. 1–8. [Online]. Available:
https://doi.org/10.1109/HPEC55821.2022.9926325

[2] C. Ulmer, J. Liu, C. Maltzahn, and M. Curry, “Extending composable
data services into SmartNICs,” in 2023 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW). IEEE, 2023.

[3] J. Yan, L. Tang, J. Li, X. Yang, W. Quan, H. Chen, and Z. Sun, “UniSec:
a unified security framework with SmartNIC acceleration in public
cloud,” in Proceedings of the ACM Turing Celebration Conference-
China, 2019, pp. 1–6.

[4] R. E. Grant, W. Schonbein, and S. Levy, “RaDD Runtimes: Radical and
Different Distributed Runtimes with SmartNICs,” in 2020 IEEE/ACM
Fourth Annual Workshop on Emerging Parallel and Distributed Runtime
Systems and Middleware (IPDRM), 2020, pp. 17–24.

[5] M. Bayatpour, N. Sarkauskas, H. Subramoni, J. Maqbool Hashmi,
and D. K. Panda, “BluesMPI: Efficient MPI Non-blocking Alltoall
Offloading Designs on Modern BlueField Smart NICs,” in High Per-
formance Computing, B. L. Chamberlain, A.-L. Varbanescu, H. Ltaief,
and P. Luszczek, Eds. Cham: Springer International Publishing, 2021,
pp. 18–37.

[6] The Apache Software Foundation, “Apache Arrow: A cross-language de-
velopment platform for in-memory analytics,” https://arrow.apache.org/,
undated.

[7] Sandia National Laboratories, “hod-carrier,” https://github.com/
sandialabs/hod-carrier, undated.

[8] Linux RDMA, “qperf,” https://github.com/linux-rdma/qperf, undated.
[9] R. B. Ross, G. Amvrosiadis, P. Carns, C. D. Cranor, M. Dorier,

K. Harms, G. Ganger, G. Gibson, S. K. Gutierrez, R. Latham et al.,
“Mochi: Composing data services for high-performance computing
environments,” Journal of Computer Science and Technology, vol. 35,
pp. 121–144, 2020.

[10] H. Childs, S. D. Ahern, J. Ahrens, A. C. Bauer, J. Bennett, E. W. Bethel,
P.-T. Bremer, E. Brugger, J. Cottam, M. Dorier et al., “A terminology for
in situ visualization and analysis systems,” The International Journal of
High Performance Computing Applications, vol. 34, no. 6, pp. 676–691,
2020.

[11] The Apache Software Foundation, “Projects powered by Apache Arrow,”
https://arrow.apache.org/powered by/, 2023.

[12] NumFOCUS Inc., “pandas,” https://pandas.pydata.org/, 2023.
[13] The Apache Software Foundation, “Apache Spark,” https://spark.apache.

org/, 2023.
[14] M. Rocklin et al., “Dask: Parallel computation with blocked algorithms

and task scheduling,” in Proceedings of the 14th python in science
conference, vol. 130. SciPy Austin, TX, 2015, p. 136.

[15] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang,
M. Elibol, Z. Yang, W. Paul, M. I. Jordan, and I. Stoica, “Ray: A
distributed framework for emerging AI applications,” 2018.

[16] J. N. Hughes, A. Annex, C. N. Eichelberger, A. Fox, A. Hulbert, and
M. Ronquest, “Geomesa: a distributed architecture for spatio-temporal
fusion,” in Geospatial informatics, fusion, and motion video analytics
V, vol. 9473. SPIE, 2015, pp. 128–140.

[17] J. Liu, C. Maltzahn, and C. Ulmer, “Opportunistic query execution
on smartnics for analyzing in-transit data,” in IEEE High Performance
Extreme Computing Conference, HPEC 2023. IEEE, 2023.

[18] C. Ulmer, S. Mukherjee, G. Templet, S. Levy, J. Lofstead, P. Widener,
T. Kordenbrock, and M. Lawson, “Faodel: Data management for next-
generation application workflows,” in Proceedings of the 9th Workshop
on Scientific Cloud Computing, 2018, pp. 1–6.

[19] C. Docan, M. Parashar, and S. Klasky, “Dataspaces: an interaction and
coordination framework for coupled simulation workflows,” in Proceed-
ings of the 19th ACM International Symposium on High Performance
Distributed Computing, 2010, pp. 25–36.

[20] S. Karamati, C. Hughes, K. S. Hemmert, R. E. Grant, W. W. Schonbein,
S. Levy, T. M. Conte, J. Young, and R. W. Vuduc, “‘Smarter’ NICs for
faster molecular dynamics: a case study,” in 2022 IEEE International
Parallel and Distributed Processing Symposium (IPDPS). IEEE, 2022,
pp. 583–594.

[21] C. Ulmer, J. Friesen, and J. Kenny, “Glinda: An HPDA cluster with
Ampere A100 GPUs and BlueField-2 VPI SmartNICs,” Sandia National
Lab.(SNL-CA), Livermore, CA (United States), Tech. Rep., 2023.

[22] The Apache Software Foundation, “Apache Arrow: The Arrow
C data interface,” https://arrow.apache.org/docs/format/CDataInterface.
html#c-data-interface, undated.

[23] J. Liu, C. Maltzahn, C. Ulmer, and M. L. Curry. (2021) Performance
Characteristics of the BlueField-2 SmartNIC. eprint: 2105.06619.
[Online]. Available: https://arxiv.org/abs/2105.06619

[24] M. Liu, T. Cui, H. Schuh, A. Krishnamurthy, S. Peter, and K. Gupta,
“Offloading distributed applications onto smartnics using iPipe,” in Pro-
ceedings of the ACM Special Interest Group on Data Communication,
2019, pp. 318–333.

[25] G. Vallee, “Mimosa: Multi-tenant intelligent modular offloading service
architecture,” https://github.com/gvallee/dpu offload service, 2023.

[26] N. Sarkauskas, M. Bayatpour, T. Tran, B. Ramesh, H. Subramoni,
and D. K. Panda, “Large-message nonblocking MPI Iallgather and
MPI Ibcast offload via BlueField-2 DPU,” in 2021 IEEE 28th Interna-
tional Conference on High Performance Computing, Data, and Analytics
(HiPC). IEEE, 2021, pp. 388–393.

[27] P.-J. Gootzen, J. Pfefferle, R. Stoica, and A. Trivedi, “DPFS: DPU-
powered file system virtualization,” in Proceedings of the 16th ACM
International Conference on Systems and Storage, 2023, pp. 1–7.

[28] J. Peltenburg, J. Van Straten, L. Wijtemans, L. Van Leeuwen, Z. Al-Ars,
and P. Hofstee, “Fletcher: A framework to efficiently integrate FPGA
accelerators with Apache Arrow,” in 2019 29th International Conference
on Field Programmable Logic and Applications (FPL). IEEE, 2019,
pp. 270–277.

[29] T. Ahmad, “Benchmarking Apache Arrow Flight-a wire-speed protocol
for data transfer, querying and microservices,” in Benchmarking in the
Data Center: Expanding to the Cloud, 2022, pp. 1–10.

[30] NVIDIA, “NVIDIA DOCA software framwwork,” https://developer.
nvidia.com/networking/doca, 2023.

[31] Linux Foundation, “DPDK,” https://www.dpdk.org, 2023.

